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Treatment of [Al(CH3)3]2 with [ (CHB)ZNBHZ]~ affords [(CH3)tNA1(CH3)2]2, [(CH3)2A1H]3, B(CH3)3, and Ala(CHa)s[N- 
(CH3)2]2H2. - y ,  '/z + z ) ]  with a = 
14.177 (0.009), b = 10.371 (0.007), c = 7.693 (0.005) A, and cos p = -0.0129 (0.0004)"; pcnicd = 0.934 g/cm3 for mol wt 
318.37 and 2 = 2. h possible mechanism of 
formation for Ala(CHa)s[iX(CH,)2]pHp is discussed as well as infrared assignments associated with this new species. 

This last species crystallizes in the space*group P_' l /n  [ i ( r ,  y, z ) ,  = k ( I / 2  + r ,  

The structure involves an eight-membered ring containing 4 Al, 2 K ,  and 2 H. 

Introduction 
In  order to understand the reaction between [Al- 

(CH3)3]2 and BIAla [ N ( C H B ) ~ ] ~ H ~ ,  the reactions of [Al- 
(CH3)3]2 with [(CH~)ZN]ZBH and [(CH3)2NBH2]2 have 
been investigated. The [(CH3)2N]2BH reaction has 
been reported;2 the reaction with [(CH3)2NBH2]2 is 
the subject of this investigation. 

Results and Discussion 
Treatment of dimethylaminoborane, [ (CHI)~NBHZ]Z, 

with excess aluminum trimethyl, [Al(CH3)3]2, a t  80" 
affords dimethylaminodimethylaluminum, [ (CH3)2NA1- 
(CH3)2]2, dimethylalane, [ (CH3)2AlH]3, boron trimethyl, 
B (CHI) 3,  and cyclo- 1,5-bis-p-dimethylamino-3,7-di- 
~-hydrido-2,4,6,8-tetrakis(dimethylaluminum), A14- 
(CH& [N (CH& I&. Because [(CH&NAl(CH& I 2  

and [(CH3)2AlH]3 have similar volatilities, i t  was not 
possible to effect complete species separation ; however 
each of the cited compounds was positively identified 
as a reaction product. It was not possible to obtain 
an estimate of the relative amounts of the various prod- 
ucts by 'H nmr because of rapid exchange in solution. 
Comparative infrared spectroscopy indicated all the 
cited species are major products. Treatment of 
[(CH3)2NBH2]2 with [Al(CH3)3]2 a t  80" is believed to 
be best described by 

6[Al(CHahIz + ~ [ ( C H ~ ) & B H ~ I Z  + 
A ~ ~ ( C H ~ ) ~ [ N ( C H ~ ) Z I Z H ~  + [ ( C H ~ ) Z N A ~ ( C H ~ ) Z I Z  + 

2[(CHa)nAlH13 + 4B(CH3)3 (1) 

The analytical characterization of Alr(CH3)s [N- 
( C H ~ ) Z ] ~ H Z  (I) is summarized in Table I and the molecu- 

TABLE I 
ANALYTICAL DATA FOR A ~ ~ ( C K ~ ) ~ [ T \ T ( C H ~ ) Z I Z H ~  

% CHa % H  
--% AI-- % N(CHa)* (hydrolyzable) (hydrolyzable) 

Calcd Found Calcd Found Calcd Found Calcd Found 

34.0 34 .7  2 7 . 7  27.1 37.7 37.6 0 6 3  0 .61  

lar formulation is established by a single-crystal X-ray 
structure study. An X-ray diffraction study was 
necessary to  establish the molecular formulation of I 
because 'H nmr and mass spectral data indicated rapid 
decomposition in solution and in the gas phase. The 
specific modes of decomposition for I in solution and in 
the gas phase will be reported shortly. 

