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1. INTRODUCTION 

Heterocyclic compounds are worthy of attention for many reasons, chief among which are their biological 

activities, which many important drugs having one or more hetero atoms in their cyclic structures. 

Therefore, organic chemists have been making extensive efforts to produce heterocyclic compounds by 
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developing new and efficient synthetic transformations. Over the past few decades, palladium-catalyzed 

coupling reactions have been extensively studied.1 The impact of the palladium-catalyzed cross-coupling 

reactions, discovered during the 1970s, has been considerable and continues to be the focus of much 

organometallic research.2 Palladium-catalyzed reactions for carbon-carbon bond formation, including 

Suzuki,3 Heck,4 Sonogashira,1 Tsuji–Trost5 as well as other reactions, have gained a predominant place in 

the arsenal of organic chemists. Palladium catalysis usually allows selective reactions with high turnover 

numbers and turnover frequencies under rather mild conditions. A number of palladium catalysts are 

commercially available and their reactivity, stability and selectivity can be tuned by ligands (phosphines, 

carbenes, amines, etc.) and/or additives.6 

Palladium-catalyzed processes have proven to be a powerful and useful tool for the synthesis of 

heterocycles. Palladium has found such wide application, since it affects an extraordinary number of very 

different reactions, including many carbon-carbon bond-forming reactions, under relatively mild reaction 

conditions. Furthermore, palladium can usually be used in only catalytic amounts and tolerates a wide 

variety of functional groups, thus avoiding protection group complexity. Most palladium-based 

methodology proceeds stereo- and regioselectively in excellent yields.7 The wide utility of palladium in 

organic synthesis is vivid from the too many number of name reactions where the deep influences of this 

versatile transition metal enable it in the formation of C-C, C-O, C-N and even C-S bond under relatively 

mild conditions. The catalytic requirement and excellent tolerance of functional groups avoiding the 

protection-deprotection chemistry has made possible the use of palladium in the synthesis of small to 

large ring heterocyclic compounds.8 Catalytic amount of palladium is required for successful conversion, 

the catalyzed processes are in fact strongly dependent on other factors e.g. Base, ligand, temperature, 

additives and solvents.8 Palladium catalysis has achieved the status of an indispensable tool for both 

common and state-of-the art organic synthesis. Among basic types of palladium-catalyzed transformation 

such as, e.g., allylic substitution of cross coupling may seem to be more advanced, none can match Heck 

chemistry in resourceful versatility, the overwhelming ability to spawn new, hitherto unexpected 

applications, and resolving challenges.9 There are many advantages associated with Pd-mediated 

reactions, particularly ease of scale-up and tolerance to water and/or other functional groups, such as 

ketones, esters, amides, ethers, or heterocyclic rings, which supply poly functional molecules. The Heck 

reaction is one of the most important carbon-carbon bond-forming reactions and has been used in a 

variety of complex natural product syntheses. The interest in the Heck reaction has recently increased 

significantly. Perhaps the most dramatic progress to date is the development of an enantioselective 

variant.10 In the following sections we are trying to cover and update the recent application of Heck 

reaction in the synthesis of variety of heterocyclic compounds.10 
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2. SYNTHESIS OF AZA HETEROCYCLIC COMPOUNDS 

2.1 CYCLIZATION VIA REACTIONS OF ARYL HALIDES 

The cascade process utilized a Pd(OAc)2/ PPh3 precatalyst combination for the intramolecular Heck 

reaction which affords 2 in situ. The known instability of 2 dictated a search for mild reaction conditions. 

Using dichloromethane as solvent allowed the reaction to be carried out at room temperature. A 

subsequent Ag(I) catalyzed imine to azomethine and ylide to cycloaddition cascade led to spiro-oxindoles 

regiospecifically in good yield with a reaction time of 16–18 h for the total cascade (Scheme 1).11 

 

 

 

 

 

 

 

Scheme 1 
 

The intramolecular Heck reaction of aromatic amines and ethers using palladium/imidazolium salts was 

described. The use of tetra-n-butylammonium halide salts facilitated the reactivity of aromatic chlorides. 

An unexpected and novel palladium mediated cyclization was also described leading to the formation of a 

tricyclic adduct (Scheme 2, 3, 4).12 Further studies on substrate 5 were frustrated by problems of isomer 

separation; however, Caddick and Kofie have tentatively assigned the product as a mixture of 

regioisomers 6, 7, 8 (yields, between 20 and 70%) (Scheme 2).12            
 

 

 

 

 

 

Scheme 2 
 

However, Caddick and Kofie were able to isolate a single product 10 from reaction of substrates 9. They 

found that the iodide and bromide 9 proceeded to give the product 10 in good yields (I, 82%, 1 h; Br, 

60%, 5 h) but the chloride 9 gave only 4 % of product 10. However, repetition of the reaction but using 

tetra-n-butylammonium bromide or iodide, had a dramatic effect, improving the yield of 10 from 4% to 

28–32% (Scheme 3).12 
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Scheme 412 presents the results of studies on intramolecular Heck reactions using Pd2dba3 and 

imidazolium salt A. 

