HETEROCYCLES, Vol. 82, No. 1, 2010, pp. 593 - 601. © The Japan Institute of Heterocyclic Chemistry Received, 14th May, 2010, Accepted, 14th June, 2010, Published online, 16th June, 2010 DOI: 10.3987/COM-10-S(E)29

DIRECT OXIDATIVE CONVERSION OF ALDEHYDES INTO 2-SUBSTITUTED 1,4,5,6-TETRAHYDROPYRIMIDINES USING MOLECULAR IODINE OR 1,3-DIIODO-5,5-DIMETHYLHYDANTOIN

Shogo Takahashi and Hideo Togo*

Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan E-mail: togo@faculty.chiba-u.jp

Abstract - Various aromatic and aliphatic aldehydes were efficiently converted into the corresponding 1,4,5,6-tetrahydro-2-arylpyrimidines and 1,4,5,6-tetrahydro-2-alkylpyrimidines in good yields by the reaction with 1,3-propanediamine in the presence of molecular iodine•K₂CO₃ or 1,3-diiodo-5,5-dimethylhydantoin. Those 1,4,5,6-tetrahydropyrimidines were oxidized to the corresponding 2-aryl- and 2-alkylpyrimidines in moderate yields using MnO₂.

Dedicated to Professor Dr. A. Eschenmoser on the occasion of his 85th birthday.

1. INTRODUCTION

The preparation of 2-substituted 1,4,5,6-tetrahydropyrimidines and pyrimidines¹ has become of great interest and importance because of their pharmaceutical utility, *i.e.*, potent biological activities against diseases. diabetes. inflammatory pain. type Π and cancer were reported for 1.4.5.6-tetrahydropyrimidines,² and antitumor, antibacterial, antifungal, antimalarial, and anticonvulsant activities were noted for pyrimidines.³ Several synthetic methods are available for the preparation of 2-substituted 1,4,5,6-tetrahydropyrimidines from nitriles, esters, orthoesters, thioamides, amidines, and carboxylic acids with 1,3-propanediamine.^{1,4,5}

On the other hand, aldehydes can be also used for the preparation of 2-substituted 1,4,5,6-tetrahydropyrimidines by the reaction with 1,3-propanediamine under oxidative conditions. То the best of our knowledge, synthetic studies for the preparation of 2-substituted 1,4,5,6-tetrahydropyrimidines from aldehydes are extremely limited, and recently the one-pot preparation of 2-(p-iodophenyl)- and 2-(p-bromophenyl)-1,4,5,6-tetrahydropyrimidines by the reaction of p-iodobenzaldehyde and p-bromobenzaldehyde with 1,3-propanediamine and the successive treatment with NBS was reported.⁵

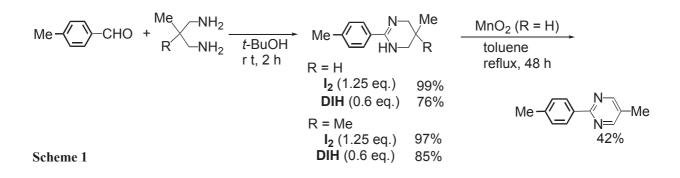
			opyrimames	and T yrinnemes	
	1) $H_2NCH_2CH_2CH_2NH_2$ (1.3 eq.),	,			
	rt, 0.5 h	~~~			
4	2) I_2 (1.25 eq.), K_2CO_3 (2.0 eq.) 70	υ С,	N-	MnOa	N
R-CHO	3 h or DIH (0.6 eq.), 50°C, 2 h		R-(/) -	MnO ₂ toluene reflux, 48 h	$\langle \rangle$
1	<i>t</i> -BuOH		HN—⁄	loiuerie reliux, 40 fi	N=⁄
			2		3
Entry	1	Yi	elds 2 (%) ^a		
	R -	l ₂	DIH	Yield	3 (%) ^a
1	Me	99	99		48
2		77	78		69
3	MeO	99	94		35
4		52	67		31
5	Br –	99	94		52
6	0 ₂ N-	99	82		46
7		100	97		57
8	ſ∑≻	82	74 ^b		-
9	\sim	69	76		-
10		57	62		<5
11	Ме(СН ₂) ₆ —	83	82		<5
12	\frown	50	87 ^c		<5
13	P	95	96		51

Table 1. Formation of 2-Substituted 1,4,5,6-Tetrahydropyrimidines and Pyrimidines

^a Isolated yield.

