CONTRIBUTION FROM THE DEPARTMENT **OF** CHEMISTRY, UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112

Acid- Assisted Base-Displacement Reactions. The Preparation of Halodifluorophosphine- and Carbonyl-Triborane(7) Complexes

BY R. T. PAINE AND R. W. PARRY*'

Received June 30, 1971

The base displacement of dimethyl ether from dimethyl ether-triborane(7) is greatly facilitated in special cases if a specific acid such as BF₃ is used to complex the liberated ether. This perturbation of a standard base-displacement reaction has made it possible to prepare and characterize the formerly unattainable triborane(7) adducts: $F_3PB_3H_7$, $F_2ClPB_3H_7$, $F_2Br PB_3H_7$, and OCB_3H_7 . Data indicate that the order of base strength toward B_3H_7 as a reference acid is $F_3P > F_2CIP > F_2BP$. The acid-assisted base-displacement process may well be generally helpful in the preparation of other presently unknown compounds.

The close similarity of F_3PBH_3 and OCBH₃ has been recognized for many years. Both F_3PBH_3 and $OCBH₃$ adducts can be prepared by symmetrical cleavage of the B_2H_6 molecule.^{2,3} Burg and Spielman⁴ were the first to extend the symmetrical cleavage concept to pentaborane(11) utilizing the reaction of B_5H_{11} and CO: $B_5H_{11} + CO \rightarrow OCB_4H_8 + OCBH_3$. It has recently been shown⁵ that PF_3 and B_5H_{11} undergo a similar type of symmetrical cleavage process.

Data are available to show that the strength of a boron Lewis acid usually increases with the size of the boron framework.6 This generalization suggests that B_3H_7 should be a stronger Lewis acid than BH₃. Indeed, considerable evidence in support of this premise is available⁷ when nitrogen bases are used as the reference.

In view of the foregoing facts it seemed strange that repeated attempts to prepare $F_3PB_3H_7$ and OCB_3H_7 by symmetrical cleavage of tetraborane(l0) or by base displacement from weak-base adducts of triborane(7) were not successful. In an earlier study in this laboratory,⁸ the sealed-tube reaction of F_3P and B_4H_{10} at room temperature and at pressures exceeding 5 atm produced F_3PBH_3 , B_2H_6 , and unidentified volatile materials but no $F_3PB_3H_7$. In the same study,⁸ the reaction between $NaB₃H₈$ and anhydrous HCl in liquid PF_3 at -78° was tried, but no $F_3PB_3H_7$ was identified. More recently Ritter and Deever⁹ have studied the reaction of $(CH_3)_2 \text{OB}_3H_7$ and excess PF₃. Interestingly enough the weak base PF_3 , present in large excess, gave rise to degradation of the triborane(7) fragment with formation of the diborane(4) complex $(F_3P)_2B_2H_4$. Up to the present time no attempt to prepare $F_3PB_3H_7$ or OCB_3H_7 had been successful. This paper reports the successful synthesis, in high yields, of $F_3PB_3H_7$, $F_2CIPB_3H_7$, $F_2BrPB_3H_7$, and

- (2) R. W. Parry and T. C. Bissot, *J. Amev. Chem.* Soc., **78,** 1524 (1956).
- (3) **A.** B. Burg and H. I. Schlesinger, *zbid.,* **59,** 780 (1937).
- (4) **A.** B. Burg and J. R. Spielman, *rbid., 81,* 3479 (1959).
- (5) R. T. Paine and R. **W.** Parry, *Inovg. Chem.,* submitted for publication. (6) R. W. Parry and L. J. Edwards, *J. Amev. Chem.* Soc., **81,** 3554 (1959):
- **H.** D. Johnson, 11, andS. *G.* Shore, *Fovlschv. Chem. Fovsck., 15,* 87 (1971).
- (7) L. J. Edwards, W. V. Hough, and M. D. Ford, *Congv. Int. Chim. Puve Appl., 16", Pavis, 1957, Mem. Sect. Chim. Mtnevale,* 475-481 (1958). The reaction of (CH8)sNBHa with BiHio in a 1: 1 molar ratio is reported to give (CH8)aNBsHi and 1 mol **of** BzHa, suggesting greater acid strength for B3H7.
- (8) G. Kodama and R. W. Parry, WADC Technical Report, University of Michigan Research Institute, Ann Arbor, Mich. 48104, 1959, **pp** 59- 207.
	- (9) W. R. Deever and D. **M.** Ritter, *J. Amer. Chem. Soc.,* **89,** 5073 (1967).