 

 

 

 

 

 

 

 

Scheme 4 

 

Allylation of aldehyde 13 with allyl bromide and unactivated zinc in DMF for 30 min smoothly afforded 

in 98% yield homoallylic alcohol 14 as a yellow oil, which set the stage for 5-exo cyclization via an 

intramolecular Heck reaction. Treatment of 14 with Pd(OAc)2 (0.05 equiv), PPh3 (0.1 equiv) and TEA (2 

equiv) in MeCN at 70 oC for 3.5 h led to the desired cyclopenta[c]pyridine intermediate 15 in 80% yield 

(Scheme 5).13 
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column chromatography and recrystallization, 99% of 21. However, further improvements could be made 

if it was possible to replace the 2-iodoaniline with the much cheaper 2-bromoaniline as the precursor of 

20 (X= Br). Unfortunately, the latter turned out to be less reactive in the cyclization reaction [30% 

conversion to 21 after 30 min]. However, upon conventional heating at 120 oC overnight, 21 was isolated 

in 95% yield (Scheme 6).14 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 5 

 

 

 

 

 

 

 

 

Scheme 6 

 

A novel one-pot-synthesis of highly substituted indol-2-ones using a combination of Ugi and Heck 

reaction (U-4CRHeck) is described. The synthesized indol-2-ones represent an interesting 

pharmacological scaffold with four potential points of diversity. Thus, this novel reaction-type is 

amenable to combinatorial high-throughput screening (Scheme 7).15 
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Heck reaction was reported. Intramolecular Heck reactions of the resulting 2-chloroanilino enamines 28 

were achieved using an in situ generated palladium complex derived from an N-hetercyclic carbine 

(Scheme 8).16 
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Synthesis of five and six membered heterocycles, indulines, 2,3-dihydrobenzofurans (Scheme 10),17 

chromans, 1,2,3,4-tetrahydroquinolines (Scheme 11),17 and 1,2,3,4- tetrahydroisoquinolines (Scheme 

9),17 in 70-99% yield by a ligand-free palladium catalyzed reductive Heck cyclization of phenyl bromides 
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and chlorides, under mild conditions, was reported. Water was found to be essential for these reactions. 

 

 

 

 

 

 

 

 

Scheme 9 

 

 

 

 

 

 

 

 

 

 

Scheme 10 
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In the presence of 10% of Pd(OAc)2(PPh3)2 and 2 equiv of iPr2NEt in acetonitrile at 82 °C, 36 yielded to a 

mixture of two cyclized products (3/1 ratio) in a very good yield. Under the reductive conditions, two 

aldehydes in a 3/1 ratio were obtained in poor yield. The major one was identical with 39 and the minor 

one with 40. Therefore, the stereochemical outcome of the reductive and non reductive cyclizations was 

not influenced by the presence of the aminal even if a loss of the enantiomeric purity was observe 

(Scheme 12).18 
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The various kinds of N-acyldihydropyridones 41 were conveniently prepared from heteroaryl Grignald 

reagents and N-acylpyridinium salts. Subsequently, dihydropyridones 41 were converted to 42 by use of 

an intramolecular Heck cyclization (Scheme 13).19 
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Ugi-Smiles/Heck coupling/isomerization cascade can be done in a one-pot procedure by destroying the 

residual isocyanide before the Pd coupling (Scheme 14).20 
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The palladium-mediated transformation of 3,4-dihydro-2(1H)-pyridinones 49 featuring a (2-

bromophenyl)ethyl substituent in the 5-position produced spirocyclic products, imides 51 and amides 52. 

The formation of these products can be explained by insertion of the enamide double bond into the initial 

aryl-Pd bond followed by oxidation or reduction of the organopalladium intermediate.           

Alternatively, formation of these spiro compounds might proceed via acyliminium ion intermediates 

(Scheme 15).21 

 

 

 

 

 

 

 

Scheme 15 

 

A tandem sequence involving palladium-catalyzed sequential Heck-reduction-cyclization transformations 

in mild conditions has been developed for the synthesis of oxindoles. The protocol involved inexpensive 

reagents and did not require any additives such as bases or ligands (Scheme 16).22 
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Scheme 16 

 

 

 

 

 

Scheme 17 

 

Treatment of N-alkylbenzazepinone 60 with Pd(OAc)2 in DMF containing K2CO3 (2 equiv) and Bu4N
+Br- 

(1 equiv) at 110 oC for 2 h provided the desired tetracyclic ring structure of 

dehydroisoindolinobenzazepinone 61 91% yield. Subsequent palladium-catalyzed hydrogenation of the 

dehydroisoindolinobenzazepinone 61 readily furnished the corresponding isoindolinobenzazepinone 62 in 

83% yield (Scheme 18).24 
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Weinrich and Beck reported the palladium-catalyzed one-pot N-alkylation/Heck cyclization of anilines to 

substituted indoles employing Pd(OAc)2/XPhos (Scheme 19).25 

 

 

 

 

 

 

Scheme 19 

 

A simple method for the preparation of 1,7-naphthyridine and 1,6-naphthyridine from the corresponding 

aminopyridine starting materials was presented. Crude 68 was treated with DMF and a catalytic amount 

of triethylammonium iodide in ethyl ether (generated by mixing TEA and HI) and heated to 70 °C for 16 

h to cleanly provide 69 in 76% yield over the two steps. Formation of 73 under these conditions occurred 

via a multistep sequence involving Heck coupling, palladium-mediated oxidation of the allylic alcohol to 

the aldehyde, double bond isomerization, cyclization, and dehydration (Scheme 20).26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 20 

 

The use of condition a and condition b in the reaction mixture was found to be critical for the endo-type 

cyclization to provide 75 and 76. The yields were 75 (54%) and 76 (47%) (Scheme 21).27 
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Scheme 21 

 

Amides 77, when irradiated in a microwave vessel using standard Heck conditions [3 equiv TEA, 5 mol% 

Pd(OAc)2, 10 mol% P(o-tolyl)3, DMF], afforded the unexpected 6-exo-trig derivatives in 15 minutes. The 

structures of 78 were confirmed by NMR analyses (Scheme 22).28 

 

 

 

 

 

 

 

 

 

Scheme 22 

 

3-Bromopyridine-4-carbaldehyde 79 was tethered with suitably electron withdrawing group substituted 

alkenes via Heck coupling followed by aldol reaction in dioxane at 150 oC under a catalytic system of 

