O_2Cl_2 complexes. The latter fact also was evidence for two separate products in the reaction of $MoCl_5$ with $(C_6H_5)_3PO$, since the green products exhibited a peak at 967 cm.⁻¹, the orange ones did not, and obvious mixtures had a small peak in this region.

The visible spectra of several of the complexes reported here have been studied, and will be the subject of a later communication.

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF NEW HAMPSHIRE, DURHAM, NEW HAMPSHIRE

Synthesis of Fluorometallates in Methanol. Some Structure Relationships. II. Uranium and Group V Metals^{1a}

BY ANN E. BAKER^{1b} AND HELMUT M. HAENDLER¹⁰

Received July 17, 1961

The complexes $(NH_4)_3UO_2F_5$, $K_3UO_2F_5$, $(NH_4)_3VOF_5$, K_3VOF_5 , $(NH_4)_3NbOF_6$, K_3NbOF_6 , $(NH_4)_3TaOF_6$, and K_3TaOF_6 were prepared by bromination of the metal in methanol and subsequent precipitation of the fluorometallate by addition of the bromination solution to a solution of the alkali fluoride in methanol. A study of the bromination of uranium in methanol showed that the uranium bromides formed react with methanol to give hydrogen bromide, which further reacts with the metal, hydrogen being evolved. Cell constants of the complexes were determined from X-ray powder data and densities were measured. The uranium complexes were isostructural, as were the vanadium complexes. These complexes appear to be tetragonal and contain eight formula units per unit cell. The niobium and tantalum complexes were isostructural, were face-centered cubic, and contained four formula units per unit cell. Magnetic susceptibility measurements showed that the vanadium complexes contain one unpaired electron per vanadium atom. Infrared studies suggest hydrogen bonding in $(NH_4)_3$ - UO_3F_5 .

Introduction

In previous work,^{2,3} alkali fluorometallates of some transition and post-transition metals were prepared from methanol solution. The method of preparation consisted of bromination of the metal in methanol and subsequent addition of the bromination solution to a solution of the alkali fluoride in methanol. The fluorometallates usually precipitate immediately. The present study extends the method to the preparation of some ammonium and potassium oxyfluorometallates of niobium, tantalum, vanadium, and uranium and reports on the structures, magnetic susceptibilities and, in the case of the ammonium complexes, the hydrogen bonding of these complexes.

A study of the bromination of uranium in methanol was carried out to aid in the determination of the optimum conditions for bromination of the metal. Uranium was chosen for this study because it brominates readily at room temperature, in contrast to the other metals. Since structural data were not available for several of the fluorometallates prepared here, powder diffraction data were used to determine the cell constants of these compounds. Density measurements were made to determine the number of formula units per unit cell. Magnetic measurements and infrared spectra were used to aid in the characterization of the complexes.

I. The Bromination of the Metals in Methanol Experimental

The metal bromides were prepared by the addition of a small excess of bromine to 0.02 mole of the metal suspended in 100 ml. of dry methanol under a dry atmosphere of nitrogen or air. In each case, the reaction mixture was refluxed until the distillate was colorless. Any residue was removed by filtration. The solutions were used immediately for the precipitation of the fluorometallates. It should be noted that the bromination reactions of uranium and vanadium are rapid and exothermic and may require chilling.

Discussion of the Bromination Reaction

Ducelliez and Raynaud⁴ have brominated manganese in ether solution. Raynaud⁵ has

(4) F. Ducelliez and A. Raynaud, Compt. rend., 158, 576 (1914).

^{(1) (}a) This work was supported in part by the Atomic Energy Commission; (b) From a thesis submitted to the University of New Hampshire by A. E. Baker in partial fulfilment of the requirements for the degree of Doctor of Philosophy; (c) To whom communications should be addressed.

⁽²⁾ D. S. Crocket and H. M. Haendler, J. Am. Chem. Soc., 82, 4158 (1960).

