empirical formula $CH_{4.5}B_2O_4$, which might well represent a mixture of, substantially, metaboric acid (HBO_2) and polymethylene $(CH_2)_n$. The X-ray diffraction pattern indicated a mixture of orthoboric acid and an additional phase which could not be identified, but the orthoboric acid must have been formed by inadvertent exposure of the X-ray sample to moisture; orthoboric acid is unstable under the conditions used in the vacuum distillation and would have been dehydrated to metaboric acid.⁷

(2) Triethyl Orthoborate.—At the end of the pyrolysis, the flask and dewar trap were cooled to -78° and all gases volatile at that temperature removed by pumping. The flask and trap were warmed to room temperature and the apparatus pumped again, any material volatile at room temperature being caught in a U-trap cooled to -78° . This trap then was sealed off and removed. It contained a few ml. of a colorless liquid and some white solid, presumably diboron trioxide. Several sections of the pyrolysis system also were coated with this white solid. The liquid was examined by infrared spectroscopy and found to contain ethanol, acetal, and a small amount ($\sim 10\%$) of ethyl borate. The pot residue consisted of a dark gummy solid, 99.4% of which was volatile in methanol and presumed to be metaboric acid.

Acknowledgments.—The authors are indebted to J. Starr for gas chromatography analyses and to E. O. Camehl, of the Dow Chemical Company Analytical Laboratories, Midland, Michigan, for mass spectrometer analyses.

(7) "Gmelins Handbuch der Anorganischen Chemie," Supplement, 13, 148 (1954).

CONTRIBUTION FROM ROHM AND HAAS COMPANY, REDSTONE ARSENAL RESEARCH DIVISION, HUNTSVILLE, ALABAMA

The Infrared Spectrum of NF₂

By Frederic A. Johnson and Charles B. Colburn

Received December 1, 1961

The dissociation of tetrafluorohydrazine (N_2F_4) to diffuoramino radicals (NF_2) has been demonstrated recently.^{1,2} The results of our investigation of the infrared spectrum of the diffuoramino free radical are given below.

When equilibrium mixtures of N_2F_4 and NF_2 are heated in a conventional infrared cell to increase the proportion of NF_2 , profound changes in the infrared spectrum are observed. The 1010 cm.⁻¹ band of N₂F₄ is found to decrease drastically while smaller decreases are found at 960 and 740 cm.⁻¹. A large increase is found between 940 and 910, with smaller increases at 990–970 and 735– 730 cm.⁻¹. It is not possible to distinguish the bands, however, because of severe overlapping by N₂F₄ bands at 1010, 960, and 735 cm.⁻¹.

To increase the resolution of the NF_2 spectrum, a compensating technique was used to cancel the N_2F_4 spectrum. A short cell (2-cm.) was filled to a high pressure of N_2F_4 and placed in the reference beam of a Perkin-Elmer Model 21 with a rock salt prism. A long cell (1 or 10-m.) was placed in the sample beam and a much lower pressure (where the relative concentration of NF_2 is large) admitted to just cancel the N_2F_4 peaks. In Fig. 1b, the long cell pressure was about 0.2 mm. at 25°. The short cell pressure was adjusted until the characteristic N₂F₄ maximum at 960 cm.⁻¹ was indistinct in the difference spectrum. The 10-m. cell then was heated to 110°; from equilibrium data² the N_2F_4 was 70% dissociated, hence there were about 5 NF₂ molecules per N₂F₄ in the long cell. In some instances N₂ or He was admitted to the long cell to reduce pressure broadening effects, but little difference was noted.

Under the above conditions the observed spectrum should be that due to NF_2 alone. Strong bands were found at 920, 980, and 730 cm.⁻¹ with a weak, rather broad peak at 1100 cm.⁻¹. These peaks were observed to increase with increasing temperature and decrease again on cooling.

The observed spectrum is similar to that of $OF_{2,3}$ which has its three infrared active fundamentals at 929 (ν_1), 826 (ν_3), and 461 (ν_2). The ν_2 "scissors" of NF₂ appears to be surprisingly high in frequency, particularly in view of the values^{4,5} of 666 and 650 cm.⁻¹ for ν_2 of CF₂. Limitations in cell optics prevented study below 650 cm.⁻¹. In view of the lack of detail in the absorptions observed insufficient data were available to calculate meaningful force constants.

Our results are in partial agreement with those of Schoen, Lide, and Mann,^{6,7} who observed two regions of absorption at 1075 and 940 cm.⁻¹ by

(1960).
(6) L. J. Schoen, D. R. Lide, Jr., and D. E. Mann, National Bureau of Standards Report No. 7129, April, 1961.

⁽¹⁾ C. B. Colburn and F. A. Johnson, J. Chem. Phys., 33, 1869 (1960).

⁽²⁾ F. A. Johnson and C. B. Colburn, J. Am. Chem. Soc., 83, 3043 (1961).

⁽³⁾ H. T. Bernstein and J. Powling, J. Chem. Phys., 18, 685 (1950).