Pd(OAc)2/PPh3/NaOAc to afford the corresponding isoquinolines in good yields (Scheme 23).29 
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Scheme 23 

 

 

 

 

 

Scheme 24 

 

Tetrahydropyrido[2,3-c]coumarin derivatives were synthesized by intramolecular radical cyclization and 

heck coupling. This method allowed the synthesis of the backbone of the santiagonamine alkaloid 

(Scheme 25).31 

 

 

 

 

 

 

 

Scheme 25 

 

87 was treated with a catalytic amount of palladium(II) acetate in the presence of (x-phos) and potassium 

acetate in bis(2-methoxyethyl)ether at 80 oC for 3 days, after which the desired Heck-cyclization product 

88 was isolated in 33% yield together with 41% of the deallylated and debrominated naphthalene 89. In 
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column chromatography (Scheme 26).32 

 

 

 

 

 

 

 

 

 

 

 

Scheme 26 

 

The palladium-mediated intramolecular cyclization of 90 was believed to give rise to the formation of 4-

methylene intermediate 91, which is formed as the Heck cyclization product and is likely to isomerize to 

the more conjugated and thus, more stable isomer 92. Indeed, after treatment of the N-protected 1,4-

naphthoquinone 90 with palladium(II) acetate and an excess of sodium carbonate in boiling acetonitrile 

for 3 h, none of the 4-methylene intermediate 91 was detected in the reaction mixture. Instead, 93 was 

obtained as the major reaction product and it was  isolated in 45% yield together with 13% of the desired 

92 (Scheme 27).32 
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Reaction of 95 with Pd(PPh3)4 under the conditions used for cyclisation of the tertiary amides (TEA, 
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(Scheme 28).33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 28 

 

Conducted with substrate 100 by applying the concept of Jeffery’s two-phase protocol in the presence of 

Pd(OAc)2, KOAc and tetrabutylammonium bromide (TBAB) in dry DMF under a nitrogen atmosphere 

for 6 h. The eight-membered exo-Heck product 101 was obtained in 72% yield without any contamination 

of the endo-Heck product 102 (Scheme 29).34 

 

 

 

 

 

Scheme 29 

 

Substrate 103 was allowed to react with phosphine-free Jeffery’s two-phase protocol, that is, 

Pd(OAc)2/KOAc/TBAB/DMF/90 oC/N2 conditions and pleasingly the cyclized product 104 was obtained 

in 59% yield. When the reaction was performed with the same substrate 103 using Pd(OAc)2 as catalyst, 
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NaOAc as base, and Ph3P as ligand in dry DMA at 90 oC for 3.5 h the corresponding exo-Heck product 

105 was obtained as the sole product in 82% yield (without TBAB as phase transfer catalyst) (Scheme 

30).35 

 

 

 

 

 

 

 

 

 

Scheme 30 

 

The cyclization reaction to give compounds 107 was performed with a catalyst system containing 10 

mol% of palladium(II)acetate, 1.0 equiv of tetrabutylammonium chloride (TBAC) and 2.5 equiv of 

sodium hydrogen carbonate in dimethylacetamide at 90 oC (Scheme 31).36 

 

 

 

 

 

 

Scheme 31 

 

In the case of compounds 108, better results were obtained using 10 mol% of palladium(II)-acetate, 20 

mol% of triphenylphosphine, 3.0 equiv of potassium acetate in acetonitrile at reflux. In these conditions, 

besides the γ-carbolinones 109, the isomeric γ-carbolinones with exocyclic double bond, 110 were also 

obtained (Scheme 32).36 

 

A synthetic route to pharmaceutically important tricyclic pyrrolopyrimidines was developed. The method 

employed a palladium-mediated Heck cyclization as the critical step in the construction of the final six 

membered rings (Scheme 33).37 
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Scheme 33 

 

In the presence of a catalytic (5%) amount of Pd(OAc)2, AcOK in DMF (90 °C, 2 h) the dihydropyridine 

113 was regioselectively converted into 114. Therefore, 114 resulted from an anti carbopalladation then a 

syn β-elimination and an isomerisation of the double bond. Acidic hydrolysis of the aminal group in 114 

afforded the aldehyde 115. A tandem cyclization–hydride capture performed on 113, in the presence of 

5% of Pd(OAc)2(PPh3)2 and piperidinium formate, gave the two diastereomeric products 117 (94% de) 

and 119 (95% de) in a 7:3 ratio.  Aminals 117 and 119 were respectively converted into the aldehydes 118 

and 120 by acidic hydrolysis (Scheme 34).38 
 

Kiely and Guiry described cyclisations of 121 using Pd complexes generated from (R)-BINAP 124 and 

the phosphinamine ligands 125–128 (Scheme 35).39 

 

Using Pd(OAc)2/PCy3 (tricyclohexylphosphine) under standard conditions, the intramolecular Heck 

cyclization of 129 was found to proceed to completion rapidly. In related intramolecular Heck cyclization 
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reactions of benzamides, a range of double bond isomers have been reported. In this study, none of the 

bridgehead double bond isomer was formed, and 131 was observed as the major product, along with trace 

amounts of 132 and 133 double bond isomers. Investigation of a range of bases at the optimum reaction 

temperature (140 oC) showed that DIPEA gave comparable results to those obtained in the presence of 

MeNCy2 (dicyclohexylmethylamine), however, TEA, K2CO3 and 2,6-lutidine gave lower conversion 

levels (Scheme 36).40 

 

A novel approach towards the construction of the galanthamine skeleton was demonstrated by the Pd- 

catalyzed cyclization of N-[2-(1,4-dioxa-spiro[4,5]dec-7-en-8-yl)ethyl] 2-iodo-4-methoxy-N-methyl 

benzamide, with formation of the benzazepine ring and creation of a quaternary carbon (Scheme 37).41 
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Scheme 35 
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Intramolecular Heck reaction of trif late 121

