HETEROCYCLES, Vol. 83, No. 4, 2011, pp. 849 - 854. © The Japan Institute of Heterocyclic Chemistry Received, 29th December, 2010, Accepted, 9th February, 2011, Published online, 14th February, 2011 DOI: 10.3987/COM-10-12131

THE FIRST HYDROPEROXYDIHYDROCHALCONE IN THE ETLINGERA GENUS: ETLINGLITTORALIN FROM THE RHIZOMES OF ETLINGERA LITTORALIS

Chotika Jeerapong,^a Sarot Cheenpracha,^b Wisanu Maneerat,^c Uma Prawat,^d Thongchai Kruahong,^a and Surat Laphookhieo^{c,*}

^aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science and Technology, Suratthani Rajabhat University, Mueang, Surat Thani 84100, Thailand

^bSchool of Science, University of Phayao, Maeka, Muang, Phayao 56000, Thailand

^cNatural Products Research Laboratory, School of Science, Mae Fah Luang University; Tasud, Muang, Chiang Rai 57100, Thailand Phone: +66-5391-6238 Fax: +66-5391-6776. E-mail: surat@mfu.ac.th or suratlpk@gmail.com

^dFaculty of Science and Technology, Phuket Rajabhat University, Muang, Phuket 83000, Thailand

Abstract – Etlinglittarolin (6), a monoterpene-substituted hydroperoxydihydrochalcone, together with five known dihydrochacones including 2', 6'-dihydroxy-4'-methoxydihydrochalcone (1), 2',4',6'-trihydroxydihydrochalcone (2), 2',6',4-trihydroxy-4'-methoxydihydrochalcone (3), methyllinderatin (4), and adunctin E (5), was isolated from the rhizomes of *Etlingera littoralis*. Their structures were elucidated by spectroscopic analysis.

Plants of Zingiberaceae are widely distributed throughout the tropical forests. Many of them are used for food, spices, medicines, dyes, perfume and aesthetics.¹ Some metabolites from Zingiberaceae plants have found to be interesting biological activities, for example anti-malaria,² anti-tumor³ and anti-HIV-1 protease inhibitory.⁴ *Etlingera littoralis* is one of the Zingiberaceae plants which are found in several parts of Thailand. Its rhizome decoction has been used for the treatment of stomachache, carminative, and heart tonic.⁵ As part of our study of chemical constituents and biological activity from medicinal plants, we now report the structure elucidation of a new monoterpene-substituted dihydrochalcone,

etlinglittoralin ($\mathbf{6}$) along with five known dihydrochalcones (Figure 1) isolated from the rhizomes of *E*. *littoralis*.

Figure 1. Structures 1-6

Compound 6, $[\alpha]_D^{25}$ -22 (c 0.006, CHCl₃), was obtained as a white amorphous powder (mp 102.0-103.6 °C). The molecular formula of C₂₆H₃₂O₆ was deduced from the ESITOFMS data, exhibiting the $[M+H]^+$ ion peak at m/z 441.2266 (calcd. for 441.2277). Its IR spectrum revealed absorption bands for hydroxy (3398 cm⁻¹) and carbonyl (1631 cm⁻¹) groups. The UV absorption bands at λ_{max} 236, 282 and 342 nm supported the presence of a conjugated carbonyl in the structure. The ¹³C NMR and DEPT spectrum of 6 indicated the signals of the dihydrochalcone (12 aromatic carbons, 2 aliphatic carbons and one carbonyl carbon)⁶ and contained ten additional resonances with three methyls [$\delta_{\rm C}$ 22.2 (C-7"), 21.9 (C-10"), 15.6 (C-9")], two methylenes [δ_{C} 32.0 (C-2"), 17.3 (C-3")], four methines [δ_{C} 87.7 (C-6"), 46.5 (C-4"), 39.9 (C-5"), 27.3 (C-8")] and a quaternary carbon [$\delta_{\rm C}$ 81.1 (C-1")]. The latter signals suggested that the presence of a hydroperoxy group at C-1" was supported by the molecular formula $C_{26}H_{32}O_6$ and the downfield chemical shift of the oxygenated carbon C-1" at $\delta_{\rm C}$ 81.1.⁷⁻⁹ From above data, the dihydrochalcone was substituted by a saturated cyclic monoterpene moiety (Table 1). The ¹H NMR spectroscopic data (Table 1) showed signals characteristic of isopropyl unit at $\delta_{\rm H}$ 1.83 (1H, m, H-8"), 0.85 (3H, d, J = 6.8 Hz, H₃-9"), and 0.83 (3H, d, J = 6.8 Hz, H₃-10") and a tertiary methyl group at $\delta_{\rm H}$ 1.43 (3H, s, H_3 -7"). This data was quite similar to a *p*-menthane unit.¹⁰ In the ¹H NMR spectroscopic data, the signals characteristic of a 2',6'-dihydroxy-4'-methoxydihydrochalcone derivative were clearly observed at δ_H 13.23 (1H, s, OH), 7.17-7.30 (5H, m), 6.04 (1H, s, H-3'), 3.81 (3H, s, 4'-OCH₃), 3.34 (2H, m, H- α), and 3.02 (2H, t, J = 7.6 Hz, H- β).⁹