^b Reaction time was 8 h at the second step.

^c K₂CO₃ (2.0 equiv.) was added.


Here, as part of our basic study of molecular iodine and related iodine reagents for organic synthesis,⁶ we would like to report the preparation of 1,4,5,6-tetrahydro-2-arylpyrimidines and 1,4,5,6-tetrahydro-2-alkylpyrimidines **2** by the reaction of aromatic and aliphatic aldehydes **1** with 1,3-propanediamine in the presence of molecular iodine• K_2CO_3 or 1,3-diiodo-5,5-dimethylhydantoin (DIH).

First, p-tolualdehyde was treated with 1,3-propanediamine (1.3 eq.) in t-BuOH at rt. After 0.5 h, molecular iodine (1.25 eq.) and K_2CO_3 (2.0 eq.) were added to the mixture and the whole was warmed at 70 °C for 3 h to provide 1,4,5,6-tetrahydro-2-(4'-methylphenyl)pyrimidine in 99% yield, as shown in Table 1 (entry 1, left side). Then, *p*-tolualdehyde was treated with 1,3-propanediamine (1.3 eq.) in t-BuOH at rt. After 0.5 h, 1,3-diiodo-5,5-dimethylhydantoin (DIH, 0.6 eq.) was added to the mixture and the whole was warmed at 50 °C for 2 h to provide 1,4,5,6-tetrahydro-2-(4'-methylphenyl)pyrimidine in 99% yield (entry 1, right side). Based on these results, other aromatic aldehydes 1, such as benzaldehyde, *p*-methoxybenzaldehyde, *p*-cyanobenzaldehyde, *p*-bromobenzaldehyde, *p*-nitrobenzaldehyde, 1-naphthaldehyde, 2-thiophenaldehyde, and 2-pyridinecarboxaldehyde, were treated with 1,3-propanediamine in the presence of molecular iodine K_2CO_3 or DIH to give the corresponding 1,4,5,6-tetrahydro-2-arylpyrimidines 2 in good yields (entries 2~9). The reactivity of molecular iodine and DIH was almost the same to provide the corresponding 2-substituted 1,4,5,6-tetrahydropyrimidines 2 in good yields. The same treatment of aliphatic aldehydes 1, such as 3-phenylpropanal, octanal, cyclohexanecarboxaldehyde, and 1-adamantanecarboxaldehyde with 1,3-propanediamine in the presence of molecular iodine•K₂CO₃ or DIH provided the corresponding 1,4,5,6-tetrahydro-2-alkylpyrimidines **2** in good yields (entries $10 \sim 13$).

Then, the oxidation of 2-substituted 1,4,5,6-tetrahydropyrimidines **2** to the corresponding 2-substituted pyrimidines **3** was carried out using MnO₂, Pd-C under oxygen, DDQ, and *N*-bromosuccinimide (NBS), respectively, and MnO₂ showed the best results to give the corresponding 2-substituted pyrimidines **3** in moderate yields except for entries $8\sim12$, as shown in Table 1 (right column).

Finally, as an extension of the present method, *p*-tolualdehyde was treated with 2-methyl-1,3-propanediamine and 2,2-dimethyl-1,3-propanediamine in the presence of molecular iodine• K_2CO_3 or DIH to provide 1,4,5,6-tetrahydro-2-(4'-methylphenyl)-5-methylpyrimidine and 1,4,5,6-tetrahydro-2-(4'-methylphenyl)-5,5-dimethylpyrimidine, respectively, in good yields, as shown in Scheme 1.

1,4,5,6-Tetrahydro-2-(4'-methylphenyl)-5-methylpyrimidine was then oxidized by MnO₂ in toluene to give 2-(4'-methylphenyl)-5-methylpyrimidine in moderate yield. Thus, the present method can be used for the preparation of various kinds of 2-substituted 1,4,5,6-tetrahydropyrimidine and pyrimidine derivatives with aldehydes and 1,3-propanediamines.