Ligand Solvent T(oC) Base Time(h) Yield 122/123 ee 122

124 DMA 110 PMP 48 90 25:75 74 (S)
125 DMA 110 PMP 228 36 99:1 65 (R)
125 DMA 110 PS 168 30 99:1 85 (R)
126 DMA 110 PMP 228 13 71:29 37 (R)
127 DMA 110 PMP 228 20 76:24 57 (R)
127 DMA 110 PS 168 20 99:1 71 (R)
128 DMA 110 PMP 228 7 72:28 33 (R)
124 toluene 110 PMP 48 90 75:25 71 (S)
125 toluene 110 PMP 168 70 94:6 51 (R)
125 toluene 80 PMP 168 70 99:1 53 (R)
125 toluene 80 PS 168 15 99:1 82 (R)
126 toluene 110 PMP 168 35 93:7 12 (R)
126 toluene 80 PMP 168 5 90:10 30 (R)
127 toluene 110 PMP 168 20 90:10 19 (R)
125 benzene 80 PMP 168 5 98:2 63 (R)

HETEROCYCLES, Vol. 81, No. 9, 2010 1997



 

 

 

 

 

 

 

 

 

 

 

Scheme 36 

 

 

 

 

 

 

 

 

 

Scheme 37 

 

Compound 136 was subjected to Heck reaction condition using Pd(OAc)2, Ph3P, and K2CO3 in MeCN, 

the desired intramolecular cyclization was achieved to provide dispiro-compound 137. The ethylene ketal 

group of 137 was removed easily when put in contact with silical gel in methanol to give ketone 138 in 

95% yield. Subsequent removal of the benzyl group in 138 with SnCl4 was accompanied by a 

spontaneous intramolecular Michael addition to afford tetracyclic oxolycoraminone 139 in 75% yield. 

Simultaneous reduction of both the ketone and amide groups of 139 with LAH afforded (+)-140 with 

excellent diastereoselectivity (de >95%) (Scheme 38).42 

 

The Heck reaction was carried out in N,N-dimethylacetamide using MeNCy2 (dicyclohexylmethylamine) 

as a base, Et4NCl as promoter, and Pd(OAc)2 as precatalyst. All reactions gave the 8-endo products 142 
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Catalyst screening for the intramolecular Heck cyclization reaction of solfonamide 129

Entry Catalyst Base T(oC) t(min) Solvent Ratio

1 Pd(OAc)2/PCy3 MeNCy2 130 70 DMA 77:14:9
2 Pd(OAc)2/PCy3 MeNCy2 140 60 DMA 96:2:2
3 Pd(OAc)2/PCy3 MeNCy2 150 30 DMA 95:3:2
4 Pd(OAc)2/PCy3 Et3N 140 70 DMA 90:2:8
5 Pd(OAc)2/PCy3 DIPEA 140 35 DMA 92:5:3
6 Pd(OAc)2/PCy3 K2CO3 140 40 DMA 55:27:18
7 Pd(OAc)2/PCy3 2,6-Lutidine 140 - DMA -
8 Pd(OAc)2/PCy3 MeNCy2 140 35 DMF 94:5:1
9 Pd(OAc)2/PCy3 MeNCy2 130 360 DMF 39:38:23
10 Herrmann-Beller(A) MeNCy2 140 180 DMF 44:31:25
11 Herrmann-Beller(A) MeNCy2 150 110 DMF 52:16:32
12 Herrmann-Beller(A) AgF 140 180 DMF 65:23:12
13 Herrmann-Beller(A) Ag3PO4 140 120 DMF 67:18:15
14 Herrmann-Beller(A) Ag2CO3 140 70 DMF 85:13:2
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exclusively in up to 72% yield. Bromo analogues required longer reaction times (12 h) in contrast to the 

corresponding iodo compounds (4 h) (Scheme 39).43 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 38 

 

 

 

 

 

 

 

Scheme 39 

 

The Heck reaction was carried out first, giving a selective reaction with the aryl iodide in the presence of 

an aryl bromide 144. Very good chemoselectivity was observed, giving products 145 exclusively in 82% 

yield. The carbamate 145 (X= NC(O)OC(CH3)3) was deprotected using TFA to give the free aniline 145 

(X= NH). Compound 145 (X= NH) gave the dibenzo[b,f]azepine 146 in 74% yield. Phenol 145 (X= OH) 

was obtained in 82% yield using 2-iodophenol and 144. The cyclization of 145 (X= OH) using the 

catalytic conditions developed by Buchwald and coworkers gave 146 (X= O) in 60% yield (Scheme 

40).43 

I
Me

N

O O

OBn

MeO

O

136

Pd(OAc)2, PPh3, K2CO3

MeCN, 130 oC

N

O
O

O

MeO

Me
O

137

silical gel, MeOH

rt

N

O

MeO

Me
O

138

O

LAH, THF, reflux

N

O

MeO

Me

HO

140 (lycoramine)

SnCl4, CH2Cl2

rt

N

O

MeO

Me
O

139 (oxylycoramone)

O

X

CO2Et

I

141

Pd(OAc)2, EtNCl, MeNCy2

N,N-dimethylacetamide
4-12 h, 95 oC

X

CO2Et

142

X= NCO2CF3  (72 %)
X= O (72 %)

X= NCO2CF3  
X= O

HETEROCYCLES, Vol. 81, No. 9, 2010 1999



 

 

 

 

 

 

 

 

 

 

Scheme 40 

 

Heck cyclization on the Ugi product 149 proceeded smoothly to produce the seven membered lactam 150 

in excellent yield (Scheme 41).44 

 

