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Abstract – A growth inhibitor of which content in etiolated radish hypocotyls was 

increased under 500 g gravity conditions produced by centrifugation, but 

decreased under simulated microgravity conditions on a 3-dimensional clinostat, 

comparing to 1 g conditions, was isolated from etiolated radish hypocotyls grown 

under 1 g conditions. It was determined to be 3,6’-disinapoylsucrose by its 1H and 
13C NMR and MS spectral data. When etiolated radish seedlings were placed 

horizontally, the gravitropic curvature took about 30 min to start. The distribution 

of endogenous 3,6’-disinapoylsucrose between the peripheral cell layers of the 

upper and lower flank of radish hypocotyls during gravitropic curvature was 

analyzed using a physicochemical assay. Its content rapidly increased in the 

peripheral cell layers of the upper halves, peaking at 30 min after the onset of 

gravitropic stimulation, then gradually decreased. On the other hand, the content 

in the peripheral cell layers of the lower halves was almost equal to that in the 

vertical control during gravitropic curvature. Its unilateral application caused the 

hypocotyls to bend toward the site of application. These results suggest that 

gravitropic stimulation suppresses the growth rate of the upper side of radish 

hypocotyls by increasing the content of the growth inhibitor 

3,6’-disinapoylsucrose in the peripheral cell layers of the upper halves, causing a 

gravitropic response.
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INTRODUCTION 

The plant seedling is equipped with a multitude of sensors that provide information about the 

environment in which it is growing. The directional movement of a plant in response to a unilateral 

stimulus is defined as "tropism". The bending of the organs of a plant toward or away from the earth is a 

well-known phenomenon. This response to gravity is called "gravitropism". A shoot is described as 

negatively gravitropic as it extends in the opposite direction to gravity (i.e. upwards) while a primary root 

is positively gravitropic in that it grows in the direction of the gravitational pull (i.e. downwards). 

In gravitropism of shoots, it has been generally believed that the gravitropism is caused by gravity 

perception in the tip, leading to lateral auxin transport there, followed by basipetal auxin translocation to 

the elongation zone below the tip, resulting in an increase in the growth rate on the lower side of the shoot 

and an accompanying decrease in the rate on the upper side (Cholodny-Went theory).1,2 In contrast, 

however, Digby and Firn reported that the suppression of growth on the upper side of etiolated maize 

coleoptiles, de-etiolated sunflower, and etiolated cucumber hypocotyls is a major factor bringing about 

gravitropism.3 Growth suppression of the upper shoot flank following gravistimulation has also been 

reported in other plant systems.4-7 Recently, Tokiwa et al. measured using infrared-imaging system the 

changes in length on the upper and lower sides of etiolated radish hypocotyls prior to, and following 

gravistimulation.8 It was observed that the growth suppression was exhibited first on the upper side and 

then the acceleration in growth on the lower side started, suggesting that the suppression of growth on the 

upper side is a direct effect of gravity and the growth acceleration on the lower side is the result rather 

than a cause of gravitropic stimulation. From these results, it was suggested that gravitropism of radish 

hypocotyls may be caused by an increase in growth inhibitor(s) induced with gravitropic stimulation in 

the upper side, inducing growth inhibition there. In the present paper, we report on the isolation and 

identification of gravity-induced growth inhibitor(s) from large amounts of etiolated radish hypocotyls 

grown under 1 g conditions. The role of the growth inhibitor(s) in the gravitropism of radish hypocotyls 

will also be discussed. 

 

RESULTS AND DISCUSSION 

In order to search gravity-induced chemical substance(s), etiolated radish seedlings were grown under 

different magnitude of the gravitational force. Figure 1 shows the HPLC chromatograms of the extracts 

from hypocotyls grown on simulated microgravity conditions on a 3-dimensional clinostat and on 1 g 

conditions. Peaks A, B and C were decreased under simulated microgravity conditions, comparing to 1 g 

conditions. Figure 2 shows the HPLC chromatograms of the extracts from hypocotyls under 500 g gravity 

produced by centrifugation and on 1 g conditions. Only peak C was increased under 500 g conditions, 

comparing to 1 g conditions, whereas peaks A and B showed no change. These results suggest that peak  
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C is a gravity-induced substance. The peak C was isolated from large amounts of etiolated radish 

hypocotyls. From the 1H and 13C NMR and ESI-MS spectral data, isolated substance was identified as 

3,6’-disinapoylsucrose (Figure 3). 3,6’-Disinapoylsucrose (DSS) has already been isolated from the bark 

of Securidaca longipedunculata9 and Polygala virgata.10 The DSS was also isolated from radish 