 $OCB₃H₇$ by a modification of the normal displacement process. The new synthetic procedure, identified as an acid-assisted base-displacement reaction, can be
summarized by the equation
 $(CH_3)_2OB_3H_7 + F_2XP + BF_3 \longrightarrow F_2XPB_3H_7 + (CH_3)_2PBF_3$
or or summarized by the equation

$$
(CH3)2OB3H7 + F2XP + BF3 \longrightarrow F2XPB3H7 + (CH3)2PBF3
$$

or
CO(excess) OCB₃H₇

This simple perturbation has a dramatic influence on the syntnetic utility of the base-displacement process and has interesting implications relative to the mechanistic details of the reaction.

Experimental Section

Equipment.-Standard high-vacuum techniques were used for the manipulation of the volatile compounds. Mass spectra were recorded on a Perkin-Elmer Model 270 mass spectrometer. Infrared spectra were recorded on a Beckman IR 20 spectrometer operating between 4000 and 400 cm⁻¹, with a 70-mm path length gas cell fitted with KBr windows. The nmr spectra were recorded on a Varian HA/HR 100 instrument operating at 32.1 MHz (^{11}B) and 94.1 MHz $(^{19}F).^{10}$ An external standard, (CHa)aB, was used for the IlB nmr spectrum reference, and an internal standard, CFC13, was used for the 18F nmr reference. The CFC l_3 also served as the sample solvent.

Materials.-Tetraborane(10) was prepared by the "hot-cold tube" pyrolysis of diborane(6) as described by Klein, Harrison, and Solomon.¹¹ The $(CH_3)_2OB_3H_7$ samples were prepared and purified as described by Deever and Ritter **.I2** Trifluorophosphine was purchased from Ozark Mahoning Co. and was distilled through a -160° trap before using. The F₂ClP and F₂BrP ligands were prepared and purified by literature procedures.¹³

Reaction of B_4H_{10} with F_2XP . - A 4.2-mmol sample of B_4H_{10} and a 9.0-mmol sample of F_2XP , $X = F$, Cl, or Br, were condensed into a 7.5-ml Pyrex tube, sealed off under vacuum and then held at 0° for 3-5 days. Each tube was opened through a break-seal and the volatile products were vacuum distilled and break-seal and the volatile products were vacuum distilled and
retained as follows: $(F_3P)_2B_2H_4$, -126° ; $(F_3P_1P_2H_4$ and retained as follows: $(F_8P)_2B_2H_4$, -126° ; $(F_2CIP)_2B_2H_4$ and $(F_2BrP)_2B_2H_4$, -96° ; F_3PBH_3 , -160° ; F_2CIPBH_3 and F_2Br_4 $(F_2BrP)_2B_2H_4$, -96° ; F_3PBH_3 , -160° ; F_2CIPBH_3 and F_2BrPBH_3 , -126° . No triborane(7) complexes were *isolated* from the distillation; however, very small amounts were detected by ¹⁹F nmr analysis in the $(F_2XP)_2B_2H_4$ samples. When the same reactions were run in sealed nmr tubes with a 1.5 reactant ratio of B_4H_{10} to PF_2X , small amounts (ca. 10%) of triborane(7) complexes were detected by ¹⁹F nmr but no diborane(4) complexes. Most of the sample consisted of unreacted B_4H_{10} , PF_2X , and a little B_2H_6 .