⁽³⁾ H. M. Haendler, F. A. Johnson, and D. S. Crocket, *ibid.*, **80**, 2662 (1958).

brominated zinc in polar, organic solvents and suggests that bromination occurs through the reaction of bromine with the solvent to form hydrogen bromide, which then reacts with the metal. Osthoff and West⁶ have chlorinated metals in donor solvents and postulate that the chloride is removed from the metal surface by reaction 1. The effect of the state of subdivision of the metal on the activity is not known, but may be significant.

$$\frac{\mathrm{MCl}_{x(\mathrm{surface})} + (\mathrm{C}_{2}\mathrm{H}_{b})_{2}\mathrm{O} \longrightarrow \frac{\mathrm{MCl}_{z} \cdot \mathrm{O}(\mathrm{C}_{2}\mathrm{H}_{b})_{2} \longrightarrow}{\mathrm{MCl}_{z} + (\mathrm{C}_{2}\mathrm{H}_{b})_{2}\mathrm{O}} \quad (1)$$

The bromination of uranium in methanol under a dry nitrogen atmosphere showed (1) hydrogen evolution, (2) the formation of an acidic reaction mixture which fumes in moist air, (3) the precipitation of UO2 when excess bromine is not used, (4) the mole ratio uranium oxidized/hydrogen evolved (as H_2) to be dependent upon the rate of stirring and the rate of addition of bromine, and (5) the mole ratio uranium oxidized/bromine used (as Br) to be as high as 3.6. From these results, from the knowledge that K₃UO₂F₅ is formed upon addition of the bromination solution to a methanol solution of potassium fluoride, and from known reactions of uranium and of uranium bromides⁷ we have postulated the following reactions to be involved in the bromination of uranium in methanol.

$$U + 2Br_2 \longrightarrow UBr_4 \tag{2}$$

$$2U + 6HBr \longrightarrow 2UBr_3 + 3H_2 \qquad (3)$$

$$U + 3UBr_4 \longrightarrow 4UBr_3 \tag{4}$$

 $UBr_{3} + 2CH_{3}OH \xrightarrow{\longrightarrow} U(OCH_{3})_{2}Br_{2} + \frac{1}{2}H_{2} + HBr \quad (5)$

$$UBr_3 + \frac{1}{2}Br_2 \longrightarrow UBr_4 \qquad (6)$$

$$UBr_4 + 2CH_3OH \longrightarrow U(OCH_3)_2Br_2 + 2HBr$$
 (7)

$$U(OCH_3)_2Br_2 + 2CH_3OH \longrightarrow$$

$$U(OCH_3)_4 + 2HBr \quad (8)$$

$$U(OCH_3)_4 \longrightarrow UO_2 + 2(CH_3)_2O \tag{9}$$

$$U(OCH_3)_2Br_2 + Br_2 \longrightarrow UO_2Br_2 + 2CH_3Br$$
 (10)

$$U(OCH_3)_4 + Br_2 \longrightarrow U(OCH_3)_4 Br_2 \qquad (11)$$

Since hydrogen is evolved here in varying amounts depending upon the reaction conditions, and since in the bromination of zinc in methanol no hydrogen evolution is seen, it is suggested that the reaction mechanism of the bromination of metals in methanol is not as Raynaud suggested but is similar to that suggested by Osthoff and West, except where the bromides actually react with methanol to form methoxy compounds, as seems to be the case with uranium, vanadium, niobium, and tantalum. It is known that UBr₄ reacts with alcohols to form hydrogen bromide,⁸ and that UBr₃ forms UO₂ in water or alcohol.⁹ The postulation that the bromides of tantalum, niobium, and vanadium react with methanol is supported by the reaction of TaCl₅ with methanol to give TaCl₂(OCH₃)₃¹⁰ and by the reaction of VCl₄ with methanol to form V(OCH₃)₂Cl₂. CH₃OH.¹¹

The bromo compounds of niobium and tantalum are hydrolyzed easily, and the reaction of hydrogen bromide with methanol to form water¹² must be hindered. This is accomplished in the brominations of niobium and tantalum by rapid addition of the bromine to the reaction mixture, the use of excess bromine, and the immediate use of the bromination solution in the precipitation of the fluorometallate.

II. Preparation of the Ammonium and Potassium Fluorometallates

Experimental

Preparation of the Compounds.—The fluorometallates were prepared by the addition of the bromination solution to a large excess of a 0.5 M solution of the alkali fluoride in dry methanol.

The ammonium complexes were allowed to settle and washed with dilute ammonium fluoride in methanol by decantation. The complexes then were digested in a dilute solution of ammonium fluoride in methanol for at least 24 hr., filtered, rinsed with methanol and with ether, and dried by vacuum desiccation. Ammonium fluoride for use in the preparation of the tantalum or niobium complexes was dried by successive reprecipitations from methanol solution by the addition of ether.