In summary, 1,4,5,6-tetrahydro-2-arylpyrimidines and 1,4,5,6-tetrahydro-2-alkylpyrimidines **2** were efficiently obtained by the reaction of various aromatic and aliphatic aldehydes **1** with 1,3-propanediamine in the presence of molecular iodine• K_2CO_3 or DIH. 1,4,5,6-Tetrahydro-2-arylpyrimidines **2** were smoothly oxidized to 2-arylpyrimidines **2** in moderate yields. Moreover, using 2-substituted 1,3-propanediamines and aldehydes, 2,5-disubstituted 1,4,5,6-tetrahydropyrimidines and pyrimidines can be prepared by the present method. Therefore, the present method is a simple and efficient tool for the preparation of various 2-substituted and 2,5-disubstituted 1,4,5,6-tetrahydropyrimidines.

EXPERIMENTAL

General: ¹H and ¹³C NMR spectra were obtained with JEOL-JNM-LA-400, JEOL-JNM-LA-400s, and JEOL-JNM-LA-500 spectrometers. Chemical shifts are expressed in ppm downfield from tetramethylsilane (TMS) in δ units. IR spectra were measured with JASCO FT/IR-810 and FT/IR-4100 spectrometers. Mass spectra were recorded on JEOL-HX-110 and JEOL-JMS-ATII15 spectrometers. Melting points were determined with a Yamato Melting Point Apparatus Model MP-21. Silica gel 60 (Kanto Kagaku Co.) was used for column chromatography and Wakogel B-5F was used for preparative TLC. DIH is commercially available from Tokyo Kasei Co.

Typical Procedure for Preparation of 2-Substituted 1,4,5,6-Tetrahydropyrimidines from Aldehydes To a solution of *p*-tolualdehyde (120.2 mg, 1 mmol) in *t*-butyl alcohol (10 mL) was added 1,3-diaminopropane (96.4 mg 1.3 mmol). The obtained mixture was stirred at room temperature under an argon atmosphere for 30 min, and then DIH (228.0 mg, 0.6 mmol) was added to the mixture and stirred at 50 °C. After 2 h, the mixture was quenched with sat. aq Na₂SO₃ until the iodine color almost disappeared, and was extracted with CHCl₃. The organic layer was washed with aq. K₂CO₃ and brine, and dried over Na₂SO₄. After filtration, the mixture was evaporated in vacuo to provide 172.4 mg of 1,4,5,6-tetrahydro-2-(4'-methylphenyl)pyrimidine in 99% yield as an almost pure state.

2-Substituted 1,4,5,6-tetrahydropyrimidines and pyrimidines were recrystallized from a mixture ethyl acetate and hexane.

1,4,5,6-Tetrahydro-2-(4'-methylphenyl)pyrimidine. mp 161-162 °C; IR (KBr): 3130, 1635, 1430, 1320, 1205, 825, 725 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 1.85 (quintet, *J* = 5.8 Hz, 2H), 2.36 (s, 3H), 3.49 (t, *J* = 5.8 Hz, 4H), 7.17 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 2H); HRMS (FAB); Obsd M+H = 175.1232. Calcd for C₁₁H₁₅N₂ M+H = 175.1230.

1,4,5,6-Tetrahydro-2-phenylpyrimidine. syrup; IR (paraffin): 3249, 2943, 2897, 1614, 1418, 1312, 1187, 781, 696 cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ = 1.86 (quintet, *J* = 5.8 Hz, 2H), 3.51 (t, *J* = 5.8 Hz, 4H), 7.34-7.41 (m, 3H), 7.66 (d, *J* = 8.2 Hz, 2H); HRMS (FAB); Obsd M+H = 161.1077. Calcd for C₁₀H₁₃N₂ M+H = 161.1073.

