HETEROCYCLES, Vol. 80, No. 2, 2010, pp. 909 - 915. © The Japan Institute of Heterocyclic Chemistry Received, 31st August, 2009, Accepted, 13th October, 2009, Published online, 14th October, 2009 DOI: 10.3987/COM-09-S(S)122

# SYNTHESIS AND $\pi$ -AMPHOTERIC PROPERTIES OF TRIS(TETRATHIAFULVALENO)HEXADEHYDRO[12]ANNULENE

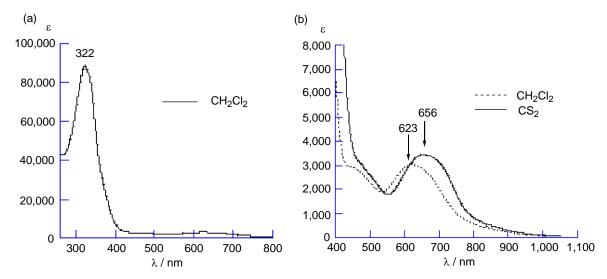
Kenji Hara,<sup>§</sup> Masashi Hasegawa,<sup>#</sup> Yoshiyuki Kuwatani,<sup>†</sup> Hideo Enozawa,<sup>‡</sup> and Masahiko Iyoda\*

Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; iyoda@tmu.ac.jp

**Abstract** – The Sonogashira coupling reaction of the diiodide **6** of 1,2-[4,5-bis(butylthio)tetrathiafulvalenyl]ethyne with 4,5-bis(ethynyl)-4',5'-bis-(butylthio)tetrathiafulvanene **5** produced the corresponding tris(tetrathiafulvaleno)hexadehydro[12]annulene **1** in moderate yield. The [12]annulene **1** exhibits multi-redox behavior and solvatochromism in the neutral state.

## **INTRODUCTION**

Hexadehydro[12]annulene has received considerable attention, because its tribenzo-analogue is regarded as a structural unit of graphyne,  $^1$  and because various unique transition-metal complexes have been constructed using the [12]annulene frame.  $^{2,3}$  Furthermore, tribenzohexadehydro[12]annulene (TBA) has been employed as a starting material for the synthesis of cage molecules and polyethers.  $^{4,5}$  Recently, we have reported the synthesis and  $\pi$ -amphoteric properties of bis(tetrathiafulvaleno)hexadehydro[12]-annulene **2** and related compounds based on the tetrathiafulvalene (TTF) and [12]annulene moieties.  $^{6,7}$  The annulene **2** exhibited multi-redox potentials, solvatochromism, and the formation of a large sandwich complex. Based on these results, we next synthesized tris(tetrathiafulvaleno)hexadehydro[12]annulene **1**. We report here the synthesis, unique redox behavior, and solvatochromic properties of **1**.


## **RESULTS AND DISCUSSION**

The synthesis of **1** is summarized in Scheme 1. Although various synthetic methods of accessing hexadehydro[12]annulenes have been reported to date,  $^{8,9}$  we employed the Sonogashira coupling of the bis(ethynyl)-TTF **5** with the diiodo-bi-TTF **6** similar to our previously reported procedure  $^{6}$  owing to the instability of **1** to light, atmospheric oxygen, and acidic condition. Thus, the reaction of the diiodo-TTF **3** with trimethylsilylacetylene (4 equiv) in the presence of Pd(PPh<sub>3</sub>)<sub>4</sub> (15 mol%), CuI (30 mol%), and Et<sub>3</sub>N

in benzene at 50 °C for 12 h produced the bis(trimethylsilylethynyl)-TTF **4** in 74% yield. The treatment of **4** with KOH (excess) in THF-methanol (1:1) at room temperature for 3 min yielded **5** to remove the trimethylsilyl groups. Since **5** was unstable and readily polymerized after removal of the solvent, a solution of **5** in benzene was employed for the following reaction without further purification. The Sonogashira coupling of **6** with **5** (1.65 equiv based on 100% conversion of **4**) in the presence of Pd(PPh<sub>3</sub>)<sub>4</sub> (50 mol%) and CuI (100 mol%) in benzene-triethylamine (10:3) at room temperature for 5 h produced the desired **1** in 36% yield based on **6**. For the synthesis of **1**, almost stoichiometric amounts of Pd(PPh<sub>3</sub>)<sub>4</sub> and CuI were required to complete the reaction.

