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Abstract – This paper describes the molecular shuttling and specific N-acylations 

of a [2]rotaxane featuring an encircling crown ether unit and both N-alkylaniline 

and N,N-dialkylamine centers on its dumbbell-shaped component. The crown 

binds predominantly to the dialkylammonium center under neutral conditions. 

Reactions with acid anhydride in nonpolar solvents and in the absence or 

presence of a weak base resulted in the N-acylations occurring mainly at the 

aniline moiety, and selective N-acylations of the dialkylamine unit occurred in 

polar solvents in the presence of strong bases.

Rotaxanes are stabilized through attractive noncovalent interactions between their axle-like units and the 

cavities of their wheel-shaped components.1–4 For example, Takata, Kihara, and co-workers reported that 

the acidities of N,N-dialkylammonium groups in rotaxane systems featuring crown ether units are 

unusually low—because of stabilizing hydrogen bonds between the components—and that the 

N-acylation of these NH2
+ centers proceeds slowly in the presence of an excess of a tertiary amine.4 

Recently, the Loeb group investigated the use of N-alkylanilinium cations as suitable axle components for 

the formation of [2]pseudorotaxanes with crown ethers.5 They found that the introduction of 

electron-withdrawing groups on the anilinium benzene ring enhanced [2]pseudorotaxane formation. 

Because such [2]pseudorotaxanes are pH-sensitive, they prepared a molecular shuttle, driven by acid/base 

control, featuring a combination of anilinium and 1,2-bis(pyridinium)ethane recognition sites.6 These 

systems piqued our curiosity: If a [2]rotaxane contained both dialkylamine and alkylaniline moieties, 

which of these amino groups would predominantly recognize a crown ether through cooperative binding 

of a proton and which would react preferentially with electrophiles? We design the [2]rotaxane 1 (Scheme 

1) to answer these questions (Figure 1). 
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Figure 1 

The 1H NMR spectrum of 1,7 which possessed two different amino groups in the axle component and 

dibenzo[24]crown-8 (DB24C8) as a macrocyclic component, contains a concentration-independent NH2
+ 

resonance at 7.52 ppm and signals for the pairs of two benzylic protons (Hd and He) at 4.42 and 4.56 ppm, 

all of which are characteristic of crown ether/dibenzylammonium-type [2]rotaxanes;4,7 in addition, the 

signal for the benzylic protons Hh appears at 4.24 ppm. Therefore, the N,N-dialkylammonium cationic 

center acted as the preferentially binding site under neutral conditions�(Figure 2a). 

An addition of trifluoroacetic acid (TFA) to the solution of the [2]rotaxane 1 in CDCl3 gave the anilinium 

salt 1-H+ and its translational isomer 2-H+ (Scheme 1). In the 1H NMR spectra of 2-H+ (Figure 2), the 

anilinium-NH proton resonates at 8.98 ppm and the signal for the anilinium benzylic protons Hh appears 

at 5.24 ppm; these signals are characteristic of crown ether/anilinium-type [2]rotaxanes.5,6 Additionally, 

the resonances for the benzylic protons Hd and He in 2-H+ appeared at significantly higher fields than they 

did in 1, attributable to the loss of deshielding effects associated with DB24C8; the resonances for both Hi 

and Hk moved to lower fields, a likely result of the formation of the anilinium ion. Shielding effects of 

DB24C8 are also responsible for the upfield shift in the resonance of methyl (Hj) protons in 2-H+. A 1H 

NMR spectroscopically monitored titration revealed the distribution of 1-H+/1 and 2-H+ (i.e., 1:0.5, 1:1, 

1:2, and 1:5 molar mixtures of 1 and TFA gave 90:10, 82:18, 70:30, and 60:40 mixtures, respectively, of 