The attachment of the *p*-menthane unit on the dihydrochalcone moiety was established with the combined results of COSY, HMQC and HMBC experiments. In the HMBC spectrum, the *p*-methine proton H-5"

correlated with C-4', C-5', and C-6' suggesting that the <i>p</i> -menthane was C-linked to the dihydrochalcone
core between C-5" and C-5'. The deshielded oxymethine carbon C-6" (δ_{C} 87.7) and the aromatic carbon
C-6' ($\delta_{\rm C}$ 162.0) implied to O-linkage between C-6'' and C-6'. Thus, the p-menthane unit and the
dihydrochalcone core formed a five-membered ring as in agreement with the spectral data of adunctin E,
previously isolated from <i>Piper aduncum</i> . ⁸

No.	$\delta_{ m C}$	δ_{H} (mult., J in Hz)	HMBC ($^{1}\text{H} \rightarrow ^{13}\text{C}$)	
Dihydrochalcone moiety				
1	141.4	-	-	
2/6	128.4	7.17 -7.30 (m)	1, 4	
3/5	128.5	7.17 -7.30 (m)	-	
4	126.1	7.17 -7.30 (m)	-	
α	43.9	3.34 (m)	1, β, C=O	
β	30.3	3.02 (t, 7.6)	1, 2/6, α, C=O	
C=O	203.4	-	-	
1′	102.8	-	-	
2′-ОН	165.4	13.23 (s)	-	
3'	93.0	6.04 (s)	5'	
4′	161.9	-	-	
5'	113.1	-	-	
6'	162.0	-	-	
4'- OMe	55.6	3.81 (s)	4′	
Monoterpene moiety				
1''	81.1	-	-	
2''	32.0	2.09 (br s)	-	
		1.57 (m)		
3''	17.3	1.33 (m)	5''	
4''	46.5	1.08 (m)	-	
5''	39.9	3.07 (dd,11.2, 5.6)	4', 5', 6', 4'', 8''	
6''	87.7	4.49 (d, 5.6)	1'', 2'',4''	
7''	22.2	1.43 (s)	1'', 2'', 6''	
8''	27.3	1.83 (m)	-	
9''	15.6	0.85 (d, 6.8)	4'', 8'', 10''	
10''	21.9	0.83 (d, 6.8)	4′′, 9′′, 8′′	

Table 1. NMR Spectral Data (400 MHz) of Etlinglittoralin (6) in CDCl₃

The relative location of the 4'-OMe was confirmed by an HMBC experiment in which a correlation was observed for OMe protons with C-4' (δ_C 161.9). In addition, OMe showed the cross-peaks with H-3' (δ_H 6.04) and H₃-10'' (δ_H 0.83) in a 2D NOESY experiment (Figure 2). The cross-peaks between H₃-7''/H-3'',

H-3"/H-5", H-5"/H₃-10", H-5"/H-6" and H-6"/H₃-7" indicated the relative configurations at C-1", C-4", C-5" and C-6" as 1"S*, 4"R*, 5"S* and 6"R*, respectively. Accordingly, the structure of **6** was determined to be $(1"S^*, 4"R^*, 5"S^*, 6"R^*)$ -etlinglittoralin.