**Scheme 1.** Synthesis of tris(TTF)[12]annulene **1** 

Interestingly, the tris(TTF)annulene **1** shows solvatochromism, and a solution of **1** is deep green in  $CS_2$  but bright green in  $CH_2Cl_2$ . As shown in Figure 1, the UV-Vis-NIR spectrum of **1** shows strong (322 nm,  $\epsilon = 90,000$ ) and weak (623-656 nm,  $\epsilon = 3500$ -4000) absorptions. The strong absorption is unchanged with the type of solvent, whereas the weak absorption varies with the type of solvent used [ $\lambda_{max}$  ( $CS_2$ ) 656 nm and  $\lambda_{max}$  ( $CH_2Cl_2$ ) 623 nm]. Since the longest absorption is assigned to the charge-transfer (CT) band from the TTF ( $\pi$ -donor) to [12]annulene ( $\pi$ -acceptor) moieties, this transition is sensitive to the polarity of the solvent.



**Figure 1.** UV-Vis-NIR spectra of **1**. (a) Entire spectrum in  $CH_2Cl_2$ . (b) Expansion of the weak absorptions in  $CH_2Cl_2$  and  $CS_2$ .

The cyclic voltammetric (CV) analysis of **1** shows unique redox properties owing to the  $\pi$ -amphoteric nature of **1**. As shown in Table 1, **1** and **2** indicated 4-step redox processes; namely, the formation of **1**<sup>2</sup>-, **1**<sup>7</sup>, **1**<sup>3+</sup>, and **1**<sup>6+</sup>, or **2**<sup>2-,</sup> **2**<sup>7</sup>, **2**<sup>2+</sup>, and **2**<sup>4+</sup>. Since tribenzohexadehydro[12]annulene (TBA) shows two reduction waves at -2.50 and -2.19 V vs Fc/Fc<sup>+</sup> under the same conditions, the reduction potential of the [12]annulene unit increases in the order **1** > **2** > TBA, reflecting the increase in the degree of cyclic conjugation. In contrast, the oxidation potentials of **1** and **2** seemed to be similar. However, the first oxidation potential of **1** was split into two (E<sup>ox1</sup><sub>1/2</sub>(1) = 0.12 V; E<sup>ox1</sup><sub>1/2</sub>(2) = 0.26 V vs Fc/Fc<sup>+</sup>) when measured at a very slow rate (3 mV s<sup>-1</sup>), while the first oxidation potential of **2** showed a broad oxidation even when measured at a very low rate. Consequently, the oxidation potential of the TTF units decreases in the order **2** ≥ **1** > TTF, reflecting the increase in donor ability.

**Table 1.** Redox potentials of 1, 2, and TTF vs Fc/Fc<sup>+</sup> at room temperature. <sup>a</sup>

| Compound | E <sup>red2</sup> <sub>1/2</sub> | E <sup>red1</sup> <sub>1/2</sub> | E <sup>ox1</sup> 1/2 | E <sup>ox2</sup> 1/2 |
|----------|----------------------------------|----------------------------------|----------------------|----------------------|
| TTF      | _                                |                                  | -0.08                | 0.30                 |
| 1        | -1.78                            | -1.41                            | 0.21 (0.12, 0.26)    | b 0.49               |
| 2        | -1.87                            | -1.50                            | 0.19                 | 0.46                 |

<sup>&</sup>lt;sup>a</sup>Reduction potential was measured in THF using  $^n$ Bu<sub>4</sub>NClO<sub>4</sub> (0.1 M), glassy carbon (working electrode), Pt (counter electrode), and 100 mVs<sup>-1</sup>, whereas oxidation potential was measured in benzonitrile using  $^n$ Bu<sub>4</sub>NClO<sub>4</sub> (0.1 M), Pt (working and counter electrodes) and 100 mV s<sup>-1</sup>. The potential was measured against a Ag/Ag<sup>+</sup> reference electrode and converted to the value vs Fc/Fc<sup>+</sup>. 