The potassium complexes were filtered off immediately after precipitation, washed with dilute potassium fluoride solution in methanol, and then with methanol by vigorous shaking and decantation until no loss in weight occurred on further washing. The complexes were digested in a dilute solution of potassium fluoride in methanol for at least 24 hr., filtered, washed with methanol, and dried at 110°.

Preparation of the tantalum or niobium complexes should be carried out only in an atmosphere where the humidity is less than 30%.

⁽⁵⁾ A. Raynaud, Compt. rend., 181, 1069 (1925).

⁽⁶⁾ R. C. Osthoff and R. C. West, J. Am. Chem. Soc., 76, 4732 (1954).

⁽⁷⁾ U. S. Atomic Energy Comm. TID-5290, Books I and II 'Uranium Chemistry," 1958.

⁽⁸⁾ F. H. Spedding, A. S. Newton, R. Nottorf, J. Powell, and V. Calkins, U. S. Atomic Energy Comm. T1D-5290, Book I, 1958, p. 91-119.

⁽⁹⁾ J. C. Warf, U. S. Atomic Energy Comm. TID-5290, Book I, 1958, p. 29-37.

⁽¹⁰⁾ H. Funk and K. Niederlander, Ber., 62, 1688 (1929).

⁽¹¹⁾ D. C. Bradley, R. J. Multani, and W. Wardlaw, J. Chem. Soc., 4647 (1958).

⁽¹²⁾ G. M: Bennett and F. M. Reynolds, ibid., 131 (1935).

TABLE II

Analytical.-Ammonia was determined by distillation from concentrated sodium hydroxide solution into a saturated solution of boric acid and titration with standard hydrochloric acid using methyl purple as indicator.

Potassium was determined gravimetrically as potassium tetraphenylboron according to the method of Geilmann.13 In cases where the heavy metal ion precipitated in basic solution, the hydrous oxide was removed and the precipitation of potassium carried out on the filtrate.

Fluoride was determined by the method of Grant and Haendler,14 where fluosilicic acid is steam-distilled from the sample into dilute sodium hydroxide and titrated oscillometrically with a standard thorium nitrate solution.

Uranium was determined gravimetrically¹⁵ by precipitation with ammonium hydroxide as hydrous oxide after fuming the sample with sulfuric acid. The precipitate was weighed as U₂O₈.

Vanadium was determined volumetrically by titration of a dilute sulfuric acid solution of the sample with permanganate.¹⁵ Addition of a solution of sodium fluoride and of copper sulfate seemed to give a clearer end-point.17

Tantalum and niobium were determined gravimetrically by precipitation with cupferron and ignition to the oxide.18

Discussion of Results

Tables I and II show the results of the analyses of the complexes. The complexes prepared here are seen from the analyses to be $(NH_4)_3UO_2F_5$, $K_3UO_2F_5$, $(NH_4)_3VOF_5$, K_3VOF_5 , $(NH_4)_3NbOF_6$, K₃NbOF₆, (NH₄)₃TaOF₆, and K₃TaOF₆.

Complications arose during the preparations due to the presence of excess bromine in the bromination solutions. Bromine and ammonia in ether react to form ammonium bromide and

	-		
ANALYSIS OF 2	гне Амл	ionium I	FLUOROMETALLATES
Formula	Anal, c	alcd., %	Anal. found, %
(NH4)2UO2F5	U	56.18	56.85, 56.96
	NH_4	12.88	12.77, 12.73
	F	22.68	22.68, 22.68, 22.74
(NH ₄) ₃ VOF ₅	v	23.58	23.22, 23.74, 23.70
	NH_4	25.05	24.28, 24.28
	F	43.97	44.35, 44.10, 44.70
(NH ₄) ₃ NbOF ₆	Nb	33.54	33.51, 33.48
	NH_4	19.54	19.01, 19.09
	F	41.84	41.58, 41.75, 42.24
(NH4)3TaOF6	Ta	49.56	51.20, 50.79
	NH_4	14.83	13.44, 13.49
	F	31.23	30.41, 30.54

TADIE

(13) W. Geilmann and W. Gebauhr, Z. anal. Chem., 139, 161 (1953).

(14) C. L. Grant and H. M. Haendler, Anal. Chem., 28, 415 (1956).