(Raphanus sativus) sprout as a strong antioxidant compound.11 The spectra of the 1H and 13C NMR of 

isolated peak C were absolutely in agreement with those of DSS reported in the literature.9-11 To test 

whether isolated DSS shows plant growth activity, its activity was studied using the cress radicle growth 

test which was generally used to examine plant growth-inhibiting activity. As shown in Figure 4, DSS 

Figure 1.  HPLC chromatographs of the 
extracts from radish hypocotyls grown 
under 1 g conditions (upper) and simulated 
microgravity conditions on a 3-dimensional 
clinostat (lower). HPLC: ODS-120A, 7.8 x 
300 mm, 0-5 min; 0% CH3CN in H2O, 5-25 
min; linear gradient from 0 to 100% CH3CN 
in H2O, 2 mL/min, detector at 280 nm and 
320 nm.  These experiments were repeated 
three times and the results were similar. 
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Figure 2.  HPLC chromatographs of the 
extracts from radish hypocotyls grown under 
1 g conditions (upper) and 500 g gravity 
produced by centrifugation (lower). HPLC: 
ODS-120A, 4.6 x 250 mm, 1 mL/min, 
elution and detection conditions same as 
Figure 1. These experiments were repeated 
three times and the results were similar. 
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Figure 3.  Chemical structure of isolated compound. 

6 

inhibited the growth of cress radicles, recognizing as plant growth-inhibiting substance. The lateral 

distribution of DSS between the peripheral cell layers of the upper and lower flank of etiolated radish 

hypocotyls during gravitropic curvature was analyzed using a physicochemical assay (Table 1). The 

endogenous DSS level in the peripheral cell layers of the upper halves increased within 30 min after the 

onset of gravitropic stimulation, whereas that in the lower flank was similar to that in the controls. It was 

determined whether unilaterally applied DSS could induce bending toward the site of application. As 

shown in Table 2, the curvature of the hypocotyls toward the site of DSS application occurred with 

 

amounts of 0.3 μg and more of DSS per seedling. When 

0.3 μg of DSS was applied to one side of hypocotyl, about 

10 ng of DSS per hypocotyl was detected in the peripheral 

cell layers of the applied side (data not shown), comparable to the endogenous DSS content (about 9 ng 

per hypocotyl) in the peripheral cell layers of the upper side of gravity-stimulated hypocotyl (Table 1). 

These results suggest that an increase in growth inhibitor 3,6’-disinapoylsucrose induced by 

gravistimulation in the upper side of etiolated radish hypocotyls causes the growth suppression on the 

upper side, resulting in gravitropic curvature. The observation of the gravitropic response of the etiolated 

radish hypocotyls in the present study is in agreement with that of the phototropic response in various 

plant species: a lateral gradient of the growth inhibitor(s) occur in the unilaterally illuminated side, 

causing a lateral difference in growth rate from which the phototropic response results.12-17 Whether 

gravitropism-regulating growth inhibitor(s) are same with phototropism-regulating growth inhibitor(s), is 

uncertain. 

 

Figure 4.  Effect of isolated compound 
on the radicle growth of cress. Mean ± 
SE of results from 3 replicates of 10 
plants. 
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3,6’-Disinapoylsucrose, μg/gFW eq. ± SE. 
Plant materials 

Time after onset of gravistimulation (min) 
 

0         30         45         60 
 
Vertical      Left       16.5 ± 1.6    16.3 ± 1.6    15.5 ± 1.7     13.9 ± 1.2 

Right      17.6 ± 1.8    16.0 ± 1.4    14.3 ± 1.5     13.0 ± 1.2 
Horizontal   Upper                29.5 ± 2.9    23.5 ± 2.2     20.0 ± 2.1 

Lower                  17.3 ± 1.5      15.0 ± 1.6     13.4 ± 1.8 

Table 1.  Lateral distribution of 3,6’-disinapoylsucrose in the peripheral cell layers of the upper and 
lower sides of etiolated radish hypocotyls until 60 min after the onset of gravitropic stimulation. Each 
value is the mean of 10 experiments ± SE. The gravitropic curvature took about 30 min to start, the 
amount of curvature 30 min after the onset of gravitropic stimulation being 4.2° ± 0.3°.   