 

 

 

 

 

Scheme 41 

 

Substrate 151 cleanly underwent microwave-assisted Heck cyclization to generate 152 in 90% yield 

(Scheme 42).44 

 

 

 

 

 

 

Scheme 42 

 

The resin-bound Ugi adduct 153 was washed with DMF, MeOH, and CH2Cl2, and then subjected to two 

different solid-phase Heck cyclization conditions. The first set of reaction conditions utilized Bu4NCl, 
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KOAc, Ph3P, and Pd(OAc)2 in DMF while the second example mimicked their solution phase conditions 

described above (149, 151) with the sole difference being the addition of Bu4NCl. Following the Heck 

reactions, the resin was washed with DMF , DMF/water 1:1, DMF, MeOH, and CH2Cl2 . The cyclized 

adducts were cleaved from the resin (1:1 TFA/CH2Cl2) and the resulting acids were methylated utilizing 

(trimethylsilyl)diazomethane in MeOH, to produce ester 154 with moderate yields (33–44%) (Scheme 

43).44 

 

 

 

 

 

 

Scheme 43 

 

Aldehydes containing a vinylogous bromide were condensed with 4-butenamine and then treated with 

phenylTosMIC and potassium carbonate to give the corresponding imidazoles. The imidazoles were then 

subjected to the Heck reaction to give the desired imidazo[1,5-a]azepines (Scheme 44).45 

 

 

 

 

 

Scheme 44 

 

Compounds 158, obtained by alkylation of 157 with 2-bromobenzyl bromide, were subjected to different 

Heck reaction conditions using Pd(OAc)2 as catalyst in the presence of a base in DMF. 158 were fully 

converted to the cyclized benzazepines 159 using either K2CO3 or Oct3N as a base. The reaction was very 

selective since only 159 were obtained among the different products, which could be formed during the 

reaction. Since the reaction products 159 were isolated by precipitation in Et2O and filtration, the use of 

lipophilic Oct3N was preferred because it was readily eliminated during this operation (Scheme 45).46 

 

2. 2 CYCLIZATION VIA REACTIONS OF VINYL HALIDES 
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(Z)-161 in 44% yield (74% based on converted product) along with 40% of starting (E)-160 (Scheme 

46).47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 45 

 

 

 

 

 

 

Scheme 46 

 

The intramolecular heck cyclization of N-allyl-, -aryl- or –benzyl-5-allyl-2-pyrrolidinones and N-allyl-,    

-aryl-, or –benzyl-6-allyl-2-piperidinones, prepared through allyltrimethylsilan addition to the 
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corresponding cyclic N-acyliminium ions, afforded indolizidinones, quinolizinones and benzoazepinones 

in moderate to good yields (56-90%) (Scheme 47).48 
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Scheme 47 

 

An efficient approach to the bridged framework of the indole alkaloid ervitsine , featuring a ring-closing 

metathesis reaction from a 2,3-disubstituted indole followed by a vinyl halide Heck cyclization upon the 

resulting cycloheptane ring, was described (Scheme 48).49 

 

The precursors 176 on reaction with Pd(OAc)2 (10 mol%), PPh3 (0.25 equiv) and Cs2CO3 (1.2 equiv) in 

DMF at 90–100 oC yielded the fused tetrahydropyridine derivatives 177 in good to excellent yields via 6-

exo-trig cyclization (Scheme 49).50 
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Scheme 48 

 

 

 

 

 

 

 

 

 

Scheme 49 

 

But when N-methallylated derivatives 178 were subjected to the Heck reaction under the same reaction 

conditions (Scheme 49)50 they gave cyclopropa[d]fused isoquinoline derivatives 179 (Scheme 50).50 
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Asymmetric intramolecular Heck cyclization of enamide 180 using Ag3PO4 as a halide scavenger in 

combination with Pd·(R)-BINAP complex in DMF at room temperature provided 181 in 85% 

enantiomeric excess, while reactions conducted in tetrahydrofuran gave dieneamide 182 as the major 

product (Scheme 51).51 

 

 

 

  

Scheme 51 

 

2. 3 CYCLIZATION VIA FUNCTIONALIZATION OF AROMATIC C-H BONDS 

The Heck reaction was effective in the presence of a Pd(OAc)2/PPh3 catalytic system and silver carbonate 

as base. The reaction was performed in excellent yield with 0.1 equiv of palladium catalyst in 2 h 

(Scheme 52).52 

 

 

 

 

Scheme 52 

 

Protected indole 185 was submitted to the Heck coupling reaction and afforded the desired product 186 in 

an excellent  yield. The cyclization occurred with only 0.05 equiv of Pd(OAc)2 in 1 h (Scheme 53).52 

 

 

 

 

Scheme 53 

 

The cyclization of 187 (0.05 equiv of Pd(OAc)2) afforded 188 in 59% yield and was then improved up to 

70%  when 0.1 equiv of Pd(OAc)2 was used (Scheme 54).52 

 

N-electron withdrawing protecting groups such as Boc or SO2Ph prevented cyclization. However, N-Me 

and N-EOM compounds 189 (R1= Me, R2= Me) and 189 (R1= EOM, R2= EOM) allowed the 

intramolecular cyclization with excellent yield (89-92%) (Scheme 55).52 
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Scheme 54 

 

 

 

 

 

 

Scheme 55 

 

Beccalli and coworkers reported the synthesis of tricyclic fused quinolone and naphthyridone derivatives, 

by an intramolecular Heck cyclization. They also reported the use of microwave irradiation to obtain, in 

some cases, better yields of cyclized products (Scheme 56, 57).53 
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The short total synthesis of paullone 198 and dimethyl paullone 199 via a novel palladium-catalyzed 

intramolecular coupling using the o-bromo- and o-iodo anilides of indoles (195 and 196) and N-methyl 

indole 197 was described (Scheme 58).54 

 