1,4,5,6-Tetrahydro-2-(4'-methoxyphenyl)pyrimidine. syrup; IR (paraffin): 3145, 2938, 1633, 1504, 1442, 1373, 1311, 1261, 1191, 1024, 838, 744 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.83$ (quintet, J = 5.8 Hz, 2H), 3.47 (t, J = 5.8 Hz, 4H), 3.81 (s, 3H), 6.86 (d, J = 8.3 Hz, 2H), 7.59 (d, J = 8.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 20.7$ (s), 42.2 (s), 55.2 (p), 113.4 (t), 127.3 (t), 129.7 (q), 154.1 (q), 160.6 (q).

1,4,5,6-Tetrahydro-2-(4'-nitrophenyl)pyrimidine. mp 138-142 °C; IR (paraffin): 3144, 1623, 1463, 1341, 860, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.87$ (quintet, J = 5.8 Hz, 2H), 3.53 (t, J = 5.8 Hz, 4H), 7.83 (d, J = 8.9 Hz, 2H), 8.21 (d, J = 8.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 20.4$ (s), 42.4 (s), 123.7 (t), 127.3 (t), 142.8 (q), 148.7 (q), 153.2 (q); HRMS (FAB); Obsd M+H = 206.0929. Calcd for C₁₀H₁₂N₃O₂ M+H = 206.0924.

1,4,5,6-Tetrahydro-2-(4'-cyanophenyl)pyrimidine. syrup; IR (paraffin): 3259, 2951, 2857, 2230, 1615, 1465, 1364, 1305, 853 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.88$ (quintet, J = 5.8 Hz, 2H), 3.54 (t, J = 5.8 Hz, 4H), 7.67 (d, J = 8.2 Hz, 2H), 7.78 (d, J = 8.2 Hz, 2H); HRMS (FAB); Obsd M+H = 186.1031. Calcd for C₁₁H₁₂N₃ M+H = 186.1026.

1,4,5,6-Tetrahydro-2-(4'-bromophenyl)pyrimidine. mp 148-150 °C; IR (paraffin): 3133, 2955, 2853, 1621, 1539, 1484, 1309, 1008, 835 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.86$ (quintet, J = 5.8 Hz, 2H), 3.50 (t, J = 5.8 Hz, 4H), 7.49 (d, J = 8.9 Hz, 2H), 7.54 (d, J = 8.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 20.4$ (s), 42.1 (s), 123.7 (q), 127.6 (t), 131.2 (t), 135.9 (q), 153.8 (q); HRMS (FAB); Obsd M+H = 239.0181. Calcd for C₁₀H₁₂N₂Br M+H = 239.0178.

1,4,5,6-Tetrahydro-2-(2'-pyridyl)pyrimidine. oil; IR (neat): 3404, 3054, 2930, 2854, 1634, 1509, 1463, 1363, 1320, 802, 748 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.87$ (quintet, J = 5.8 Hz, 2H), 3.55 (t, J = 5.8 Hz, 4H), 7.36 (dd, J = 4.8 and 1.2 Hz, 1H), 7.77 (td, J = 7.7 and 0.7 Hz, 1H), 8.14 (d, J = 7.7 Hz, 1H), 8.57 (dt, J = 4.8 and 0.7 Hz, 1H); HRMS (FAB); Obsd M+H.162.1032. Calcd for C₉H₁₂N₃ M+H.162.1026.

4H), 7.45–7.57 (m, 3H), 7.75 (dd, J = 7.3 and 1.2 Hz, 1H), 7.85–7.91 (m, 2H), 8.68 (d, J = 8.5 Hz, 1H) ; HRMS (FAB); Obsd M+H 211.1236. Calcd for C₁₄H₁₅N₂ M+H.211.1230.

1,4,5,6-Tetrahydro-2-(2'-thienyl)pyrimidine. mp 167-171 °C; IR (paraffin): 3186, 2923, 2853, 1605, 1463, 1362, 862, 718 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.87$ (quintet, J = 5.8 Hz, 2H), 3.50 (t, J = 5.8 Hz, 4H), 7.00 (dd, J = 3.6 and 5.1 Hz, 1H), 7.20 (dd, J = 1.2 and 3.6 Hz, 1H), 7.30 (dd, J = 1.2 and 5.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 20.9$ (s), 42.3 (s), 123.6 (t), 127.1 (t), 127.3 (t), 141.9 (q), 149.9 (q); HRMS (FAB); Obsd M+H = 167.0643. Calcd for C₈H₁₁N₂S M+H = 167.0637.