ANALYSIS O	F THE]	POTASSIUM	FLUOROMETALLATES
Formula	Anal.	calcd., %	Anal. found, %
$K_3UO_2F_5$	U	49.25	49.63, 49.62, 49.77
	K	24.32	23.85, 23.90, 24.04
	\mathbf{F}	19.59	19.99, 19.92
K3VOF5	v	18.24	18.02, 18.15
	ĸ	42.01	39.96, 40.76, 40.12
	F	34.02	34.15, 34.15
K₃NbOF6	Nb	27.39	27.19, 26.96, 26.80
	K	34.44	33.75, 34.09
	F	33.51	34.29, 34.10
K₃TaOF6	Ta	42.24	42.29, 42.14, 42.49
	K	27.39	26.43, 26.39, 27.14
	F	26.62	26.04, 26.28

monobromoamine.^{19,20} In the preparation of the ammonium fluorometallates it was noted that the bromine color faded to a pale yellow, the color of monobromoamine. The extent of the interference of the reaction of bromine with ammonium fluoride to form monobromoamine and ammonium bromide in the preparation of the ammonium fluorometallates is not known, but a large excess of ammonium fluoride was used to ensure complete precipitation of the fluorometallate.

Bromine and potassium fluoride in methanol react to form nearly insoluble potassium hydrogen fluoride and sparingly soluble potassium bromide. Again a large excess of potassium fluoride was used for complete precipitation of the fluorometallate. Immediate filtration of the potassium fluorometallates after precipitation served to avoid extensive post-precipitation of potassium bromide. Thorough washing with methanol removed potassium hydrogen fluoride.

It should be noted that the analysis of $(NH_4)_8$ TaOF₆ shows the compound to be contaminated, probably with oxyfluorides. However, the amount of impurity was not great enough to appear in the powder pattern, and thus the pattern was used to index $(NH_4)_3TaOF_6$. It is doubtful whether a pure compound can be made using our method of preparation because of the formation of water in the bromination step by the reaction of hydrogen bromide and methanol.

III. Structural Studies of the Fluorometallates

Experimental

X-Ray Powder Photographs.-Powder patterns were taken using 57.3 and 114.56 mm. Philips cameras. Copper

⁽¹⁵⁾ W. F. Hillebrand, G. E. F. Lundell, H. A. Bright, and J. I. Hoffman, "Applied Inorganic Analysis," John Wiley & Sons, Inc., New York, N. Y., 2nd Ed., 1953, p. 469.

⁽¹⁶⁾ Reference 15, p. 459.

⁽¹⁷⁾ I. M. Issa and M. Hamdy, Z. anal. Chem., 174, 418 (1960). (18) F. J. Welcher, "Organic Analytical Reagents," Volume 3,

D. Van Nostrand Co., Inc., New York, N. Y., 1947, p. 390.

⁽¹⁹⁾ W. Moldenhauer and M. Burger, Ber., 62, 1615 (1929).

⁽²⁰⁾ G. H. Coleman and G. E. Goheen, Proc. Iowa Acad. Sci., 43, 178 (1936).

		Cell			
		Dimensions	De	nsity	
Compound	Structure	(Å.)	Calcd.	Obsd.	Reference
$(NH_4)_3UO_2F_5$	Tetragonal	a = 9.70	2.86	2.90	
		c = 18.91			
K ₃ UO ₂ F ₅	Tetragonal	a = 9.160	4.20	3.93	(22)
		c = 18.167		4.267ª	
(NH₄)₃NbOF ₆	Face-centered cubic	a = 9.31	2.27	2.20	
K₃NbOF₀	Face-centered cubic	a = 8.88	3.23	3.01	(23)
(NH₄)₃TaOF6	Face-centered cubic	a = 9.31	3.00	2.96	
K3TaOF6	Face-centered cubic	a = 8.90	4.03	3.97	
(NH ₄) ₃ VOF ₅	Tetragonal	a = 9.17	1.93	1.91	
		c = 17.64			
K ₃ VOF ₅	Tetragonal	a = 8.75	2.84	2.79	
		c = 17.09			

TABLE III							
STRUCTURES	OF	Some	AMMONIUM	AND	POTASSIUM	FLUOROMETALLAT	ES

^a H. Baker, Ann., 202, 240 (1880).