 

 

 

 

 

 

 

Scheme 58 

 

The intramolecular ring closure of 202 was performed in the presence of Pd(OAc)2 (0.05 equiv), PPh3 

(0.1 equiv), and silver carbonate (2 equiv) in DMF at 100 oC for 1 h to give 203 in excellent yield 

Sequential deprotection of 203 was achieved by removal of the N-Boc group (1N NaOH and 1,4-dioxane) 

and then the N-EOM group (1N HCl and 1,4-dioxane) to afford, respectively, 204 and 205 in good yield 

(Scheme 59).55 
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Heck cyclization procedure was applied on 207 to afford 208 in 82% yield. Removal of the Boc group of 

208 was effective by treatment with a solution of trifluoroacetic acid in dichloromethane at room 

temperature to give 209 in 88% yield (Scheme 60).55 

 

 

 

 

 

 

 

Scheme 60 

 

The ring closure of 210 and 211 were carried out when 0.1 equiv of Pd(OAc)2, PPh3 and Ag2CO3 in 

dimethylformamide  were used and the cyclization was performed at 140 oC (Scheme 61).55 

 

 

 

 

 

 

 

 

Scheme 61 

 

The cyclization reaction of 215 was performed in the presence of 0.1 equiv of palladium catalyst at 100 
oC for 2 h to afford 216 in 92–96% yield. A two-step deprotection sequence was developed to reach 

compounds 217. Removal of the N-Boc group was first carried out by treatment of 216 with 

trifluoroacetic acid in dichloromethane at room temperature followed by the second deprotection in the 

presence of TBAF in refluxing THF. The derivatives 217 were obtained in 40–43% yield (two-step yield) 

(Scheme 62).55 

 

Lee and coworkers synthesized novel tetracyclic fused indole derivatives via the intramolecular Heck 

reaction of indole-containing Baylis–Hillman adducts in good to moderate yields (Scheme 63).56 
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Scheme 62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 63 

 

A new synthetic protocol has been developed for the arylation of secondary and N-alkylated amide Heck 

precursors by the implementation of the palladium-catalyzed intramolecular Heck reaction strategies 

(Scheme 64).57 

 

 

 

 

 

 

Scheme 64 
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Nitrogenated heteropolycyclic systems were obtained by intramolecular palladium-catalyzed coupling 

reactions promoted by microwave irradiation (Scheme 65).58 

 

 

 

 

 

 

 

 

Scheme 65 

 

The intramolecular process, obtained using Pd(OAc)2 as precatalyst, AcOK as base, TBAC as additive 

and DMA as solvent, afforded two regioisomers 228 and 229 arising from the cyclization on position 2 or 

4 of the pyridyl ring, in 1:3 ratio in favour of the para position. Similarly tricyclic systems 231 was 

obtained when 230 were treated with Pd(OAc)2, AcOH, TBAC and DMA at 100 oC (Scheme 66).59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 66 

 

The tertiary amide 232 was then treated according to the reported conditions, to give the cyclized product 

233 in good yield (Scheme 67).59 
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Scheme 67 

 

3. SYNTHESIS OF OXYGEN- BEARING HETEROCYCLIC COMPOUNDS 

3. 1 CYCLIZATION VIA REATIONS OF ARYL HALIDES 

The ester 234 was subjected to Heck reaction under standard conditions (10 mol% Pd(OAc)2, 20 mol% 

(o-tol)3P and n-Bu3N in DMF). The cyclization reaction was smoothly preceded in a 5-exo-trig manner to 

give rise to a spiro-lactone 235 in 95% yields. Finally, in the next stages, 1,13-dihydroxyherbertene 236 

was obtained in 100% yield (Scheme 68).60 

 

 

 

 

 

 

Scheme 68 

 

The catalytic combination of Pd2(dba)3/HP(t-Bu)3.BF4 and DABCO gave an unusual intramolecular Heck 

reaction with dihydronaphthalene substrates, yielding formal anti-hydride elimination products in good to 

excellent yields under mild conditions. For dibromo substrates, multiple Heck reactions was possible 

when an external acceptor was added to afford more highly functionalized products (Scheme 69).61 
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When ortho-iodobenzyl allyl ether was treated with 5 mol% PdCl2, 1.5 equiv (n-Bu)3N and 1 equiv 

HCO2NH4 at 60 oC for 24 h, it disappeared completely and the product 241 was obtained in 71% isolated 

yields (Scheme 70).62 

 

 

 

 

Scheme 70 

 

An enzymatically generated diene diol was utilized as homochiral starting material in the total synthesis 

of (+)-codeine featuring a Mitsunobu inversion and two intramolecular Heck cyclizations. The first Heck 

cyclization was mediated by Pd(OAc)2 and provided aldehyde 243 in 82% yield, which was converted to 

vinyl bromide 244 by a Wittig reaction. The second Heck cyclization, performed according to Trost’s 

conditions, gave a low yield (44%) of the complete phenanthrene skeleton in 245 (Scheme 71).63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 71 

 

Enzymatic dihydroxylation of β-bromoethylbenzene provided a homochiral diene diol that served as 

starting material for the synthesis of the complete morphinan skeleton via an intramolecular Heck 

cyclization. Protection of the C-6 hydroxyl as the silyl ether 247 (R= TBS) provided the key intermediate 

for the Heck reaction leading to the pentacyclic carbamate 248 in 74% yield (Scheme 72).64 
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Scheme 72 

 

These olefins 250 cyclized to the corresponding 5-desoxipterocarpens 251 (R=H, OMe) in the presence of 