 

EXPERIMENTAL 

Plant materials and simulated microgravity experiments 

Dry seeds of radish (Raphanus sativus var. hortensis f. gigantissimus Makino) were put in rockwool 

(Minipot, Nittobo Co. Ltd., Tokyo, Japan) moistened with distilled water in an acrylic chamber. They 

were allowed to germinate and grow under simulated microgravity conditions on a 3-D clinostat and at 1 

g conditions at 23 °C in the dark. A 3-D clinostat (CS-2, Nippon Medical and Chemical Instruments Co. 

Ltd., Osaka, Japan) was used to produce simulated microgravity conditions. After 4 days, 10 hypocotyls 

of ca. 2 cm were excised with razor blade from radish seedlings grown under simulated microgravity 

conditions and on 1 g conditions. Excised hypocotyls were stored at -40 °C until use. 

 Treatment                  Curvature (degree) 
 

Plain lanolin                   0.8 ± 0.9 
 3,6’-Disinapoylsucrose  3.0 μg         9.8 ± 0.9 

                       1.0 μg         6.8 ± 0.8 
                       0.3 μg        3.7 ± 0.4 
                       0.1 μg         1.8 ± 0.3 

Table 2.  Effect of 3,6’-disynapoylsucrose applied to one side of etiolated radish hypocotyls on 
curvature. The curvature was measured 1 h after unilateral applications of 3.0, 1.0, 0.3, 0.1, or 0 μg 
3,6’-disinapoylsucrose per seedling. Average values of 5 seedlings. 
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Hypergravity experiments 

Three-day-old, etiolated radish seedlings were placed in a centrifuge tube (3 cm in diameter, 7 cm in 

height) with moistened filter paper. The centrifuge tubes were then exposed to basipetal hypergravity by 

centrifugation at 500 g and at 1 g in the dark for 1 h. Ten etiolated hypocotyls of ca. 2 cm were excised 

from radish seedlings put under hypergravity conditions produced by centrifugation and 1 g conditions. 

Excised hypocotyls were stored at -40 °C until use. 

 

Quantification of chemical substance(s) induced by different magnitude of the gravitational force 

Each frozen hypocotyls were homogenized in 50 mL of 80% cold acetone using homogenizer. The 

filtered extracts were evaporated to dryness at 40 °C in vacuo. The samples were dissolved in methanol 

and applied to a HPLC (ODS-120A, Wako, Japan, 7.8 x 300 mm, 0-5 min; 0% MeCN in H2O, 5-25 min; 

linear gradient from 0 to 100% MeCN in H2O, 2 mL/min, detector at 280 nm and 320 nm) or a HPLC 

(ODS-120A, Wako, Japan, 4.6 x 250 mm, 1 mL/min, elution and detection conditions same as above).  

This experiment was repeated three times. 

 

Isolation of gravity-induced growth inhibitor(s) 

For the purpose of identifying the peak C, 4-day-old, de-etiolated radish seedlings (1 kg fresh weight) 

were homogenized in 10 L of 80% acetone and the homogenate was filtered through a sheet of filter 

paper. The extracts were evaporated to dryness in vacuo at 40 °C. The concentrate was applied to a C18 

Sep-Pak cartridge column (Waters) pretreated with 20% MeOH in H2O, and eluted with 20, 40, 60, 80 

and 100% MeOH (40 mL per step). The 40% and 60% MeOH fractions, which contained the peak C, 

were combined and evaporated to dryness at 40 °C in vacuo and finally purified by HPLC (ODS-120A, 

Wako, Japan, 7.8 x 300 mm, 0-5 min; 0% MeCN in H2O, 5-25 min; linear gradient from 0% to 100% 

MeCN in H2O, 2 mL/min, detector at 280 and 320 nm). Elute of peak C was evaporated to dryness in 

vacuo at 40 °C to give 4 mg. 

 

Spectrometric analysis 

ESI-MS was recorded on a Waters Platform. The 1H and 13C NMR spectra were measured and recorded 

on a Bruker AVANCE500 spectrometer in CD3OD. The resonances of CD3OD at δH 3.35 and δC 49.8 

were used as internal references for NMR spectra. On the basis of negative ESI-MS spectrometry, the 

molecular formula of the isolated compound was assigned as C34H42O19 (Exact Mass: 754.23, Mol. Wt.: 

754.69). The 1H NMR spectral data δ (500 MHz, CD3OD) were as follows: 3.30 (1H, overlapped, H-4’), 

3.52 (1H, dd, J = 3.9 and 9.0 Hz, H-2’), 3.62 (1H, d, J = 12.2 Hz, H-1b), 3.65 (1H, d, J = 12.2 Hz, H-1a), 