	Таві	LE IV	TABLE V				
2	C-RAY POWDER D	DATA FOR K ₅ UO ₂ F5 ^a	X	-RAY Powr	er Data	for (NH4)3UO	$_{2}\mathrm{F}_{5}$
	a = 9.16 Å.	c = 18.17 Å.		a = 9.7	0Å. c	= 18.91 Å.	
$d_{\mathbf{hkl}}$	I/Io	hkl	dhkl	I/Ioª	hkl ^b	104Qobsc	104Q _{calo}
5.26	100	112	5.51^{d}	100	112	330	324
5.0 8	11	103	5.18	2	103	372	358
4.58	50	200 (004)	4.790	50	200	436	425
4.00	9	211			004	436	447
3.38	20	213 (105)	3.44	15	220	843	850
3,23	100	220, 204	3.38	70	204	876	872
2.86	3	?	2,87ª	50	303	1216	1208
2.81	3	?			116	1216	1219
2.76	40	312(116)	2.75	4	224	1319	1298
2.72	11	303	2.60^{d}	1	107	1483	1477
2.63	13	224			314	1483	1510
2.49	13	107	2.43	7	400	1688	1700
2.46	3	314	2.37	7	008	1785	1790
2, 32	5	305(323)	2.27	2	217	1934	1902
2.29	25	400	2.20	10	316	2060	2070
2.27	11	008			143	2060	2058
2.19	15	217(226)			325	2060	2081
2.09	15	316 (413) (332)	2.16	25	420	2139	2126
2.08	15	325			404	2139	2148
2.05	20	404 (420) (208)	2.13	4	208	2206	2215
1.97	13 <i>-</i>	109 (307)	2.09	4	307	2296	2327
1.89	9	415	2.034	2	415	2429	2506
1.87	45	424(228)			109	2429	2371
1.81	25	219	1.98	4	424	2556	2573
X-Rav	Powder Data Fil	e. American Society for Test-	1.94	$25^{$	228	2652	2640
Materia	als	,	1.88	2	219	2830	2797

1.76

1.70

^d Broad line.

ing Materials.

a

and iron radiations were used. The samples were mounted in 0.3-mm. glass capillaries.

Infrared Spectra.-Infrared spectra were taken using a Perkin-Elmer Model 21 spectrophotometer, with sodium chloride optics. The samples for analysis were prepared as mulls by grinding with halocarbon oil (series 11-14), as described by Crocket and Haendler.21

Discussion of Results

Powder diffraction data were taken for the

(21) D. S. Crocket and H. M. Haendler, Anal. Chem., \$1, 629 (1959).

complexes and used for identification of $K_3UO_2F_5$ and K₃NbOF₆, which have been indexed previously,22,28 and for the indexing of the other

309

20,10

408

^a Visual estimate. ^b Based on $I4_1/a$. ^c $Q = 1/d^2$.

3242

3242

3477

3221

3222

3490

(22) W. H. Zachariasen, Acta Cryst., 7, 783 (1954).

1

10

(23) M. B. Williams and J. L. Hoard, J. Am. Chem. Soc., 64, 1139 (1942).

TABLE VIII

	TABLE VI							
	X-RAY POV	VDER DAT	ra for K ₃ VC)F ₅				
	a = 8.7	5Å. c	= 17.09 Å.					
dhkl	I/Ioª	hkl ^b	$10^4 Q_{\rm obs}^c$	104Q ₀₈)	le			
4.96	17	112	406	398				
4.30d	13	200	540	522				
		004	540	548				
3.16	7	105	1003	987				
3.09	3	220	1047	1045				
3.02ª	100	204	1095	1070				
2.36	10	107	1795	1808				
2.26	7	323	1951	2006				
2.19	3	400	2083	2090				
2.14ª	5	008	2180	2191				
2.08	7	217	2305	2331				
1,93	13	208	267 9	2714				
		404	2679	2638				
1.76ª	33	228	3232	3236				
1.70	17	219	3464	3426				
1.67	17	336	3586	3584				
ª Visual	estimate.	b Based	on I4 ₁ /a.	• Q = 1,	d^2 .			

^d Broad line.

	TABLE VII							
X-RAY	Powder	Data	FOR	(NH ₄) ₃ VOF ₅				

	a = 9.1	7 Å.	c =	17.64 Å			
dhkl	I/I_0^a	hkl ^b		$10^4 Q_{ m obs}^{\circ}$		104	Qualc
$5, 18^{d}$	100	112		372		3	6 6
4.62	38	200		468		4	76
4.42	50	004		512		5	14
3.17^{d}	63	204		996		9	90
2.74	3	312		1327		13	18
2.69	3	116		1383		13	95
2.60	13	224		1481		14	66
2.34	6	323		1826		18	35
2.29	13	400		1910		19	03
2.224	25	008		2023		2 0	57
2.18	3	226		2110		21	08
2.10	1	332		2274		22	69
2.03	4	404		2420		24	17
1.99	4	208		2520		25	32
1.89	3	415		2800		28	25
1.85	5	424		291 9		28	93
1.82	5	2 2 8		3012		30	08
^a Visual	estimate.	ه Based	on	$I4_{1}/a.$	۰Q	=	$1/d^{2}$.
^d Broad lin	e.						

complexes. Table III shows structural data for the complexes and Tables IV-X list the powder diffraction data.