<sup>b</sup>Measured at 3 mV s<sup>-1</sup>.

The CV analysis of **1** showed three oxidation potentials (Table 1). Accordingly, the chemical oxidation of **1** with Fe(ClO<sub>4</sub>)<sub>3</sub> revealed characteristic changes in color and electronic spectra. As shown in Figure 2, the oxidation of **1** with 1, 2, 3, and 6 equiv of Fe(ClO<sub>4</sub>)<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub>–CH<sub>3</sub>CN (v/v 4:1) resulted in the formation of **1**<sup>+-</sup> (859 and ca. 2000 nm), **1**<sup>2+</sup> (872 nm), **1**<sup>3+</sup> (860 nm), and **1**<sup>6+</sup> (694 nm), respectively. The solutions changed from green (**1**) to dark orange (**1**<sup>+-</sup>), greenish orange (**1**<sup>2+</sup>), dark green (**1**<sup>3+</sup>), and blue (**1**<sup>6+</sup>). The cation radical **1**<sup>+-</sup> shows a very broad absorption at approximately 2000 nm probably owing to the strong intermolecular interaction between the TTF and TTF<sup>+-</sup> units. However, the possible formation of a mixed valence dimer (**1**<sub>2</sub><sup>3+</sup>) was ruled out, because **1**<sub>2</sub><sup>3+</sup> (*i.e.*, **1**<sup>1.5+</sup> in Figure 2)<sup>14</sup> exhibited a weak absorption at approximately 2000 nm as shown in Figure 2. Regarding **1**<sup>3+</sup>, no  $\pi$ -dimer formation was observed based on its electronic spectra, and the absorption of **1**<sup>3+</sup> (860 nm) appeared almost the same as that of **1**<sup>+-</sup> (859 nm). However, the absorption of **1**<sup>2+</sup> (872 nm) showed a red shift corresponding to the intramolecular head-to-tail interaction of two TTF<sup>+-</sup> units. In contrast to the preferable  $\pi$ -dimer formation of tris(TTF)[18]annulene trications, In electron system. In contrast to the difficulty in stacking the [4n]  $\pi$ -electron system.

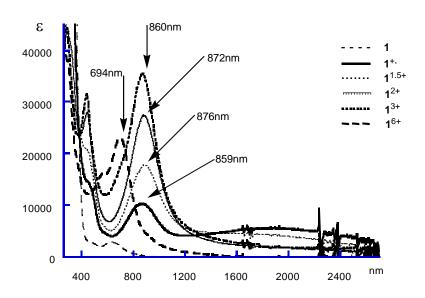



Figure 2. UV-Vis-NIR spectra of cationic species derived from 1 in CH<sub>2</sub>Cl<sub>2</sub>–CH<sub>3</sub>CN (4:1)

In summary, the synthesis of the tris(TTF)[12]annulene **1** was successfully carried out using the nearly stoichiometric Sonogashira coupling of the diiodo-biTTF **6** with the diethynyl-TTF **5**. The TTF-annulene **1** exhibits solvatochromism, electrochromism, and multi-redox behavior owing to the  $\pi$ -amphoteric nature of **1**. Although **1** is unstable in the solid state, presumably owing to the combination of the [4n]  $\pi$ -electron system with  $\pi$ -donors, the introduction of electron-withdrawing groups into the TTF units in **1** 

can stabilize the molecule.

#### **ACKNOWLEDGEMENTS**

This work was supported in part by a Grant-in-Aid for Scientific Research from JSPS and CREST of JST. KH would like to acknowledge a research fellowship for young scientists from JSPS. We are grateful to Prof. Masato Yoshida (Shimane University) and Prof. Haruo Matsuyama (Muroran Institute of Technology) for their helpful discussions.