Reaction of $(CH_3)_2OB_3H_7$ with F_2XP . $-A$ 2.0-mmol sample of $(CH_3)_2OB_3H_7$ was prepared in an nmr tube fitted with a Teflon stopcock. A 2.0-mmol sample of F_2XP , $X = F$, Cl, or Br, was

⁽¹⁾ To whom correspondence should be addressed at the University **of** Utah.

⁽¹⁰⁾ Nmr spectra were recorded by R. T. P., at Varian Associates, Ana lytical Division, Palo Alto, Calif.

⁽¹¹⁾ M. J. Klein, B. C. Harrison, and I. J. Solomon, *J. Amev. Chem. Soc.,* **80,** 4149 (1958).

⁽¹²⁾ W. R. Deever and D. M. Ritter, *Inovg. Chem., 7,* 1036 (1968).

⁽¹³⁾ J. G. Morse, K. Cohn, R. W. Rudolph, and R. W. Parry, Inorg. *SW.,* 10, 147 (1967).

Figure 1.-Schematic representation of the ¹¹B nmr spectrum of the $F_2XPB_3H_7$ complex at -45° .

added and the tube was sealed off under vacuum. Each tube was held at 0° for 30 min; each ¹⁹F nmr spectrum indicated $20-35\%$ yields of triborane(7) complexes based on peak areas. Long reaction times and/or high ligand concentrations produced significant amounts of diborane(4) complexes. Displacement of (CH3)zO was used to estimate the relative base strength of the F_2XP ligands toward B_3H_7 .

Acid-Assisted Base-Displacement Reactions.-- A 3.2-mmol sample of $(CH_3)_2OB_3H_7$ was prepared in a 10-ml reaction tube fitted with a Teflon stopcock. To the $(CH_3)_2OB_3H_7$, equal amounts (3.0 mmol) of F_2XP and BF_3 were added, the stopcock was closed, and the tube was allowed to warm to about *0'* with agitation. The reaction began to occur well below *0'* as evidenced by white cloud formation above the liquid phase. The tube was cooled to -78° after approaching 0° , and the warming-cooling cycle was repeated until no further cloud formation resulted *(ca.* five cycles). Vacuum distillation of the formation resulted (*ca*. five cycles). Vacuum distillation of the volatile products through -78 , -126 , and -196° retained each $F_2XPB_3H_7$ complex at -126° . The material retained at -78° was analyzed by ¹¹B nmr and found to be $(CH_3)_2OBF_3$. The yields of $F_2XPB_3H_7$ were high $(ca. 90\%)$. The complexes were characterized chemically through their reaction with an equal amount of $(CH_3)_2NPF_2$. The resulting $(CH_3)_2NF_2PB_3H_7$ was isolated and identified by its 19 F nmr spectrum.¹⁴ The OCB₃H₇ complex was prepared in a similar fashion except the reactant ratios were $1.0:1.0:2.0$ for $(CH_3)_2OH_3H_7:BF_3:CO$. The yields $(ca. 60\%)$ were also lower than in the $F_2XPB_3H_7$ system. The excess carbon monoxide did not appear to produce any diborane(4)-carbonyl complex. The $OCB₃H₇$ was retained at -126° during distillation.