The cubic patterns were calculated using the method of Henry, Lipson, and Wooster.²⁴ Each tetragonal pattern was compared with that for $K_3UO_2F_5$, which already had been reported.²² The 400 and 008 lines were identified and a pattern calculated to allow correlation of the

X-1	Ray Powdi	ER DATA FOR	(NH₄)₃NbC)F ₆
		a = 9.31 Å.		
dhki	1/ 1 0"	hkl ^b	$10^4 Q_{obs}^c$	104Qoala
5.381	100	111	345	346
4.660	67	200	46 0	462
3.293	67	220	922	923
2,807	37	311	1269	1269
		222		1384
2, 3 29	50	400	1844	1846
2.137	13	331	2190	2192
2.082	33	420	2307	2308
		422		2769
1.792	40	511, 333	3114	3115
1.646	40	440	3691	3692
1.574	17	531	4037	4038
1.552	30	600, 442	4151	4154
1.473	23	620	4608	4615
1.421	17	533	4953	4961
1.404	10	622	5074	5077
1.344	3	444	5537	5538
1.304	20	711, 551	5882	5884
1.292	7	640	5992	6000
1.244	3 0	642	6460	6461
1.212	20	731, 553	6807	6807
1.165	2	800	7369	7384
1.138	3	733	7722	7730

^a Visual estimation. ^b For face-centered cubic cell. ^c $Q = 1/d^2$.

hkl values with observed lines. Calculations of $Q(4 \sin^2\theta_{\rm calc}/\lambda^2)$ were made and compared with observed values. The best values of a and cwere determined by changing each in turn until the difference between values of Q_{calc} and Q_{obs} was as small as possible. Final tabulations were carried out by programs written for the I.B.M. 1620 computer. The space group extinctions in the patterns of the four tetragonal compounds appear to be the same, presumably those of space group I4₁/a. The pattern of $K_3UO_2F_5$ is listed in Table IV for comparison. All possible interplanar spacings for this compound were calculated from the unit cell constants. Those in parentheses are reflections whose calculated dvalues lie close to those observed, but which had not been included in the published A.S.T.M. assignments.

Zachariasen²² has determined that the UO_2F_5 group has the structure of a pentagonal bipyramid with the oxygen atoms at the peaks and the fluorine atoms at the corners of the pentagon. The potassium atoms are arranged between these bipyramids so K_I is associated with six fluorine atoms, K_{II} with four fluorine atoms and with four oxygen atoms, and K_{III} with two oxygen atoms and with six fluorine atoms. The inter-

⁽²⁴⁾ N. F. M. Henry, H. Lipson, and W. A. Wooster, "The Interpretation of X-Ray Diffraction Photographs," 2nd Ed., St. Martins Press, Inc., New York, N. Y., 1960.

m. _. _ TV

cell.