1,4,5,6-Tetrahydro-2-(2'-phenylethyl)pyrimidine. oil; IR (neat): 3154, 2938, 1654, 1454, 1319, 1205, 752, 700 cm⁻¹; ¹H NMR (500MHz, CDCl₃): $\delta = 1.72$ (quintet, J = 5.8 Hz, 2H), 2.45 (t, J = 8.0 Hz, 2H), 2.93 (t, J = 8.0 Hz, 2H), 3.24 (t, J = 5.8 Hz, 4H), 7.10-7.24 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 18.0$ (s), 32.8 (s), 34.4 (s), 38.5 (s), 126.0 (t), 127.9 (t), 128.0 (t), 138.8 (q), 161.5 (q) ; HRMS (FAB); Obsd M+H = 188.1386. Calcd for C₁₂H₁₇N₂ M+H = 188.1386.

1,4,5,6-Tetrahydro-2-heptylpyrimidine. oil; IR (neat): 3178, 2927, 2856, 1650, 1558, 1466, 1319, 1205 cm⁻¹; ¹H NMR (400MHz, CDCl₃): $\delta = 0.87$ (t, J = 8.0 Hz, 3H), 1.27-1.32 (m, 10H), 1.61 (quintet, J = 5.8 Hz, 2H), 2.22 (t, J = 8.1 Hz, 2H), 3.57 (t, J = 5.8 Hz, 4H) ; ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.9$ (p), 19.1 (s), 22.5 (s), 27.4 (s), 28.9 (s), 29.0 (s), 31.6 (s), 34.0 (s), 39.5 (s), 161.8 (q); HRMS (FAB); Obsd M+H = 183.1863. Calcd for C₁₁H₂₃N₂ M+H = 183.1856.

1,4,5,6-Tetrahydro-2-cyclohexylpyrimidine. mp 116-118 °C; IR (paraffin): 3163, 3046, 2936, 2877, 1652, 1317, 1203 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 1.20-1.33 (m, 5H), 1.58-1.89 (m, 7H), 2.49 (tt, *J* = 11.5 and 3.4 Hz, 1H), 3.39 (t, *J* = 5.8 Hz, 4H).; ¹³C NMR (100 MHz, CDCl₃): δ = 19.0 (s), 25.2 (s), 25.7 (s), 30.2 (s), 39.4 (s), 43.4 (t), 165.6 (q) ; HRMS (FAB); Obsd M+H.167.1542. Calcd for C₁₀H₁₉N₂ M+H.167.1543.

1,4,5,6-Tetrahydro-2-(1'-adamantyl)pyrimidine. mp 225-228 °C; IR (paraffin): 3181, 2924, 2853, 1634, 1456, 1376, 1308, 748 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 1.70-1.74 (m, 6H), 1.79 (quintet, *J* = 5.8 Hz, 2H), 1.80-2.00 (m, 6H), 2.04-2.07 (m, 3H), 3.40 (t, *J* = 5.8 Hz, 4H); HRMS (FAB); Obsd M+H = 219.1865. Calcd for C₁₄H₂₃N₂ M+H = 219.1856.

1,4,5,6-Tetrahydro-2-(4'-methylphenyl)-5,5-dimethylpyrimidine. mp 170.5-171.5 °C; IR (paraffin): 3194, 1618, 1506, 1359, 1282, 1041, 974, 832, 725 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.98$ (s, 6H), 2.35 (s, 3H), 3.11 (s, 4H), 7.16 (d, J = 8.2 Hz, 2H), 7.55 (d, J = 8.2 Hz, 2H).; ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.2$ (p), 24.9 (p), 26.2 (q), 54.1 (s), 126.0 (t), 129.0 (t), 133.5 (q), 139.8 (q), 153.7 (q) ; HRMS (FAB); Obsd M+H = 203.1541. Calcd for C₁₃H₁₉N₂ M+H = 203.1543.