Properties of $\mathbf{F}_2 \mathbf{X} \mathbf{P} \mathbf{B}_3 \mathbf{H}_7$ and $\mathbf{OCB}_3 \mathbf{H}_7$ Complexes.-The infrared spectra of the $F_2XPB_3H_7$ complexes are similar to those of other B_3H_7 complexes.^{14,15} The absorptions (cm⁻¹) and tentative assignments are as follows: for $F_3PB_3H_7$: 2550 $[\nu_{as}(B-H)]$, 2480 $[\nu_s(B-H)]$, 2110, 1570 [bridge modes], 1160, 1050 $[\delta(BH_2)]$, 440 $[\delta(\text{PF}_2)]$; for $F_2ClPB_3H_7$: 2590, 2500, 2150, 1610, 1120, 1070, 930, 610, 540 [v(P-Cl)], 410. (The symbols used above are ν for stretch and δ for deformation. All frequencies are in reciprocal centimeters and the assignments for \vec{F}_2 ClPB₃H₇ are the same as those for $F_3PB_3H_7$ except as indicated.) The ¹¹B and 19F nmr spectral parameters are summarized in the order $F_2XP, X = F, Cl, and Br, and OCB₃H₇: $\delta(B_2, B_3)$ 98.1, 97.3,$ 97.3, 95.0 ppm; $J(B(2)H, B(3)H) = 113, 113, 113, 140$ Hz; $\delta(B(1))$ 139.1, 131.2, 125.7, 142.5 ppm; $J(B(1)H = B(1)P) =$ 102, 90, 90, 124 Hz; δ (F) 59.7, 46.6, 43.1 ppm; $J(\text{PF}) = 1373$, 1332, 1325 Hz. (The spectra were recorded at -45°) and the chemical shifts are relative to $(CH_3)_3B$ or $CFCl_3$.) The mass spectra were recorded at 60 eV and the principal peaks are listed here *[m/e* (assignment) relative intensity]: 128 (F₃- $PB₃H₇$ ⁺) 1; 128-122 ($F₃PB₃H_z$ ⁺ envelope) 7 for the most intense peak at m/e 126; 88 (F₃P⁺) 65; 76-67 (B₆H_z⁺) 8 at m/e 74; 69 (F₂P⁺) 100; 66-55 (B₅H_a⁺) 25 at m/e 62; 55-44 (B₄H_a⁺) 23 at *m/e* 48; 50 (FP+) 79; 40-33 (BsH,+) 20 at *m/e* 38; 31 (P+) 45; 970 $[\nu_{as}(P-F)]$, 850 $[\nu_s(P-F)]$, 590 $[\nu(P-B)]$, 470 $[\delta(PF_2)]$, 144 (F₂ClPB₃H₇⁺) 1; 144-139 (F₂ClPB₃H_z⁺) 9 at m/e 141; 104 (F_2ClP^+) 57; 76-67 $(B_6H_x^+)$ 10 at m/e 74; 69 (F_2P^+) 100; $66-55$ (B₅H_a⁺) 33 at *m*/e 62 ; 54-44 (B₄H_a⁺) 28 at *m*/e 48; 50 (FP⁺) 81; 40-33 (B_3H_2 ⁺) 16 at m/e 38; 35 (Cl⁺) 42; 31 (P⁺) 51; 188 (F₂BrPB₃H₇⁺) 1; 188-183 (F₂BrPB₃H_z⁺) 8 at m/e 185; 148 (F₂BrP⁺) 52; 79 (Br⁺) 31; 76-67 (B₆H_z⁺) 9 at m/e 74; 69 (F₂P⁺) 100; 66-55 (B₅H₂⁺) 12 at m/e 62; 54-44 (B₄H₂⁺) 11 at m/e 48; 50 (FP⁺) 67; 40-33 (B₃H_z⁺) 6 at m/e 38; 31 (P⁺) 29.

Results and Discussion

The mass spectra, infrared frequencies, and nmr spectra are analogous to the corresponding data for authentic base-triborane(7) complexes. Some details are of interest. The ¹¹B nmr spectra of the $F_2XPB_3H_7$ complexes are similar and one is shown schematically in Figure 1. This spectrum is consistent with a 1104

framework representation¹⁶ as shown here. The lowfield triplet (relative intensity 2) is assigned to the $B(2)-BH₂$ and $B(3)-BH₂$ units while the high-field quartet (relative intensity 1) is assigned to B(1). The quartet structure appears to result from coupling constant equivalence $J_{B(1)H} = J_{B(1)P}$. Similar equivalence has been noted before in selected boron-phosphorous compounds. $5,17-21$ The $11B$ nmr spectra are not temperature dependent in the range -40 to $+30^{\circ}$. The ¹⁹F nmr spectra are similar for each complex and show a widely spaced doublet (J_{PF}) with no currently resolvable fine structure. The ¹¹B nmr spectrum of $OCB₃H₇$ shows a low-field triplet, assigned to $B(2)$ -BH₂ and B(3)-BH₂ units and a high-field triplet assigned to the $B(1)$ -BH₂ unit, in a 2:1 area ratio.