5 mol% of Pd(OAc)2 and Pterocarpen 253 was obtained from 252 through an intramolecular Heck 

reaction in the presence of 5 mol% of Pd(OAc)2. Finally, coumestan 254 was prepared in quantitative 

yield by oxidation of 253 with DDQ in THF (Scheme 73).65 

 

 

 

 

 

 

 

 

 

 

 

Scheme 73 

 

Synthesis of 257 and 259, in 74% yield by a ligand-free palladium catalyzed reductive Heck cyclization 

of phenyl bromides, under mild conditions, was reported. Water was found to be essential for this reaction 

(Scheme 74).17 

 

Intramolecular Heck reaction of 260, followed by hydrogenation, smoothly proceeded to afford the 

lactone 261 in 71% yields. Finally, in the next stages, 1,15-dihydroxyherbetene 262 was obtained in 83% 

yield (Scheme 75).60 
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Scheme 74 
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Scheme 75 

 

The modified reagent system [Pd(OCOCF3)2/P(2-furyl)3/EtNiPr2] gave enhanced conversions compared 

with standard conditions [Pd(OAc)2/PPh3/NEt3] for intramolecular Heck cyclizations, and when used in 

supercritical carbon dioxide (scCO2) results in the suppression of double bond isomerisation to minimal 

levels, which is otherwise a serious competing side reaction in conventional solvents (Scheme 76).66 

 

An in situ formed catalyst of Pd(OAc)2 and ligand 271 (10 mol%, Pd : L ratio = 1 : 2) was utilized and the 

reaction was performed in CHCl3, using 3 equiv of Cy2MeN as a base. The reaction mixture was heated to 

80 oC for 48 h under an inert atmosphere (Scheme 77).67 
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and 4 atm of carbon monoxide gave an acceptable 63% yield of the fused indole 276 after 70 h (Scheme 

78).68 

 

 

 

 

 

 

 

 

Scheme 76 

MeO O X

O

Pd(OAc)2, 271

Cy2MeN

CHCl3,
O

MeO

O

269 270

X= I 100 % con 96 % ee
X= Br <5 % con -
X= OTf 25 % con 75 % eeO

O
P

O

O

N

Ph Ph

Ph Ph

271



 

Scheme 77 

 

 

 

 

 

 

 

 

 

                     Scheme 78 

I

O

Pd(OCOCF3)2 ,P(2-furyl)3

EtNPr2

scCO2 or solvent

5 h, 80 oC
solvent = toluene or MeCN263

O O

+

264 265

I

O

266

Pd(OCOCF3)2 ,P(2-furyl)3

EtNPr2

scCO2 or solvent

5 h, 80 oC

solvent = toluene or MeCN

O O
+

267 268

O

Br

NO2

272

Pd(OAc)2, TEA

P(o-Tol)3

O

NO2

273 (66 %)

O

NO2

274 (15 %)

O

NO2

275 (3 %)

273  +  Pd(OAc)2

dppp, DMF

CO (4 atm)

120 oC

O

NH

276 (63 %)

HETEROCYCLES, Vol. 81, No. 9, 2010 2015



Allyl 2-iodobenzyl ether 266, allyl 2-iodobenzoate 277, cyclohexenyl 2-iodobenzyl ether 280, and 

cyclohexenyl 2-iodobenzoate 283 were subjected to Heck conditions [Pd(OAc)2 (10 mol%), PPh3 (20 

mol%), TEA (2 equiv), AgNO3 (1 equiv), MeCN, 80 oC], and the products were isolated by flash 

chromatography. For ether-tethered aryl iodides 266 and 280, cyclization gave high yields of products 

267+269 and 281+282. Ester-tethered aryl iodides 277 and 283 gave only unreacted starting material and 

deiodinated, uncyclized products 279 and 286. Ester-tethered cyclization products 278 and 284+285 were 

produced in trace amounts. Oxidation of cyclic ethers 281+282 with PCC provided cyclic esters 284+285 

in good yield (59%) (Scheme 79).69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 79 
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Heck reaction with iodide 287 (X=I), bromide 287 (X=Br) and triflate 287 (X=OTf) under various 

conditions led to the formation of 288 with different results. The usual ligands for asymmetric Heck 

reactions, BINAP or the oxazoline C, led to very low enantioselection or no conversion at all. The 

conversion rates could be increased by the addition of silver carbonate, but this had almost no positive 

effect on the enantiomeric excess. Other ligands ((R)-PHANEPHOS, (S, S)ET-BPE, ligand E) were either 

inactive or produced tricycles with low stereoinduction. The use of the JOSIPHOS ligand D, employed 

primarily in hydrogenation reactions, gave a remarkably high enantiomeric excess. Recrystallisation of 

this product gave a virtually enantiopure material. Additionally, the use of bromide 287 (X=Br) gave 

almost the same enantiomeric excess but with lesser yield than the use of 287 (X=I). However, in this 

case, the conversion of starting material was complete. The reaction gave rise to the hydrogenated product 

287 (X=H), which in the case of the iodide was only observed with an addition of silver carbonate. The 

change from a bromide to a triflate or non-aflate leaving group had almost no effect on the 

stereoinduction of the product, although the yields were relatively lower (Scheme 80).70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 80 

 

When the intramolecular Heck reaction was carried out with 289 in the presence of 10 mol% of Pd(OAc)2 

as a catalyst and KOAc (2.75 equiv) as a base and tetrabutylammonium bromide as a promoter in DMF at 

120 oC for 4–6 h, the 8-exo cyclized product 290 was obtained as the major product in 78 % yield, along 

with the 9-endo cyclized 291 as a minor product in 20% yield (Scheme 81).71 
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Scheme 81 

 