Figure 2. Selected NOESY cross-peaks for 6

The known compounds were identified as 2', 6'-dihydroxy-4'-methoxydihydrochalcone (1),^{8,9} 2',4',6'-trihydroxydihydrochalcone (2),⁴ 2',6',4-trihydroxy-4'-methoxydihydrochalcone (3),¹¹ methyllinderatin (4),¹² adunctin E (5).⁶All of them were identified by exhaustive spectral analysis (1D and 2D NMR spectra) and also comparison with their spectroscopic data with those reported in the literature. All compounds were tested for their antimalarial activity but, unfortunately, they were inactive.

EXPERIMENTAL

GENERAL

The optical rotation $[\alpha]_D$ values were determined with a Bellingham & Stanley ADP440 polarimeter. UV spectra were recorded with a Perkin-Elmer UV-Vis spectrophotometer. The IR spectra were recorded with a Perkin-Elmer FTS FT-IR spectrophotometer. The NMR spectra were recorded using 400 MHz Bruker spectrometer. Chemical shifts were recorded in parts per million (δ) in CDCl₃ with tetramethylsilane (TMS) as an internal reference. The ESITOFMS was obtained from a MicroTOF, Bruker Daltonics mass spectrometer. Quick column chromatography (QCC) and column chromatography (CC) were carried out on silica gel 60 H (Merck, 5-40 µm) and silica gel 100 (Merck, 63-200 µm), respectively. Precoated plates of silica gel 60 F254 were used for analytical purposes.

PLANT MATERIAL

The rhizomes of *E. littoralis* were collected in June 2009 from Surat Thani Province, southern part of Thailand. Botanical identification was made by Assistant Professor Dr. Chatchai Ngamriabsakul and a specimen (number MFU-NPR 0015) was deposited at Natural Products Research Laboratory, School of

Science, Mae Fah Luang University.

EXTRACTION AND ISOLATION

Chopped-fresh rhizomes (3.89 kg) of *E. littoralis* were extracted with CH₂Cl₂–MeOH (1:1, v/v), over the period of 3 days at room temperature. The mixture was filtered and then evaporated to dryness under reduced pressure and partition with CH_2Cl_2 to afford the CH_2Cl_2 extracted (22.80 g). A portion of CH_2Cl_2 extract (11.80 g) was subjected to quick column chromatography (QCC) over silica gel and eluted with a gradient of *n*-hexane–EtOAc (100% *n*-hexane–100% EtOAc) to afford thirteen fractions (F1-F13). Fraction F3 (755.10 mg) was resubmitted to column chromatography (CC) eluting with EtOAc-*n*-hexane (1:9, v/v) to afford four subfractions (F3A-F3D). Subsraction F3A (48.8 mg) was further purified by CC with CH_2Cl_2 -*n*-hexane (1:4, v/v) to give compound 5 (3.0 mg) and three subfractions (F3A1-F3A3). Compound 4 (7.1 mg) derived from subfraction F3A1 (12.8 mg) whereas 6 (3.0 mg) obtained from subfraction F3A3 (8.7 mg) by prep. TLC developed with EtOAc–*n*-hexane (1:4, v/v) and prep. TLC with acetone-n-hexane (1:9, v/v), respectively. Fraction F8 (322.4 mg) was washed with CH₂Cl₂-n-hexane (1:4, v/v) yielding a pale-yellow solid which was further separated by CC with CH₂Cl₂-*n*-hexane (7:3, v/v) to give compound 1 (50.1 mg). Fraction F12 (1.83 g) was resubmitted to QCC over silica gel eluting with a gradient of *n*-hexane–EtOAc (1:5-3:5, v/v) to afford seven subfractions (F12A-F12G). Subfraction F12E (220.0 mg) was purified by CC eluting with EtOAc– CH_2Cl_2 (1:100, v/v) to give compound 2 (108.6 mg). Subfraction F12G (98.0 mg) was purified by CC on silica gel eluting with EtOAc-CH₂Cl₂(1:100, v/v) to give compound 3 (47.5 mg).