1,4,5,6-Tetrahydro-2-(4'-methylphenyl)-5-methylpyrimidine. mp 149-151 °C; IR (paraffin): 3150, 1617, 1540, 1507, 1378, 1333, 1281, 1267, 829 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 0.99$ (d, J = 6.8 Hz, 3H), 1.93 (m, 1H), 2.35 (s, 3H), 3.03 (dd, J = 12.7 and 9.6 Hz, 2H), 3.50 (dd, J = 13.2 and 4.6 Hz,

2H), 7.16 (d, J = 8.2 Hz, 2H), 7.54 (d, J = 8.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 16.7$ (p), 21.3 (p), 25.2 (t), 49.3 (s), 125.9 (t), 129.0 (t), 133.8 (q), 139.8 (q), 154.4 (q); HRMS (FAB); Obsd M+H = 189.1381. Calcd for C₁₂H₁₇N₂ M+H =189.1386.

Typical Procedure for Oxidation of 2-Substituted 1,4,5,6-Tetrahydropyrimidines to 2-Substituted Pyrimidines

To a solution of 1,4,5,6-tetrahydro-2-(4'-methylphenyl)pyrimidine (87.1 mg, 0.5 mmol) in toluene (3 mL) was added manganese dioxide (434.7 mg, 5 mmol). The obtained mixture was stirred at refluxing conditions under air. After 48 h, the mixture was filtered and evaporated in vacuo. The residue was chromatographed on silica gel (AcOEt) to give 40.9 mg of 2-(4'-methylphenyl)pyrimidine in 48% yield.

2-(4'-Methylphenyl)pyrimidine. mp 92-94 °C (lit.,⁷ mp 89-89.5 °C); IR (paraffin): 2960, 2861, 1609, 1565, 1463, 1417, 1376, 1177, 788 cm⁻¹; ¹H NMR (400MHz, CDCl₃): $\delta = 2.43$ (s, 3H), 7.16 (t, J = 5.0 Hz, 1H), 7.30 (d, J = 8.6 Hz, 2H), 8.33 (d, J = 8.6 Hz, 2H), 8.79 (d, J = 5.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.5$ (p), 118.8 (t), 128.1 (t), 129.4 (t), 134.8 (q), 141.0 (q), 157.2 (t), 164.8 (q); HRMS (FAB); Obsd M+H = 171.0915. Calcd for C₁₁H₁₁N₂ M+H = 171.0917.

2-Phenylpyrimidine. mp 38-39 °C (lit.,⁸ mp 37-38 °C); IR (paraffin): 2936, 2911, 1567, 1418, 745, 691 cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ = 7.15 (t, *J* = 4.9 Hz, 1H), 7.74-7.50 (m, 3H), 8.45 (d, *J* = 8.2 Hz, 2H), 8.79 (d, *J* = 4.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 119.0 (t), 128.1 (t), 128.5 (t), 130.7 (t), 137.5 (q), 157.2 (t), 164.7 (q); HRMS (FAB); Obsd M+H = 157.0760. Calcd for C₁₀H₉N₂ M+H = 157.0760.

2-(4'-Methoxyphenyl)pyrimidine. mp 60-64 °C (lit.,⁸ mp 66.1-67 °C); IR (paraffin): 2963, 2861, 1603, 1565, 1415, 1167, 1024, 799 cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ = 3.87 (s, 3H), 7.00 (d, *J* = 9.0 Hz, 2H), 7.10 (t, *J* = 5.0 Hz, 1H), 8.40 (d, *J* = 9.0 Hz, 2H), 8.74 (d, *J* = 5.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 55.3 (p), 113.9 (t), 118.3 (t), 129.7 (t), 130.2 (q), 157.1 (t), 161.8 (q), 164.4 (q).

2-(4'-Nitrophenyl)pyrimidine. mp 192-194 °C (lit., ⁹ mp 198-199 °C); IR (paraffin): 2966, 2877, 1561, 1514, 1419, 1348, 807, 739 cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ = 7.31 (t, *J* = 4.8 Hz, 1H), 8.34 (d, *J* = 9.1 Hz, 2H), 8.65 (d, *J* = 9.1 Hz, 2H), 8.88 (d, *J* = 4.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 120.3 (t), 123.8 (t), 129.1 (t), 143.4 (q), 149.4 (q), 157.6 (t), 162.7 (q).