#### REFERENCES AND NOTES

- § Present Address: ADEKA Co., Higashi-Ogu 7-2-35, Arakawa-Ku, Tokyo 116-8553, Japan.
- # Present Address: Department of Chemistry, School of Science, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan
- † Present Address: VSN Inc., Nishimiyahara 2-1-3, Yodogawa-Ku, Osaka 532-0004, Japan
- ‡ Present Address: Functional Soft Matter Engineering Laboratory, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- 1. R. H. Baughman, H. Eckhardt, and M. Kertesz, *J. Chem. Phys.*, 1987, 87, 6687.
- 2. W. J. Youngs, C. A. Tessier, and J. D. Bradshaw, *Chem. Rev.*, 1999, **99**, 3153.
- 3. M. Iyoda, A. Vorasingha, Y. Kuwatani, and M. Yoshida, *Tetrahedron Lett.*, 1998, **39**, 4701.
- 4. (a) M. Iyoda, K. Fuchigami, A. Kusaka, T. Yoshida, M. Yoshida, H. Matsuyama, and Y. Kuwatani, *Chem. Lett.*, 2000, 860; (b) S. Sirinintasak, Y. Kuwatani, S. Hoshi, E. Isomura, T. Nishinaga, and M. Iyoda, *Tetrahedron Lett.*, 2007, 48, 3433.
- 5. M. Ohkoshi, T. Horino, M. Yoshida, and M. Iyoda, *Chem. Commun.*, 2003, 2586.
- 6. K. Hara, M. Hasegawa, Y. Kuwatani, H. Enozawa, and M. Iyoda, *Chem. Commun.*, 2004, 2042.
- 7. For the TTF oligomers, see: (a) M. Iyoda, M. Hasegawa, and Y. Miyake, *Chem. Rev.*, 2004, 104, 5085; (b) M. Iyoda, M. Hasegawa, and H. Enozawa, *Chem. Lett.*, 2007, 36, 1402; (c) M. Hasegawa, H. Enozawa, and M. Iyoda, *J. Synth. Org. Chem. Jpn.*, 2008, 66, 1211.
- 8. (a) I. D. Campbell, G. Eglinton, W. Henderson, and R. A. Raphael, *J. Chem. Soc., Chem. Commun.*, 1966, 87; (b) D. Solooki, J. D. Ferrara, D. Malaba, J. D. Bradshaw, C. A. Tessier, and W. J. Youngs, *Inorg. Synth.*, 1997, 31, 122; (c) C. Huynh and G. Linstrumelle, *Tetrahedron*, 1988, 44, 6337; (d) H. A. Staab and F. Graf, *Chem. Ber.*, 1970, 103, 1107; (e) K. P. C. Vollhardt and G. D. Whitener, *Synlett*, 2003, 29.
- 9. M. Iyoda, S. Sirinintasak, Y. Nishiyama, A. Vorasingha, F. Sultana, K. Nakao, Y. Kuwatani,