Etlinglittoralin (6): White amorphous powder. Mp 102.0-103.6 °C. $[\alpha]_D^{25}$ -22 (c 0.006, CHCl₃). UV (CHCl₃) (log ε): 236 (4.23), 282 (4.40), 342 (3.36) and 337 (3.32) nm. IR (neat) v_{max}: 3398, 2954, 2927, 1631, 1602 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) see Table 1; ESITOFMS (*m/z*): $[M+H]^+$ *m/z* 441.2266 (calc. for C₂₆H₃₃O₆, 441.2277).

ANTI-MALARIAL ASSAY

Anti-malarial activity was evaluated against the parasite *Plasmodium falciparum* (K₁ strain, multidrug resistant), using the method of Trager and Jensen (1976).¹³ Quantitative assessment of *in vitro* malarial activity was determined by means of the microculture radioisotope technique based on the method described by Desjardins *et al.* (1979).¹⁴ The inhibitory concentration (IC₅₀) represented the concentration that caused 50% reduction in parasite growth which was indicated by the *in vitro* uptake of [³H]-hypoxanthine by *P. falciparum*. The standard compounds were dihydroartemisinin (IC₅₀ 1.58 nM) and mefloquine (IC₅₀ 0.0282 μ M).

ACKNOWLEDGEMENTS

CJ and TK thank the Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Faculty of Science and Technology, Suratthani Rajabhat University, for financial support. The Natural Products Research Laboratory, School of Science, Mae Fah Luang University, is also gratefully acknowledged for partial financial support and laboratory facilities. We are indebted to Mr. Nitirat Chimnoi, Chulabhorn Research Institute, Bangkok, for recoding the mass spectra, and Ms. Nareerat Thongtip, Department of Chemistry, Phuket Rajabhat University, for recording the NMR spectra. We also thank Bioassay Research Facility of BIOTEC (Thailand) for anti-malarial test.

REFERENCES

- P. Sirirugsa, International Conference on Biodiversity and Bioresources–Conservation and Utilization, Phuket, Thailand, 1997. http://www.iupac.org/symposia/proceedings/phuket97/sirirugsa.html
- B. Portet, N. Fabre, V. Roumy, H. Gornitzka, G. Bourdy, S. Chevalley, M. Sauvain, A. Valentin, and C. Moulis, *Phytochemistry*, 2007, 68, 1312.
- 3. A. Murakami, A. M. Ali, K. Mat-Salleh, K. Koshimizu, and H. Ohigashi, *Biosci. Biotechnol. Biochem.*, 2000, 64, 9.
- 4. S. Cheenpracha, C. Karalai, C. Ponglimanont, S. Subhadhirasakul, and S. Tewtrakul, *Bioorg. Med. Chem.*, 2006, **14**, 1710.
- 5. W. Chuakul and A. Boonpleng, *Medicinal Plants*, 2003, **10**, 33 (In Thai).
- M. Yamashita, N. D. Yadav, Y. Sumida, I. Kawasaki, A. Kurume, and S. Ohta, *Tetrahedron Lett.*, 2007, 48, 5619.
- 7. Y. Mimaki, A. Kameyama, Y. Sashida, Y. Miyata, and A. Fujii, Chem. Pharm. Bull., 1995, 43, 893.
- J. Orjala, A. D. Wright, C. A. J. Erdelmeier, O. Sticher, and T. Rali, *Helv. Chim. Acta*, 1993, 76, 1481.
- B. Portet, N. Fabre, V. Roumy, H. Gornitzka, G. Bourdy, S. Chevalley, M. Sauvain, A. Valentin, and C. Moulis, *Phytochemistry*, 2007, 68, 1312.
- 10. Y. Senda and S. Imaizumi, *Tetrahedron*, 1975, **31**, 2905.
- 11. J. Orjala, A. D. Wright, H. Behrends, G. Folkers, and O. Sticher, J. Nat. Prod., 1994, 57, 18.
- 12. K. Ichino, Phytochemistry, 1989, 28, 955.
- 13. W. Trager and J. B. Jensen, Science, 1976, 193, 673.
- 14. R. E. Desjardins, C. J. Canfield, J. D. Haynes, and J. D. Chulay, *Antimicrob. Agents Chemother.*, 1979, 16, 710.