2-(4'-Cyanophenyl)pyrimidine. mp 164-166 °C; IR (paraffin): 2974, 2222, 1552, 1416, 806 cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ = 7.28 (t, *J* = 4.8 Hz, 1H), 7.79 (d, *J* = 8.7 Hz, 2H), 8.58 (d, *J* = 8.7 Hz, 2H), 8.86 (d, *J* = 4.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 114.2 (q), 118.9 (q), 120.2 (t), 128.8 (t), 132.6 (t), 141.8 (q), 157.6 (t), 163.1 (q); HRMS (FAB); Obsd M+H = 182.0712. Calcd for C₁₁H₈N₃ M+H = 182.0713.

2-(4'-Bromophenyl)pyrimidine. mp 126-127 °C; IR (paraffin): 2924, 2854, 1565, 1463, 1414, 1172, 1066, 1008, 789 cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ = 7.21 (t, *J* = 5.1 Hz, 1H), 7.63 (d, *J* = 8.7 Hz, 2H),

8.33 (d, J = 8.7 Hz, 2H), 8.80 (d, J = 5.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 119.4$ (t), 125.7 (q), 129.8 (t), 131.9 (t), 136.6 (q), 157.4 (t), 164.0 (q); HRMS (FAB); Obsd M+H = 234.9862. Calcd for C₁₀H₈N₂Br M+H = 234.9865.

2-(1'-Naphthyl)pyrimidine. syrup; IR (neat): 3046, 1566, 1420, 1390, 1254, 909, 798, cm⁻¹; ¹H NMR (400MHz, CDCl₃): $\delta = 7.26$ (q, J = 3.3 Hz, 1H), 7.49-7.61 (m, 3H), 7.91 (d, J = 7.7 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 8.06 (d, J = 7.3 Hz, 1H), 8.63 (d, J = 7.7 Hz, 1H), 8.92 (dd, J = 5.0 and 3.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 118.9$ (t), 125.3 (t), 125.8 (t), 126.0 (t), 127.0 (t), 128.6 (t), 129.5 (t), 130.6 (t), 131.0 (q), 134.2 (q), 136.0 (q), 157.3 (t), 167.4 (q); HRMS (FAB); Obsd M+H = 207.0925. Calcd for C₁₄H₁₁N₂ M+H = 207.0917.

2-(1'-Adamantyl)pyrimidine. mp 73-75 °C (lit.,¹⁰ mp 74-75 °C); IR (paraffin): 3032, 2901, 2848, 2656, 1643, 1557, 1418, 1342, 790 cm⁻¹; ¹H NMR (400MHz, CDCl₃): $\delta = 1.78-2.00$ (m, 6H), 2.06-2.10 (m, 6H), 2.10-2.13 (m, 3H), 7.09 (t, J = 4.8 Hz 1H), 8.70 (d, J = 4.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 28.6$ (t), 36.7 (s), 41.2 (s), 118.1 (t), 156.7 (t), 161.5 (q), 176.7 (q); HRMS (FAB); Obsd M+H = 215.1542. Calcd for C₁₄H₁₉N₂ M+H = 215.1543.

2-(4'-Methylphenyl)-5-methylpyrimidine. mp 123.5-124.5 °C; IR (paraffin): 1588, 1550, 1429, 1176, 1017, 839, 785 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ =2.33 (s, 3H), 2.41 (s, 3H), 7.29 (d, *J* = 8.2 Hz, 2H), 8.29 (d, *J* = 8.2 Hz, 2H), 8.61 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 15.5 (p), 21.4 (p), 127.7 (t), 127.9 (q), 129.3 (t), 134.9 (q), 140.5 (q), 157.3 (t), 162.5 (q); HRMS (FAB); Obsd M+H =185.1071. Calcd for C₁₂H₁₃N₂ M+H = 185.1079.

ACKNOWLEGEMENT

Financial support from a Grant-in–Aid for Scientific Research (No. 20550033) from the Ministry of Education, Science, Sports, and Culture in Japan, and Iodine Research Project in Chiba University is gratefully acknowledged.