- H. Matsuyama, M. Yoshida, and Y. Miyake, *Synthesis*, 2004, 1527.
- 10. Data for **1**: dark green powder, mp (measured by DSC) 91.2 °C (decomp.); LDI-MS m/z 1206 (M<sup>+</sup>); <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  2.78 (t, J = 7.4 Hz, 12H), 1.59 (quint, J = 7.4 Hz, 12H), 1.42 (sext, J = 7.4 Hz, 12H), 0.93 (t, J = 7.4 Hz, 18H); <sup>13</sup>C-NMR (125MHz, CDCl<sub>3</sub>)  $\delta$  13.6, 21.6, 29.7, 36.1, 92.9, 106.7, 114.4, 123.2, 127.8; UV-Vis (CH<sub>2</sub>Cl<sub>2</sub>,  $\epsilon$ ) 322 (90000), 623 (3800) nm. Anal. Calcd for C<sub>48</sub>H<sub>54</sub>S<sub>18</sub>: C, 47.72; H, 4.51. Found: C, 47.61; H, 4.58.
- 11. Since the double bonds of TTFs have an olefinic character, the [12]annulene ring in 1 is more paratropic than that in 2. Similarly, the paratropicity of 2 is much more stronger than that of tribenzohexadehydro[12]annulene (TBA). Therefore, the first reduction potential of the [12]annulene unit increases in the order TBA < 2 < 1, reflecting the increase in the degree of cyclic conjugation. The LUMO levels of 1, 2, and TBA are 1 < 2 < TBA, reflecting the decrease in the degree of cyclic conjugation, see: M. Iyoda, Y. Onishi, and M. Nakagawa, *Tetrahedron Lett.*, 1981, 22, 3645.
- 12. The CV analysis of **1** and **2** in benzonitrile at room temperature revealed that these compounds show only weak intra- and intermolecular interactions in the cationic states, although some TTF oligomers show fairly strong intra- and intermolecular interactions owing to mixed valence dimer and  $\pi$ -dimer formations. <sup>7a</sup>
- 13. For the chemical oxidation of TTFs with Fe(ClO<sub>4</sub>)<sub>3</sub>, see: M. Iyoda, M. Hasegawa, Y. Kuwatani, H. Nishikawa, K. Fukami, S. Nagase, and G. Yamamoto, *Chem Lett.*, 2001, 1146.
- 14. The oxidation of **1** with 1.5 equiv of Fe(ClO<sub>4</sub>)<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub>–CH<sub>3</sub>CN (v/v 4:1) resulted in the formal formation of **1**<sup>1.5+</sup> as shown in Figure 2. Although the formation of a mixed valence dimer (**1**<sub>2</sub><sup>3+</sup>) was expected, the electronic spectrum of **1**<sup>1.5+</sup> showed only a weak absorption at *ca*. 2000 nm and hence almost no formation of a mixed valence dimer (**1**<sub>2</sub><sup>3+</sup>) in solution. For the formation of a mixed valence dimer from the tris-TTF system, see: M. Hasegawa, J. Takano, H. Enozawa, Y. Kuwatani, and M. Iyoda, *Tetrahedron Lett.*, 2004, **45**, 4109.
- (a) M. Iyoda, K. Hara, Y. Kuwatani, and S. Nagase, *Org. Lett.*, 2000, 2, 2217; (b) M. Iyoda, M. Hasegawa, K. Hara, J. Takano, E. Ogura, and Y. Kuwatani, *J. Phys. IV France*, 2004, 114, 455; (c) M. Hasegawa, Y. Kuwatani, and M. Iyoda, *J. Phys. IV France*, 2004, 114, 505; (d) M. Hasegawa, H. Enozawa, Y. Kawabata, and M. Iyoda, *J. Am. Chem. Soc.*, 2007, 129, 3072; (e) M. Hasegawa, Y. Kobayashi, K. Hara, H. Enozawa, and M. Iyoda, *Heterocycles*, 2009, 77, 837.
- 16. The intramolecular head-to-tail (or side-by-side) interaction of the two cation-radicals shows a bathochromic shift of the longest absorption maximum owing to Davydov red shift, <sup>19</sup> see:

- (a) M. Iyoda, M. Hasegawa, J. Takano, K. Hara, and Y. Kuwatani, <u>Chem. Lett.</u>, 2002, 590;(b) M. Iyoda, H. Enozawa, and Y. Miyake, <u>Chem. Lett.</u>, 2004, 1098.
- 17. (a) H. Enozawa, M. Hasegawa, D. Takamatsu, K. Fukui, and M. Iyoda, *Org. Lett.*, 2006, 8, 1917; (b) H. Enozawa, M. Hasegawa, E. Isomura, T. Nishinaga, T. Kato, M. Yamato, T. Kimura, and M. Iyoda, *ChemPhysChem*, in press [DOI: 10.1002/cphc.200900545].
- 18. Although terminal benzene rings of helicenes tend to stack on top of each other, terminal biphenylene rings of heliphenes tend to separate from each other, see: S. Han, D. R. Anderson, A. D. Bond, H. V. Chu, R. L. Disch, D. Holmes, J. M. Schulman, S. J. Teat, K. P. C. Vollhardt, and G. D. Whitener, *Angew. Chem. Int. Ed.*, 2002, 41, 3227.
- (a) J. B. Torrance, B. A. Scott, B. Welber, F. B. Kaufman, and P. E. Seiden, *Phys. Rev. B*, 1979, 19, 730;
   (b) M. E. Kozlov, Y. Tanaka, M. Tokumoto, and T. Tani, *Synth. Metal.*, 1995, 70, 987.