When the intramolecular Heck reaction was performed with precursor 292 in the presence of Pd(OAc)2 as 

a catalyst, KOAc as a base, and tetrabutylammonium bromide (TBAB) as an additive in dry DMF as 

solvent for 2 h under a nitrogen atmosphere, the eight-membered naphthoxocine compound 293 was 

obtained in excellent yield (86%) (Scheme 82).72 

 

 

 

 

 

 
Scheme 82 

 

Syntheses of nine-membered oxa-heterocyclic compounds by the application of the intramolecular Heck 

reaction have been difficult to develop. Herein, Majumdarand and Chattopadhyay, described the synthesis 

of this class of compounds through the 9-endo-trig cyclization and 8-endo-trig cyclization, respectively a 

rare mode of cyclization in the literature (Scheme 83).73 

 

3. 2 CYCLIZATION VIA REACTIONS OF VINYL HALIDES 

The vinyl iodide 299 was prepared starting from propargyl bromide and trans-cinnamyl alcohol in three 

steps and was subjected to intramolecular Heck reactions to give the product as a mixture of two isomers 

in a ratio of 9:1, with the (Z,E)-product 300 predominating (Scheme 84).74 

 

The intramolecular Heck reaction was performed with O-allylated 301 in the presence of Pd(OAc)2, PPh3, 

Cs2CO3 and TBAC (tetrabutylammonium chloride) in DMF at 80-85 oC to afford pyran derivatives 302 

(Scheme 85).75 
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Scheme 83 

 

 

 

 

 

 

Scheme 84 

 

 

 

 

 

Scheme 85 

 

O-Methallylated compounds 303 and aromatized compounds were subjected to intramolecular Heck 

reaction under the same conditions (Pd(OAc)2, PPh3, Cs2CO3 and TBAC (tetrabutylammonium chloride) 

in DMF at 80-85 oC) to afford pyrans 304 (Scheme 86).75 
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Scheme 86 

 

An efficient and convenient method for the synthesis of 2-aryl substituted tetrahydropyran, 

tetrahydrofuran, and oxepine derivatives via palladium catalyzed intramolecular Heck reaction was 

developed (Scheme 87).76 

 

 

 

 

 

 

 

 

 

Scheme 87 

 

3. 3 CYCLIZATION VIA FUNCTIONALIZATION OF AROMATIC C-H BONDS 

It was found that a 1:2 ratio of Pd:ethyl nicotinate was ideal and that inclusion of a substoichiometric 

amount of NaOAc (20 mol%) provided increased yields. Finally, increasing the temperature to 100 oC led 

to optimal results, providing benzofuran 310 in 77% yield after 12 h (Scheme 88).77 
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Under  standard reaction conditions (Pd(OAc)2 10 mol%, ethyl nicotinate 20 mol%, benzoquinone 1 

equiv, NaOAc 20 mol%, t-AmOH: AcOH 4: 1, 100 oC), ether 311 cyclized to produce a 

diastereomerically pure product in 60% yield, which was determined to be dihydrobenzofuran 313 by 1H 

NMR NOE experiments (Scheme 89).77 

 

 

 

 

 

 

 

Scheme 89 

 

2-bromophenoxy pyridines were treated with Pd(OAc)2 to afford functionalized benzo[4,5]furo-         

[3,2-c]pyridine 315. Under optimized conditions, both electron-deficient and electron-donating substrates 

gave good yields of the desired products (Scheme 90).78 
 

 

 

 

 

 

 

Scheme 90 

Precursor 316, when subjected to intramolecular Heck reaction in the presence of 10 mol% of Pd(OAc)2 

as catalyst KOAc as base and tetrabutylammonium bromide as promoter in DMF at about 100 oC, 

afforded linearly fused bis-cyclized product 317 (Scheme 91).79 
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4. SYNTHESIS OF HETEROCYCLIC COMPOUNDS CONTAININ SULFUR, SULFUR AND 

NITROGEN, SULFUR AND OXYGEN 

Both the iodo and bromo derivatives 318 afforded cyclic products in good yield when exposed to the 

Heck reaction conditions (67% and 69%), giving a novel cyclic sulfone 319 (Scheme 92).43 

 

 

 

 

 

Scheme 92 
 

For Heck cyclizations of the α-bromovinylsulfonamides Merten and his coworkers chose two established 

catalytic systems. Besides standard conditions A, they also applied conditions B, which have recently 

been utilized for the synthesis of lactams via a tandem Heck-allylic substitution reaction. However, next 

to formation of the expected α-methylene-γ-sultams, double bond migration by readdition of the 

palladium hydride species and occasionally also a complementary regioselectivity of carbopalladation (6-

endo instead of 5-exo) was noticed under both conditions. Since these undesired features were especially 

pronounced for substrate 320, Merten and his cowokers investigated the effect of silver and thallium 

additives on the Heck cyclization of this bromovinylsulfonamide (Scheme 93).80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 93 
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Substrate 327 was subjected to standard Heck conditions in the hope that a regioselective cyclisation 

would occur. In the event, using catalytic amounts of either Pd(OAc)2 or Pd(dba)2, starting material 327 

was completely consumed (Scheme 94).81 

  

 

 

 

 

 

Scheme 94 

 

Syntheses of hitherto unreported heterocycles, such as oxathiocine derivatives, in excellent yields, and a 

doubly cyclized oxathiocine derivative, through a intramolecular Heck reaction via an unusual 8-endo-

trig cyclization, were reported (Scheme 95).82 

  

 

 

 

 

 

Scheme 95 

5. CONCLUSION 

In this review, we have presented numerous very useful processes for the synthesis of heterocycles, via 

intramolecular Heck cyclization, reported in recent years. The reactions proceed under relatively mild 

reaction conditions and tolerate a wide variety of functional groups. Most palladium-based methodologies 

proceed stereo- and regioselectively in excellent yields. 
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