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Abstract – Synthesis of the C(2)-C(11) segment, cyclopropylfuran derivative, of 

pinnatin A was accomplished by Suzuki cross-coupling between chiral 

cyclopropylboronic acid and bromofuran as a key step. Addition of silver (I) 

oxide was found to promote the Suzuki cross-coupling reactions. 

Pinnatin A 1 is a unique gersolane-type furanoditerpene isolated from a Caribbean gorgonian, 

Pseudopterogorgia bipinnata.1 The compound shows significant differential antitumor activity in the 

National Cancer Institute’s 60-cell-line tumor panel. Pinnatin A has a highly functionalized polycyclic 

-disubstituted -unsaturated -lactone and consists of bicyclo[11.1.0]carbon skeleton joined in a 

trans fashion. With its unusual structural features and specific cytotoxic properties, pinnatin A is a 

challenging target. No total synthesis of pinnatin A has been reported to date. Recently, we have achieved 

a diastereoselective construction of syn- and anti-isopropenyl alcohol moieties at the C(1) and C(2) 

positions of 2,5-bridged furanocycles based on the [2,3] Wittig rearrangement of cyclic furfuryl ethers as 

a key step.2 Thus we intended to study the synthesis of pinnatin A using this strategy. We report here the 

stereoselective synthesis of the C(2)-C(11) segment 2, cyclopropylfuran part, of pinnatin A 1.  
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Scheme 1. Retrosynthesis of pinnatin A  
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Dedicated with respect to Dr. Albert Eschenmoser on the occasion of his 85th birthday. 
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We first investigated Suzuki cross-coupling between furanboronic ester 43 and cyclopropyl iodide 54 

under Charette’s conditions5a (eq. 1). Pd(OAc)2-catalyzed cross-coupling reaction with K2CO3 and 

Bu4NBr gave the adduct 6 in only 6% yield. The addition of CsF instead of K2CO3 afforded trisubstituted 

cyclopropane 6 in 25% yield. Poor yields and lower reactivities in this Suzuki cross-coupling could be 

due to the steric effect of geminal substitution in 5, since the coupling reaction of 

2-alkyl-1-iodocyclopropanes with arylboronic acids gave good yields.5 
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(eq. 1)

 

 

We next carried out Suzuki cross-coupling reaction between bromofuran 76 and cyclopropylboronic acid 

derivatives 8-117 under Falck’s and Deng’s conditions8 (Table 1). Moderate to good yields of the 

cross-coupling products 6 and 12 were obtained using a combination of Ag2O-K2CO3. Increasing 

amounts of K2CO3 (5.0 eq) gave better coupling yields with both 6 and 12 (entries 1, 3 vs 2, 4). Boronic 

acids 8 and 9 were preferable to boronates 10 and 11 (entries 3, 4 vs 5, 6). 
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Table 1. Suzuki cross-coupling of cyclopropylboronic acid derivatives 8-11 with bromofuran
7

8 R1=R2=H
9 R1=H; R2=Me

10 R1O=pinacolato; R2=H
11 R1O=pinacolato; R2=Me
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With the optimized condition in hand, we embarked on the synthesis of chiral cyclopropylfuran 2 as 

follows. Scheme 2 shows a preparation of cyclopropyl iodide 15 from the known alkyne 13.9 Alkyne 13 
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was subjected to Organ’s carbometalation conditions10 to provide vinyl iodide 14 in one-pot sequence. 

Cyclopropanation of vinyl iodide 14 under Shi’s conditions11 resulted in the formation of cyclopropane 

15 in a single diastereomer. The absolute configuration of cyclopropyl iodide 15 was determined by the 

MTPA esters of the corresponding cyclopropanol 16. 
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Scheme 2. Reagents and conditions: (a) Bu3SnCu(Bu)(CN)Li2, THF, -78 C, then MeI, HMPA, then I2, 74%;
(b) Et2Zn, CH2I2, TFA, CH2Cl2, rt, 85%; (c) t -BuLi, THF, -78 C, then B(Oi-Pr)3, -78 C to rt ,then 3N NaOH,
30% H2O2, 70%
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Suzuki cross-coupling of cyclopropylboronic acid 17, prepared from 15 by lithium/halogen exchange 

followed by treatment with B(i-PrO)3, with bromofuran 7 under the optimized condition gave the desired 

product 18 in 77% (2 steps). Acetal group of 18 was switched from cyclohexylidene to p-methoxy- 

benzylidene by acid hydrolysis followed by acetalization of the corresponding diol with p-methoxy- 

benzaldehyde to give 19. Reduction of furoate 19 with LiAlH4 followed by etherification of the furfuryl 

alcohol with TBDPSCl afforded silyl ether 20. Regioselective cleavage of p-methoxybenzylidene acetal 

20 with DIBAL gave an inseparable mixture (ratio: 2.5 : 1) of alcohols, which were oxidized with 

Dess-Martin periodinane to afford the desired aldehyde 2112 together with ketone 22. 
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Scheme 3. Reagents and conditions: (a) t -BuLi, THF, -78 C, then B(Oi-Pr)3, -78 C to rt ,then 1N HCl; (b) Pd(dppf)Cl2,
Ag2O, K2CO3, 7,THF, 80 C, sealed tube, 77% (2 steps); (c) Dowex 50WX-8, MeOH, rt, 98%; (d) p-MeOPhCHO, PPTS,
PhH, reflux, 85%; (e) LiAlH4, THF, rt, 92%; (f) TBDPSCl, imidazole, CH2Cl2, rt, 100%; (g) DIBAL, PhMe, -78 C, 68%;
(h) Dess-Martin periodinane, CH2Cl2, rt, 50%
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In conclusion, we have succeeded in the enantioselective synthesis of cyclopropylfuran derivative 21, the 

C(2)-C(11) segment of pinnatin A employing the silver (I) oxide promoted Suzuki cross-coupling as a 

key step. Further studies on the synthesis of pinnatin A are in due course. 
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