The use of BF_3 to assist in the preparation of B_3H_7 adducts from $(CH_3)_2 \text{OB}_3H_7$ appears to be quite obvious in retrospect, yet the earlier data on the reactions of BF3 with etherate boranes left room for considerable doubt. Deever and Ritter¹² had previously examined the reaction between BF_3 and $(CH_3)_2OB_3H_7$. The products included a complex mixture of boron hydrides including B_4H_{10} , B_5H_9 , B_5H_{11} , and B_6H_{12} -products probably resulting from the combination of two B_3H_7 fragments. Therein lies the key to the acid-assisted based-displacement reaction. The ligands PF_2X and CO have been used to "trap" the activated B_3H_7 fragment before the combination reaction can occur. These results suggest a mechanism summarized by the equations

the equations
 $(CH_3)_2OB_3H_7 + BF_3 \xrightarrow{\text{believed to be rate}} (CH_3)_2OBF_3 + B_3H_7^*$ **fast believed to be rate determining** for **CO** BF_3 determining for PF_2X (CH₃)₂
B₃H₇* + PF₂X \xrightarrow{fast} F₂XPB₃H₇ B_3H_7 ^{*} + CO \longrightarrow OCB₃H₇

(16) **The** 1104 *slyz* **notation is derived by assuming that the ligand L may be counted like a terminal hydrogen atom on boron 1.**

(17) A. B. Burg and H. Heinen, *Inovg. Chem.,* **7,** 1021 (1968).

(18) **J.** G. **Verkade, R.** W. **King, and** *C.* W. **Heitsch,** *ibid* , **8,** 884 (1964).

(19) **L. F. Centofanti,** *G.* **Kodama, and R.** W. **Parry,** *tbid.,* **8, 2072** (1969).

(20) A. D. Norman and R. Schaeffer, *J. Amev. Chem.* **SOC.,** *88,* 1143 (1966).

(21) **A recent observation by Lory and Ritterl4 suggests that second-order factors may be responsible for apparent coupling constant equivalence in the triborane(7) system.**

⁽¹⁴⁾ **E. R. Lory and D.** M. **Ritter,** *Inorg. Chem.,* **10,** 939 (1971); **E.** R. **Lory, Ph.D. Thesis, University of Washington, Seattle, Wash.,** 1969.

⁽¹⁵⁾ **Sr. M. A. Fleming,** Ph.D. **Dissertation, University of Michigan, Ann Arbor, Mich.,** 1963.

Rapid hydrogen tautomerism in B_3H_7 would make all boron atoms equally available for attack; hence the overall reaction with PF_2X ligands would be expected to proceed rapidly with high yields in agreement with the observatiohs.

Conversely, the unassisted base-displacement reactions proceed much more slowly, with reduced yields and with side reactions. This behavior may be summarized by the equations

$$
(CH3)2OB3H7 \longrightarrow (CH3)2O + B3H7*
$$

B₃H₇^{*} + PF₂X \xrightarrow{fast} F₂XPB₃H₇

The first step is not shifted to the right as in the acidassisted reaction since the ether is not complexed; therefore, the overall reaction is slower. In addition, the uncomplexed ether is available for subsequent attack on the borane framework of $F_2XPB_3H_7$. This attack may be responsible for the degradation to diborane (4) as outlined by Lory¹⁴ and as indicated schematically here. In the case where the attacking

ligand is carbon monoxide, the relatively low yields seem to indicate that the $OCB₃H₇$ complex is somewhat less stable or that the CO requires activation before addition to the B_3H_7 fragment.

