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Abstract – Treatment of the terminal acetylene 12, readily obtained from the 

previously reported acid 10, with LiHMDS resulted in a novel macrocyclization 

reaction to give the cycloalkyne 13. Subjection of compound 13 to hydrogenation 

under Lindlar-type conditions afforded the Z-configured enone 14 that could be 

converted into the resorcylic acid lactone 4 upon treatment with BCl3 in CH2Cl2 at 

–78°C. 

Radicicol (1),1 zearalenone (2)2 and hypothemycin (3)3 are iconic and long-known members of a rather 

large group of 14-membered and benzannulated macrolides isolated from various fungal sources and 

known collectively as the resorcylic acid lactones (RALs).4 RALs display a significant range of biological 

properties, including a capacity for potent and selective inhibition of kinases.4 As a result considerable 

effort has been devoted to the study of these compounds, including the development of syntheses,5 and 

much of this has been reviewed recently.4 In 1999 a group at Merck reported on the isolation, structural 

elucidation and biological evaluation of the isomeric RALs L-783,277 (4) and L-783,290 (5) both of 

which were obtained from a Phoma spp. (ATCC 74403) by bioassay guided fractionation using a kinase 

screen.6 Compound 4, a so-called cis-enone RAL,7 is a potent and irreversible inhibitor of 

mitogen-activated protein kinase (MAPK) (IC50 = 4 nM) while its trans-isomer 5 is much less active (IC50 

= 300 nM) against the same enzyme.6  
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Recently, we reported the first total synthesis of L-783,290 (5) using an enzymatically-derived and 

enantiomerically pure cis-1,2-dihydrocatechol as starting material for the assembly of the south-eastern 

quadrant of the target.8 The other key features of our synthesis were the use of a Heck reaction to 

establish the C6 to C1' linkage and a ring-closing metathesis (RCM) to form the trans-enone unit. Based 

on some of our earlier studies on the synthesis of certain non-benzannulated macrolides,9 we attempted to 

effect the photo-isomerization of L-783,290 (5) to the more biologically active system 4. However, all of 

our efforts to do so failed. Accordingly, we sought other ways to adapt our earlier work so as to establish 

a total synthesis of compound 4, something that has only been achieved previously by the groups of 

Altmann5i and Winssinger.5m Herein we report a new total synthesis of L-783,277 (4) wherein the 

macrolide ring is established through the addition of an acetylide anion to a tethered Weinreb amide, a 

novel ring-forming process that does not appear to have been exploited previously in the synthesis of 

RALs. 

The reaction sequence leading from the previously reported and readily available building blocks 6 and 7 

to target 4 is shown in Scheme 1. Thus, as we have described recently,8 compounds 6 and 7 are coupled 

under Heck conditions to give compound 8 as an 8:1 mixture of E- and Z-isomers in 56% combined yield. 

Oxidation of aldehyde 8 to the corresponding acid 9 was readily achieved in 75% yield using Pinnick’s 

procedure10 and the latter compound was then subjected to standard hydrogenation conditions so as to 

afford the previously reported8 and saturated acid 10. Reaction of compound 10 with the enantiomerically 

pure homopropargyl alcohol (R)-(–)-11, which was readily obtained through enzymatic resolution of the 

commercially available racemate,11 then gave the ester 12 in 70% yield. 
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Scheme 1 

 

In the pivotal step of the reaction sequence, compound 12 was treated with LiHMDS in THF at –35 to 

18 °C for 0.25 h and by such means the cyclic alkyne 13 was formed in ca. 45% yield. Presumably, this 

conversion involves deprotonation of the terminal alkyne unit within substrate 12 and intramolecular 

addition of the resulting acetylide anion to the pendant Weinreb amide. While all the spectral data derived 

from compound 13 were completely consistent with the assigned structure final confirmation of this was 

secured through a single-crystal X-ray analysis.12 The derived ORTEP is shown in Figure 1. 
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Figure 1. ORTEP derived from the single-crystal X-ray analysis of compound 13. Anisotropic 
displacement ellipsoids display 30% probability levels. Hydrogen atoms are drawn as circles with small 
radii. 

 
The completion of the synthesis of target 4 involved Lindlar-type hydrogenation of alkyne 13 in the 

presence of pyridine and 5% Pd on lead-poisoned CaCO3. The resulting cis-enone 14 (80%) was 

immediately treated with BCl3 in CH2Cl2 at –78 °C for 0.5 h and L-783,277 (4) was thereby obtained in 

50% yield. This was accompanied by ca. 12% of the corresponding trans-isomer from which it could be 

separated by semi-preparative HPLC. Reversing the order of the last two steps of the reaction sequence 

lead to a less favorable outcome. In particular, while BCl3-mediated deprotection of compound 13 

afforded the desired compound, Lindlar-type hydrogenation of this intermediate gave an inseparable 

mixture of compound 4, isomer 5 and the corresponding saturated material resulting from complete 

reduction of the alkyne unit. The 13C and 1H NMR spectral data derived from the synthetic sample of 

compound 4 obtained by the route shown in Scheme 1 were in complete accord with the assigned 

structure13 and matched those reported6 for the natural product. 

The longest linear sequence associated with the synthesis of L-783,277 described here is 16 steps from 

commercially available material. The Altmann synthesis is just one step longer while the Winssinger 

route comprises some twenty steps. The kinase inhibiting effects of compounds 4 and 5 as well as various 

congeners available using the chemical sequences described above will be reported in due course. 
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