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Abstract – The stereoselective synthesis of a seco-acid derivative of lepranthin 

(1), a lichen-produced unique 16-membered dimeric macrolide, is described 

wherein all asymmetric carbon centers were constructed in a highly 

stereoselective manner, respectively, by using different epoxide-opening reactions 

of the -unsaturated -epoxy ester system and an epoxy alcohol derivative as 

the key steps. 
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Bacteria, fungi and algae produce a large number of macrolides which are classified as polyketide-derived 

macrolides in their biosynthetic pathways. These compounds often provided us with good opportunities 

discovering new drugs. Interestingly, a few macrolides have been isolated from lichens too, which may 

imply a symbiotic relationship between fungi and algae.1 Lepranthin (1) was isolated from the 

crustaceous lichen Arthonia impolita (Ehrh.) Borrer by Zopf in 1904.2 Nearly century later, a NMR 
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investigation and X-ray analysis by Huneck et al. revealed 1 to be a 16-membered homo-macrodiolide 

which contains two secondary hydroxyl groups and four secondary acetates.3 Although biological 

properties and synthetic studies of 1 have not been reported so far, its unique diolide structure would 

attract attention of synthetic chemists. We report herein the stereoselective synthesis of a seco-acid 

derivative 28, the key monomer segment of 1, based on stereospecific epoxide-ring opening strategies.  
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Scheme 1. (a) L-(+)-DET, Ti(OiPr)4, TBHP, CH2Cl2, -30 oC; (b) Dess-Martin periodinane, 
CH2Cl2, then Ph3P=CHCO2Me; (c) Pd2(dba)3・CHCl3, HCO2H, Et3N, Ph3P; (d) TESCl, 
imidazole, CH2Cl2; (e) DIBAH, THF, 0 oC; (f) L-(+)-DET, Ti(OiPr)4, TBHP, CH2Cl2, -30 oC; 
(g) Dess-Martin periodinane, CH2Cl2, then Ph3P=CHCO2Me; (h) DDQ, THF, H2O; (i) Me3Al, 
H2O, CH2Cl2, -50 oC; (j) PhCHO, TsOH・H2O, benzene, reflux; (k) DIBAH, THF, 0 oC; (l) 
L-(+)-DET, Ti(OiPr)4, TBHP, CH2Cl2, -30 oC; (m) CuCN, MeLi, Et2O, -50 to -30 oC. 

 

Our synthesis started with allyl alcohol 2 which was prepared from commercially available methyl 

(R)-3-hydroxybutylate in five steps.4 First, 2 was converted to -unsaturated ,-epoxy ester 4 by a 

two-step reaction sequence: (1) Katsuki-Sharpless epoxidation5 with L-(+)-DET, Ti(OiPr)4, and TBHP in 
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CH2Cl2 at -30 oC, leading to epoxy alcohol 36 (87%); (2) Dess-Martin oxidation7 followed by Wittig 

olefination (91% yield). Reductive cleavage of the epoxide 4 with HCO2H and Pd2(dba)3･CHCl3
8 

smoothly occurred to give alcohol 5 in 85% yield, which was then transformed into allyl alcohol 7 

through the sequence of protection of the secondary alcohol with a silyl group and subsequent DIBAH 

reduction. The allyl alcohol 7 thus obtained was again transformed into -unsaturated ,-epoxy ester 9 

by the same reaction sequence as that for 2: (1) Katsuki-Sharpless epoxidation leading to 86 (86%); (2) 

Dess-Martin oxidation; (3) a Wittig olefination (75%, two steps). After removal of the TES group in 9 

with DDQ,9 treatment of the resulting epoxy alcohol 10 with Me3Al-H2O in CH2Cl2 at -50 oC afforded the 

desired product 11 in 70% yield.10 Protection of syn-1,3-diol 11 with a benzylidene acetal group furnished 

1211 in high yield, which was further converted to epoxy alcohol 1412 in two steps: (1) reduction with 

DIBAH in THF (97%); (2) Katsuki-Sharpless epoxidation with L-(+)-DET, Ti(OiPr)4, and TBHP in 

CH2Cl2 at -30 oC (90%). Upon treatment of 14 with Me2CuCNLi2
13 in Et2O at -50 to -30 oC, the 

regioselective methyl substitution reaction smoothly occurred to give 15 as a single product in 89% yield. 