The proposed mechanistic details are also consistent with the results of the direct reactions between B_4H_{10} and a base. As noted above, excess halodifluorophosphines react with B_4H_{10} in every case to give diborane(4) complexes, however, when B_4H_{10} is in excess, only small amounts of triborane(7) complexes and no biborane(4) complexes are obtained. Apparently the excess base again promotes framework degradation. Lory and Ritter¹⁴ have suggested that B_4H_{10} reacts with $(CH_3)_3N$ to give the stable $(CH_3)_3NB_3H_7$ while PF_3 proceeds on to $(F_3P)_2B_2H_4$ because the $(CH_3)_3N$ stabilizes the B_3H_7 fragment by inductive electron donation toward $B(2)$ and $B(3)$ (the uncomplexed units of the fragment) thereby making them less electrophilic or less open to base attack. The weaker base, PF_3 , on the other hand leaves $B(2)$ and $B(3)$ more electrophilic and therefore open to further attack and degradation.

An alternative argument suggests that the basetriborane(7) adduct dissociates and it is the free B_3H_7 fragment which is attacked by F_2XP to produce the B_2H_4 fragment. This argument would also favor stabilization of the B_3H_7 fragment by stronger bases. The question cannot be resolved without more definitive rate data. It is significant that $F_3PB_3H_7$ is rendered less stable by excess F_3P at 0° , suggesting that attack is on the $F_3PB_3H_7$ molecule, since dissociation to give B_3H_7 would be retarded by excess F_3P . This fact would be consistent with the suggestions of Ritter and coworkers.

Relative Stability.—No quantitative measurements of relative stabilities of base-triborane(7) complexes have been accomplished to date; however, a few qualitative estimates are available in the literature. As mentioned above $(CH_3)_3N$ replaces BH₃ in B₄H₁₀;⁷ hence $(CH_3)_3N$ is a stronger base than BH₃ toward B_3H_7 as a refererice acid. The same appears to be true for the bases $(\text{CH}_3)_2\text{NPF}_2{}^{14,15}$ and $\text{F}_2\text{HP}.{}^{14}$

Additional qualitative stability information was sought within the $F_2XPB_3H_7$ complexes. The following reaction was used to estimate the relative base strengths of the F_2XP ligands toward B_3H_7

$$
F_2XP + (CH_3)_2OB_3H_7 \xrightarrow{\hspace{0.5cm}0^{\circ}, \hspace{0.5cm}2 \hspace{0.5cm}hr} Pr_2XPB_3H_7 + (CH_3)_2O
$$

The reactions were carried out in a $1:1$ mole ratio of reactants with $X = (CH₃)₂N$, F, Cl, and Br. The resulting mixtures, after *2* hr reaction time, were analyzed using $19F$ nmr peak areas. The calculated yields of $F_2 \times \overline{P}B_3H_7$ follow: $X = N(CH_3)_2$, 97%; F, 35% ; Cl, 30% ; Br, 20% . True equilibrium is not established in these reactions as evidenced by the small yields of diborane(4) complexes detected by the nmr signal. Nonetheless the reaction does provide a crude test for relative base strength. The yields imply a decreasing trend in base strength for F_2XP toward B_3H_7 in the order $X = N(CH_3)_2 \gg F > Cl > Br$. This order is identical with that observed in gas-phase dissociation studies⁵ of borane⁽³⁾ complexes with the same bases.

Other sometimes useful indicators of relative stability in acid-base complexes such as B-H stretching frequencies, $J_{\rm PB}$ or $J_{\rm BH}$, and chemical shifts do not appear to be of much help in the triborane (7) system.⁵ One trend in chemical shifts may be noteworthy however. The ¹¹B chemical shifts for the base-bonded boron atom (B1) follow the order: F2HP, **152;14** F3P, 139.1; $(CH_3)_2NPF_2$, 137.2; F₂C1P, 131.2; F₂BrP, 125.7. The downfield shift toward $(CH₃)₃B$ suggests a decreasing electron density at B_1 and hence a weaker P-B coordinate bond. Only $(CH_3)_2NPF_2B_3H_7$ appears to be out of line with the chemical results.

Acknowledgments.—We gratefully acknowledge the support of the National Science Foundation through Grant No, GP-14873 and the National Aeronautics and Space Administration who supported a traineeship at the University of Michigan for R. T. P., 1966-1969.