REFERENCES

- (a) Comprehensive Heterocyclic Chemistry; M. R. Grimmett, Vol. 3, pp. 57~156, A. R. Katritzky and C. W. Rees, Eds. Pergamon: Oxford, 1984. (b) Comprehensive Heterocyclic Chemistry III; R. A, Aitken, Vol. 8, pp. 117~272, A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor, Eds. Elsevier Science: Oxford, 2008.
- (a) A. Kumar, D. Boykin, D. Wilson, S. Jones, B. Bender, C. Dykstra, J. Hall, and R. Tidwell, *J. Med. Chem.*, 1996, **31**, 767. (b) G. Theodoropoulos, E. Theodoropoulou, and G. Melissaropoulou, *Vet. Parasitol*, 2001, **97**, 285. (c) M. Cushion, P. Walzer, M. Collins, S. Rebholz, J. Eynde, A. Mayence, and T. Huang, *Antimicrob. Agents Chemother.*, 2004, **48**, 4209. (d) *Chem. Abstr.*, 2004, **140**, 27664.

(e) Chem. Abstr., 2004, 141, 424183. (f) Chem. Abstr., 2005, 143, 984027. (g) Chem. Abstr., 2005, 142, 191226.

- (a) M. Johar, T. Manning, D. Y. Kunimoto, and R. Kumar, R. *Bioorg. Med. Chem.*, 2005, 13, 6663.
 (b) A. Agarwal, K. Srivastava, S. K. Puri, and P. M. S. Chauhan, *Bioorg. Med. Chem.*, 2005, 13, 4645.
- Typical papers: Thioamide with 1,3-propanediamine: (a) E. P. Papadopoulos and B. George, J. Org. Chem., 1977, 42, 2530. 1,3-Oxazolium and 1,3-thiazolium with 1,3-propanediamine: (b) H. Singh and R. Sarin, Tetrahedron, 1986, 42, 1449. Nitrile with 1,3-propanediamine: (c) J. H. Forsberg, V. T. Spaziano, T. M. Balasubramanian, G. K. Liu, S. A. Kinsley, C. A. Duckworth, J. J. Poteruca, P. S. Brown, and J. L. Miller, J. Org. Chem., 1987, 52, 1017. (d) S. R. Landor and P. D. Landor, J. Chem. Soc., Perkin Trans. 1, 1993, 1223. Amidines with 1,3-propanediamine: (e) D. J. Brown and R. F. Evans, J. Chem. Soc., 1962, 4039. Carboxylic acids with 1,3-propanediamine: (f) R. G. Pews, Heterocycles, 1988, 27, 1867. N-Methylnitrilium with 1,3-propanediamine: (g) B. L. Booth, K. O. Jibodu, and M. F. Proenca, J. Chem. Soc., Chem. Commun., 1980, 1151. Imidazolines with 1,3-propanediamine: (h) R. N. Butler and K. J. Fitzgerald, J. Chem. Soc., Perkin Trans. 1, 1989, 155.
- 5. E. Paliakov, T. Elleboe, and D. W. Boykin, Synthesis, 2007, 1475.
- *Reviews*: (a) H. Togo and S. Iida, *Synlett*, 2006, 2159. (b) H. Togo, *J. Synth. Org. Chem. Jpn.*, 2008,
 66, 652. *Papers*: (c) N. Mori and H. Togo, H. *Synlett*, 2004, 880. (d) N. Mori and H. Togo,
 Tetrahedron, 2005, 61, 5915. (e) M. Ishihara and H. Togo, *Synlett*, 2006, 227. (f) M. Ishihara and H. Togo, *Tetrahedron*, 2007, 63, 1474. (g) S. Iida and H. Togo, *Tetrahedron*, 2007, 63, 8274. (h) S. Iida,
 R. Ohmura, and H. Togo, *Tetrahedron*, 2009, 65, 6257.
- 7. K. Burdeska, Helv. Chim. Acta, 1981, 64, 113.
- 8. T. J. Korn, Synthesis, 2006, 3547.
- 9. B. Lythgoe, J. Chem. Soc., 1951, 2323.
- 10. T. Wang and I. S. Cloudsdale, Synth. Commum., 1997, 27, 2521.