Thus, the requisite five stereogenic centers in the targeted molecule were stereoselectively constructed by 

using different epoxide-opening reactions of the two -epoxy unsaturated esters, 4 and 10, and the 

epoxy alcohol 14. 

 

The remaining task for the synthesis of a seco-acid was discrimination of the five hydroxyl groups in 15. 

To this end, sequential oxidations of 15 with TEMPO14 and then with NaClO2
15 followed by esterification 

with CH2N2 produced ester 17 in 67% overall yield. Next, the hydroxyl group in 17 was protected with a 

MOM group by treatment with MOMCl, DIPEA, and NaI in 1,2-DME, giving rise to 18 in 85% yield. 

Among discrimination of the five hydroxyl groups, the most difficult task was that between C5 and C7 

hydroxyl groups protected by benzylidene acetal. All attempts aiming at a regioselective reductive 

cleavage of the benzylidene acetal moiety in 18 failed unfortunately. Eventually, distinction between 

these hydroxyl groups was performed as follows. Removal of the silyl group in 18 with TBAF/AcOH in 

DMF (90%) followed by treatment of the resulting alcohol with BzCl and pyridine in CH2Cl2 furnished 

20 (96%), which was converted to diol 21 by catalytic hydrogenolysis with PtO2 in EtOH. Unexpectedly, 

the benzene ring in 20 was smoothly hydrogenated concomitantly to produce 21. Further treatment of 21 

with PPTS16 in refluxing 1,2-dichloroethane in the presence of pyridine resulted in facile lactonization to 

give lactone 22, whose hydroxyl group was then protected with ethyl vinyl ether and PPTS16 in CH2Cl2 to 

afford ethoxyethyl ether 23 quantitatively. Unfortunately, however, subsequent hydrolysis of 23 under 

alkaline conditions underwent elimination of the MOM group to give unsaturated lactone exclusively. To 

overcome this difficulty, the lactone 23 was reduced with LiAlH4 in THF and subsequent regioselective 
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protection of the primary alcohol with a TBDPS group produced diol 25 (87%). After protection of the 

diol with acetyl groups (84%), removal of the TBDPS group with TBAF in THF gave the primary alcohol 

(90%), which was successfully converted to seco-acid 2817 for the total synthesis of lepranthin (1), in two 

steps: (1) TEMPO oxidation; (2) sodium chlorite oxidation (82%). 
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Scheme 2. (a) TEMPO, PhI(OAc)2, CH2Cl2; (b) (1) NaClO2, NaH2PO4 ・ 2H2O, 
2-methyl-2-butene, THF, tBuOH, H2O, (2) CH2N2, Et2O, 0 oC; (c) MOMCl, DIPEA, NaI, 
1,2-DME, reflux; (d) TBAF, AcOH, DMF; (e) BzCl, pyridine, CH2Cl2; (f) PtO2, H2, EtOH; (g) 
PPTS, pyridine, (CH2Cl)2, reflux; (h) Ethyl vinyl ether, PPTS, CH2Cl2; (i) LiAlH4, THF; (j) 
TBDPSCl, imidazole, CH2Cl2, -25 oC; (k) AcCl, pyridine, CH2Cl2; (l) TBAF, THF; (m) (1) 
TEMPO, TBAB, NaOCl, CH2Cl2, NaHCO3 aq., 0 oC, (2) NaClO2, 2-methyl-2-butene, 
NaH2PO4･2H2O, THF, H2O. 

 

In summary, we completed the asymmetric synthesis of the seco-acid 28, the key monomer of lepranthin 

(1), based on stereospecific epoxide-opening reactions including the stereospecific methylation reaction 

of the ,-epoxy unsaturated ester 10 with Me3Al-H2O system. Further studies of the crucial 

macrolactonization of the seco-acid 28 toward total synthesis of lepranthin (1) are now in progress in our 

laboratory. 
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