TINTY

I ABLE IA			X-RAY POWDER DATA FOR KSTaOF5						
X-RAY POWDER DATA FOR $(NH_4)_3TaOF_6$									
		a = 9.31 Å				C	a = 8.90 Å	l.	
dhkl	I/Ioª	hklb	$10^4 Q_{obs}^{c}$	10^4Q_{oalo}	d_{hkl}	I/Ioª	hklb	$10^4 Q_{\rm obs}^{c}$	10 ⁴ Q _{calo}
5.398	100	111	343	346	5.071	50	111	389	379
4.653	90	200	462	461	4.400	33	200	516	505
3.294	80	220	922	923	3.125	100	220	1024	1010
2,807	60	311	1269	1269	2.668	17	311	1405	1389
2.684	5	222	1388	1384	2.559	3	222	1527	1515
2.325	50	400	1850	1846	2.217	17	400	2034	2020
2.135	40	331	2194	2192	2.036	2 0	331	2412	2399
2.079	55	420	2314	23 07	1.983	50	420	2543	2525
1.897	55	42 2	2778	2769	1.813	83	422	3042	3030
1.789	55	511, 333	3125	3115	1.709	50	511, 333	3423	3409
1.646	15	440	3691	3692	1.572	33	440	4047	4040
1.573	50	531	4042	4038	1.503	50	531	4427	4419
1.550	40	600, 442	4163	4153	1.481	33	600, 442	4560	4545
1.472	30	620	4615	4615	1.407	67	620	5051	5050
1.418	10	533	4973	4961	1.357	13	533	5432	5429
1.401	10	622	5094	5076	1.340	10	622	5568	5555
1.343	5	444	5543	5538	1.284	17	444	6064	6060
1.304	20	711, 551	5882	5884	1.246	33	711, 551	6443	6438
1.291	10	640	6000	5999	1.234	10	640	6566	6565
1.244	15	642	6460	6461	1.189	83	642	7072	7070
1.212	15	731, 553	6807	6807	1.158	50	731, 553	7457	7448
1.165	1	800	7369	7384	1.079	50	820, 644	8591	8585
1.139	1	733	7710	7730	1.048	67	822,660	9107	9090
1.129	10	820, 644	7843	7845	1.028	33	751, 555	9461	9468
1.098	5	822,660	8292	8307	1.021	50	662	9597	9595
1.075	10	751, 555	8651	8653	0.9958	3 3	840	10084	10099
1.068	3	662	8764	8768	0.9782	67	911, 753	10450	10478
1.041	5	840	9225	9230	^a Visual	estimation.	^b For fac	ce-centered	cubic cel
1.022	10	911, 753	9578	9576	$\circ O = 1/d^2$				
1.016	5	842	9690	9691	C /				
0.9920	5	664	10161	10153	ommoniu	m ion br	Warner	nd Hom	a 26 Wad
0.9763	5	931	10490	10499	ammonnu		wagner a	and nom	ig,= wat
0.9504	8	844	11070	11076	dington, ²	and Crock	ket and I	aendler, ²	it can b

11421

^a Visual estimation. ^b For face-centered cubic cell. $\circ Q = 1/d^2$.

10 933, 771, 755 11405

0.9364

planar spacings found for our preparation of $K_3UO_2F_5$ matched those found by Zachariasen for his preparation of $K_3UO_2F_5$ from aqueous solution. Dunn,²⁵ however gives different interplanar spacings for his preparation.

The powder pattern of our $(NH_4)_3UO_2F_5$ was very similar to that of our K₃UO₂F₅ preparation. It was noted, however, that several broad lines of the K₃UO₂F₅ pattern were resolved in the (NH₄)₃-UO₂F₅ pattern. This suggests that in K₃UO₂F₅ the ratio c/a approaches the value 2 more closely than it does in the ammonium compound.

The infrared spectra of $(NH_4)_3UO_2F_5$ and $K_3UO_2F_5$ are given in Figure 1. Following the discussions of the infrared spectrum of the

Vadn be seen that the spectrum of ammonium pentafluorodioxyuranate(VI) shows several of the characteristics attributed to the effect of hydrogen bonding. The presence of hydrogen bonding is indicated through the clearness of the $\nu_4 + \nu_6$ peak, the presence of three peaks in the ν_3 mode

Fig. 1.—Infrared spectra: $A = K_3 UO_2 F_5$; $B = (NH_4)_3$ - UO_2F_5 ; C = (NH₄)₃VOF₅; D = (NH₄)₃NbOF₆.

⁽²⁵⁾ H. W. Dunn, U. S. Atomic Energy Comm. ORNL Report No. 2092, "X-ray Diffraction Data for Uranium Compounds" (1956).

⁽²⁶⁾ E. L. Wagner and D. F. Hornig, J. Chem. Phys., 18, 296 (1950).

⁽²⁷⁾ T. C. Waddington, J. Chem. Soc., 4340 (1958).

region, and the slight splitting and shift to a higher frequency of the ν_4 mode. Since $(NH_4)_3UO_2F_5$ is isostructural with $K_3UO_2F_5$, it would seem that there are three possible environments for the ammonium ions. Crocket and Haendler² have stated that a possible cause of the two large peaks in the ν_4 mode area in the spectrum of ammonium tetrafluorocuprate(II) is the presence of ammonium ions in two unequivalent lattice positions, causing the bending vibration of the ammonium ions to differ. The spectrum of the uranium complex is not sufficiently resolved to permit similar conclusions.