3.69 (1H, t, J = 9.0 Hz, H-3’), 3.80 (1H, overlapped, H-6b), 3.89 (3H, s, OMe), 3.90 (3H, s, OMe), 3.90 
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(1H, overlapped, H-6a), 4.01 (1H, m, H-5), 4.25 (1H, dd, J = 7.3 and 11.6 Hz, H-6’b), 4.33 (1H, m, H-5’), 

4.55 (1H, t, J = 8.1 Hz, H-4), 4.72 (1H, dd, 1.4 and 11.6 Hz, H-6’a), 5.55 (1H, d, J = 8.1 Hz, H-3), 5.56 

(1H, d, J = 2.8 Hz, H-1’), 6.49 (1H, d, J = 15.9 Hz, H-8’’’), 6.50 (1H, d, J = 15.9 Hz, H-8’’), 6.93 (2H, 

s, H-2’’ and H-6’’), 6.96 (2H, s, H-2’’’ and H-6’’’), 7.64 (1H, d, J = 15.9 Hz, H-7’’’) and 7.72 (1H, d, J = 

15.9 Hz, H-7’’). The 13C NMR spectral data δ (125 MHz, CD3OD) were as follows: 57.6 (OMe), 57.7 

(OMe), 64.7 (C-6), 66.4 (C-6’), 66.5 (C-1), 72.8 (C-4’), 73.3 (C-5’), 73.9 (C-2’), 75.0 (C-4), 75.9 (C-3’), 

80.1 (C-3), 85.2 (C-5), 93.5 (C-1’), 105.7 (C-2), 105.7(C-2’’ and C-6’’), 107.9 (C-2’’’ and C-6’’’), 116.1 

(C-8’’’), 116.5 (C-8’’), 127.1 (C-1’’), 127.1 (C-1’’’), 139.9 (C-4’’), 139.9 (C-4’’’), 148.1 (C-7’’’), 148.8 

(C-7’’), 150.3 (C-3’’ and C-5’’), 150.3 (C-3’’’ and C-5’’’), 169.1 (C-9’’) and 169.9 (C-9’’’). 

 

Bioassay 

Ten seeds of cress (Lepidium sativum) were placed on a filter paper moistened with 500 μL of test 

solution in a 2.7-cm Petri dish and kept for 18 h at 23 °C in the dark, after which the length of their 

radicles were measured. 

 

Determination of 3,6’-disinapoylsucrose level during gravitropic curvature 

Radish seeds were germinated in moist filter paper in plastic tray in the dark at 23 °C. After 2 days 10 

germinated seeds were transplanted in a row in moist vermiculite in plastic trays, and cultured in the dark 

at 23 °C for 1 day. The seedlings were placed horizontally in the dark at 23 °C. After onset of gravitropic 

stimulation, 10 hypocotyls from 0 to 1.5 cm below the hook of seedlings were harvested at 0, 30, 45, and 

60 min. The hypocotyls were bisected into upper and lower halves with a razor. The peripheral cell layers 

(epidermis plus 1-2 parenchyma layers) were peeled off the bisected sections with forceps. All samples 

were immersed immediately in liquid nitrogen. Fresh weight was measured after preparation, in the 

frozen state. All manipulations were carried out under dim green light. Each frozen materials were 

homogenized in 50 mL of 80% cold acetone using homogenizer. The filtered extracts were evaporated to 

dryness at 40 °C in vacuo. The samples were dissolved in methanol and applied to a HPLC (ODS-120A, 

Wako, Japan, 4.6 x 250 mm, 0-5 min; 0% MeCN in H2O, 5-25 min; linear gradient from 0 to 100% 

MeCN in H2O, 1mL/min, detector at 320 nm). Retention time of 3,6’-disinapoylsucrose was 16.50 min. 

After the area of the peak was determined, the amount of endogenous DSS was calculated from standard 

curve. A known amount of isolated DSS was added to the other half of each sample during extraction in 

order to determine losses during the quantitation procedures. Overall recovery of DSS added to the 

samples was between 85 and 90%. All data have been corrected for losses. The experiment was repeated 

ten times. 
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Unilateral application of 3,6’-disinapoylsucrose 

3,6’-Disinapoylsucrose isolated from large amounts of radish hypocotyls smeared with 0.5 mg lanolin at 

endogenous levels was unilaterally applied length wise from 0 to 2 cm below the hook of 5 uniform, 

4-day-old etiolated radish seedlings. Treated seedlings were incubated in the dark at 23 °C. The hypocotyl 

curvature was measured at 30-min intervals using an infrared-imaging system.7 Manipulations were 

carried out under dim green light. The experiments were repeated three times. 
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