⁽⁴⁾ P. Venkateswarlu, Phys. Rev., 77, 676 (1950).
(5) D. E. Mann and B. A. Thrush, J. Chem. Phys., 33, 1732

⁽⁷⁾ M. D. Harmony, R. J. Myers, L. J. Schoen, D. R. Lide, Jr., and D. E. Mann, J. Chem. Phys., 35, 1129 (1961).

Fig. 1.—Infrared absorption of N₂F₄ and NF₂.

simply heating N_2F_4 in an infrared cell. By this technique the combined spectra of N_2F_4 and NF_2 are obtained.

The authors wish to express their appreciation to Dr. Keith Booman and Mrs. Carolyn Haney for their valuable assistance in obtaining these spectra. This work was carried out under Contract No. DA-01-021 ORD-11878.

> CONTRIBUTION FROM THE JOHN HARRISON LABORATORY OF CHEMISTRY, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA 4, PENNSYLVANIA

The Conversion of Silane to Higher Silanes in a Silent Electric Discharge^{1a}

By Edward J. Spanier and Alan G. MacDiarmid^{1b}

Received December 18, 1961

It has been reported that when silane, SiH_4 , is passed through a hot tube it is partly converted to disilane, $Si_2H_{6,2}$ In a somewhat similar reaction it has been found that when SiH_4 is heated with certain hydrocarbons, small quantities of higher silanes are formed.³ Irradiation of SiH₄ containing mercury vapor and hydrocarbons by a mercury lamp also gives small quantities of higher silanes.³ When SiH₄ and water vapor were subjected to an electric discharge no higher silanes were obtained.⁴ With SiH₄ alone the chief products were hydrogen, a solid silicon subhydride of composition SiH_{1.2-1.7}, and small quantities of higher silanes.⁵

Since the action of an electric discharge on both B_2H_6 and GeH₄ yields relatively large amounts of volatile boranes⁶ and germanes,⁷ respectively, it appeared that the analogous reaction involving SiH₄ warranted further study since it might serve as a useful method of preparation of higher silanes from SiH₄.

The present investigation shows that SiH₄ may be converted in an ozonizer type electric discharge to a mixture of higher volatile silanes (63%)yield) in addition to solid silicon subhydrides and hydrogen. The mixture of higher volatile silanes contains Si_2H_6 (66%), Si_3H_8 (23%), and higher silanes (11%). The conversion was carried out in an easily constructed automatic recycling apparatus from readily obtainable equipment. The yields of higher silanes are so good that this method appears to be the most convenient and practical process for their production since the starting material, SiH₄, can be easily obtained in high yields from SiCl₄ and LiAlH₄.⁸ The preparation of Si₂H₆ by the reduction of Si₂Cl₆ (which is not as readily available as SiCl₄) does not give high yields of the desired silane,9 whereas the preparation of higher silanes from magnesium silicide and acid involves first the preparation of the silicide.10

Experimental

All work was carried out in a Pyrex glass vacuum system. Temperatures below 0° were measured by an iron-constantan thermocouple standardized by the National Bureau of Standards. Infrared spectra were run on a Perkin-Elmer Infracord spectrophotometer (Model 137B) employing a sodium chloride optical system. Measure-

^{(1) (}a) This report is based on portions of a thesis to be submitted by Edward J. Spanier to the Graduate School of the University of Pennsylvania in partial fulfillment of the requirements for the degree of Doctor of Philosophy. The work was supported partly by a National Science Foundation Institutional Grant and is also, in part, a contribution from the Materials Science Laboratories, University of Pennsylvania, supported by the Advanced Research Projects Agency, Office of the Secretary of Defense. Reproduction in whole or in part is permitted for any purpose of the U. S. Government; b) Alfred P. Sloan Research Fellow.

⁽²⁾ G. Fritz, Z. Naturforsch., 7B, 507 (1952).

⁽³⁾ D. G. White and E. G. Rochow, J. Am. Chem. Soc., 76, 3897 (1954).

⁽⁴⁾ N. B. Bhatt and S. K. K. Jatkar, J. Indian Inst. Sci., 20A, 34 (1937).

⁽⁵⁾ R. Schwarz and F. Heinrich, Z. anorg. u. allgem. Chem., 221, 277 (1935).

⁽⁶⁾ W. V. Kotlensky and R. Schaeffer, J. Am. Chem. Soc., 80, 4517 (1958).

⁽⁷⁾ J. E. Drake and W. L. Jolly, Proc. Chem. Soc., 379 (1961).

⁽⁸⁾ A. E. Finholt, A. C. Bond, K. E. Wilzbach, and H. I. Schlesinger, J. Am. Chem. Soc., 69, 2692 (1947).

⁽⁹⁾ L. G. L. Ward and A. G. MacDiarmid, *ibid.*, **82**, 2151 (1960).
(10) H. J. Emeléus and A. G. Maddock, J. Chem. Soc., 1131 (1946).