Williams and Hoard²³ have indexed K₃NbOF₆ and have suggested that it contains discrete K⁺ and $NbOF_6^{-3}$ ions. They further suggest that the NbOF₆ group may have the structure of a distorted octahedron, with the niobium atom at the center of a regular octahedron, the six fluorine atoms at the corners of a regular octahedron, and the oxygen atom on the three-fold axis passing through one face of the regular octahedron. To explain the cubic structure of K_3NbOF_6 , it is necessary to assume that the structural type for K₃NbOF₆ involves some randomness of atomic arrangement. The niobium and tantalum complexes are isostructural, suggesting that $(NH_4)_3$ -NbOF₆, (NH₄)₃TaOF₆, and K₃TaOF₆ also have some random character.

Zachariasen²⁸ has found that K₃UF₇ has two structures, the ordered tetragonal form, which is almost indistinguishable from the structure of the $K_3UO_2F_5$, and a disordered cubic form. The cubic form is considered to have some degree of disorder in the positions of the atoms, but the distribution of ionic centers is nearly the same as in the tetragonal form, the structure of the UF_7 group being that of a pentagonal bipyramid. Zachariasen has further suggested that the complexes (NH₄)₃ZrF₇, (NH₄)₃HfF₇, K₃ZrF₇, and K_3UF_7 are isostructural and that, instead of a distorted octahedron, these MF₇ complexes have the form of a pentagonal bipyramid, their cubic structure still being attributed to a random orientation of groups. Since the K₃NbOF₆ com-

(28) W. H. Zachariasen, Acta Cryst., 7, 792 (1954).

plex is isostructural with $(NH_4)_3 ZrF_7$,²³ it would be of interest to determine the NbOF₆ structure by single crystal studies.

The infrared spectra of $(NH_4)_3NbOF_6$ and $(NH_4)_3TaOF_6$ are very similar. That of $(NH_4)_3$ -NbOF₆ is given in Figure 1 and shows little evidence for hydrogen bonding. The ν_4 peak is not shifted or split, a $\nu_4 + \nu_6$ mode does not appear clearly, and there is only a very slight splitting of the ν_3 peak. The isomorphism of the ammonium and potassium complexes supports this evidence.

Very little work has been carried out concerning the structures of vanadium complexes, and it is difficult to speculate about the orientation of atoms in the VOF₅ group. It is reported that the complex $(NH_4)_3VF_6$ is cubic,²⁹ and several other complexes of vanadium are reported in which the coördination number of vanadium may be six. Among these are $(NH_4)_2VF_5 \cdot H_2O$, (NH_4) - $VF_4 \cdot 2H_2O$, $K_2VF_5 \cdot H_2O$, $(NH_4)_2VOF_4 \cdot H_2O$, K_2VF_6 , $(NH_4)_2VO_2F_4$, and K_2VOF_5 .³⁰ Structural studies of some of these would do much to explain the coördination chemistry of vanadium.

The infrared spectrum of $(NH_4)_8VOF_5$, shown in Figure 1, does show some variation from that of a freely rotating ammonium ion^{28,27} in that the ν_4 peak is shifted slightly higher, and the ν_3 mode shows a peak at 3240 cm.⁻¹, another at 3070 cm.⁻¹, and a shoulder at 2860 cm.⁻¹. The $\nu_4 + \nu_6$ mode, which is a main feature in the spectrum of a hydrogen-bonded ammonium ion, is barely discernible. Thus, except for a small splitting in the ν_3 region, evidence is meager to support much hydrogen bonding. The isomorphism of $(NH_4)_3$ -VOF₅ and K₃VOF₅ suggests that hydrogen bonding at least is very weak, not being sufficient to change the structure of the ammonium complex from tetragonal.

Magnetic measurements, using the Gouy method,³¹ showed the vanadium complexes prepared here to contain one unpaired electron. The magnetic moment of $(NH_4)_3VOF_5$ was found to be 1.68 ± 0.05 B.M., that of K₃VOF₅ to be 1.71 ± 0.03 B.M.

⁽²⁹⁾ L. Passerini and R. Pirani, Gazz. chim. ital., 62, 279 (1932).

⁽³⁰⁾ J. N. Simons, Ed., "Fluorine Chemistry," Vol. II, Academic Press Inc., New York, N. Y., 1954, p. 21.

⁽³¹⁾ We are indebted to the Central University Research Fund for a grant toward the construction of this balance.