1-H+/1 and 2-H+). These values suggest that the strengths of the association events for the two 

ammonium ions with DB24C8 were similar, with the higher basicity of the dialkylamine unit, relative to�

that of the N-alkylaniline unit, favoring its status as the dominant translational isomer under each set of�

conditions. 
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Figure 2. 1H NMR (500MHz, CDCl3, 302 K) spectra of rotaxane 1 a) in the absence and in the presence 
of b) 0.5 eq, c) 1.0 eq, and d) 5 eq of TFA. Italic: 1 and 1-H+, �: 2-H+. 
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Recently, pH-responsive�rotaxanes consisting of ammonium ions and crown ethers have been reported by 

several groups.6,8 In the most usual cases, deprotonation of the ammonium ion parts weakens the 

hydrogen-bond between the both components, and molecular shuttle driven by acid-base can be 

accomplished. In the present study, the positional discrimination is not enough, however we have shown 

the protonation-controlled translational isomerization using dialkylammonium and alkylanilinium 

stations.9 

Next, we investigated the reactivities of the two nitrogen atoms in the [2]rotaxane toward acid anhydrides�

(Scheme 2). Treatment of 1 with acetic anhydride in ClCH2CH2Cl in the absence of base gave the 

N-acylaniline product 3a selectively (Table 1, run 1). This acylation was promoted by the addition of 

triethylamine (run 2), an excess of which also provided some of the N-acetyldialkylamine product 4a (run 

3). Use of polar solvent and/or a strong base was necessary to achieve the selective production of 4a (runs 

4–8). We observed similar selectivities for the N-acylations performed using di-tert-butyl dicarbonate 

(Boc2O) as the electrophile (Table 2): the N-Bocaniline derivative 3b was formed primarily in a nonpolar 

solvent and in the presence of weak base (runs 1–3), whereas a strong base and a polar solvent increased 

the production of 4b (runs 4–6). Long reaction times produced some unidentified products, but the 

addition of 2,6-di-tert-butylphenol improved the yield of 3b (run 7), presumably because it promoted the 

protonation of the dialkylamine unit or acted as a radical scavenger. 

 

 

 

 

 

 

Scheme 2. N-Acetylation of [2]rotaxane�1. 

 

How do the base and solvent dramatically affect the selectivity? The acidity of N,N-dibenzylammonium 

NH2
+ protons located within the cavity of a crown ether is quite low;4,8b therefore, triethylamine (pKa of 

Et3N+H = 10.8) cannot deprotonate 1 and the crown ether unit kinetically protects the dialkylamine 

moiety in the form of a dialkylammonium/crown ether–coordinated [2]rotaxane. In contrast, strong bases 

(pKa of t-BuOH = 18.0; pKa of ArOH = 16.8) deprotonated the dialkylammonium center, causing the 

DB24C8 unit to interact only weakly with the amino groups; as a result, the more reactive dialkylamine in 

the deprotonated [2]rotaxane attacked the electrophiles selectively (Figure 3). A polar solvent plays a 

similar role, cleaving the hydrogen bonds between the axle- and wheel-like components of the 

[2]rotaxane 1. 
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Table 1. N-Acetylation of the [2]rotaxane 1.    Table 2. N-tert-Butoxycarbonylation of the [2]rotaxane 1. 
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Figure 3. Mechanism of the selective N-acylation reactions. 

 

In summary, we have investigated the reactivity of two different amines of a [2]rotaxane possessing both 

N,N-dialkylamine and N-alkylaniline moieties. Under neutral conditions, the dialkylamine unit 

predominantly recognized the crown ether component in 1 through cooperative binding of a proton; 

addition of an acid generated the translational isomer 2. Specific N-acylations of 1 are possible in the 

presence of acetic anhydride and di-tert-butyl dicarbonate; these reactions are influenced by the polarity 

of the solvent and the strength of any added base. Recently, quantitative active transport of a [2]rotaxane 

comprising a secondary ammonium ion axle and a crown ether was examined using a one-shot acylation 

approach.10 Our results suggest the possibility of new transporting methodologies using such systems. 
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