Structure of I.-The molecular geometry of Ala- 
(CH3)8 [N(CH3)2]2Hz consists of an eight-membered 
ring with the ring structure consisting of the alternating 

(1) Work completed in partial fulfillment of the  requirements for the  
P h  D degree, T h e  Ohio S ta te  University, Columbus, Ohio 

(2) R. E. Hall and E. P. Schram, I m v g .  Chem , 10, 192 (1971) 

atoms CAl-H-Al-N-Al-H-A1-N1 . Tu70 terminal CHB 
moieties are associated with each A1 and N atom. The 
4 A1 and 2 H atoms all lie in the same plane within 
f 0.1 A while one N moiety is above this plane and the 
other below. The refined crystallographic data (X < 
4.6y0) associated with I will be reported ~ h o r t l y . ~  
Possible Mechanism of Formation of 1.-The insta- 

bility of I in solution is thought to be a consequence of 
rapid exchange affording the more stable product 
species as indicated by 

Ala(CHs)s[N(CH3)2! 2H2 + 
[ ( C H ~ ) Z ~ ~ ~ ~ ( C H ~ ) Z I Z  + "3 [ ( C H ~ ) L A ~ H I  3 (2) 

The reaction represented by eq 2 takes place spontane- 
ously in solution but is an idealized representation of 
this chemical system because small quantities of ex- 
change products have been inferred by IH nmr studies. 
The fact that  I is an unstable species in solution, eq 2 ,  
and represents the first example of a hydride-bridged 
aluminum heterocycle which is completely characterized 
prompts us to speculate on the mechanism of its for- 
mation. The suggested intermediates have been ex- 
tremely useful in our approach to developing the chem- 
istry AL(CH3)8 [N(CH3)21&. 

Compound I may be thought of as a dimer of (CH3)Z- 
AlH. (CH3)2NAl(CH3)2 with single or mixed bridged 
ligands-CHB, N(CH3)2, and/or H .  Because the final 
product, I, is formally a dimer of (CH3)zAlH. (CH3)2- 
NAl(CH3)2, the structure of this proposed intermediate 
is suggested to possess asymmetry and hence reactivity 
as represented by 

A~,(CHJ)~[N(CH,)~I~HL (3) 
Dimerization of this intermediate adduct to afford I, 
eq 3, is suggested to involve intermolecular hydride 
attack on the methyl bridge. There is precedence for 
such a mixed bridged intermediate species, e.g., the 
structure of 

(C&)2 

has been established by an X-ray s t ~ d y . ~  
(3) P. W. R.  Corfield, unpublished work. 
(4) V. R.  Magnuson and G.  D. Stucky, J .  Amer .  Chem. Soc., 91, 2544 

(1969). 



Inorganic 'Chemistry, VoZ. 11, No. 3, 1972 551 

Because the components of I are the thermodynami- 
cally stable species, eq 2, the mechanism for forma- 
tion of (CH3)zAlH. (CH&NA)(CH,)% most likely in- 
volves reaction of a t  least one of its monomeric com- 
ponent species with the other molecular component. 
Furthermore, because [ (CH3)2A1H]3 may be cleaved 
by N ( CH3)3 to afford (CH3) zA1H + N (CH3) 3 while [ (CH3)2- 
A1N(CH3)2]2 does not react with N(CH&, the reac- 
tion step prior to formation of (CH&AlH+ (CH3)2- 
NA1(CH3)2 is suggested to  involve nucleophilic attack 
by in situ monomeric (CH&NAl(CH& on [(CH&. 
AlH13, eq 4. It has been demonstrated that [(CH3)2- 

'/a[(CH3)zAIH13 + (CHa)zNAl(CHa)z + 
(CHI )2AlH(CHa)nNAl(CHa )z (4) 

NA1(CH3)2]2 does not react with [(CHa)zAlH]3 up to 
84'; therefore the cleaving of a double-N bridge by 
(CH&AlH is unlikely. Both reactants, Al(CH3)a and 
(CH&NBH2, are dimers a t  room temperature with 
the result that  an elevated reaction temperature, 80°, 
is necessary to initiate reaction. The first reaction 
step is considered to be cleavage of the [Al(CH3)3]2 
methyl bridge by three-coordinate N, eq 5 .  The ele- 

(CHJ)&N(CH~IBHL (5)  

vated reaction temperature is considered necessary to 
afford monomeric N (CH3)zBHz rather than monomeric 
Al(CH& because [A1(CH&l2 readily reacts with mono- 
meric (CHa)zNB(CH3)2 to afford [ ( C H ~ ) Z A ~ N ( C H ~ ) Z ] ~  
and B(CH3)a. Therefore [Al(CH&]% is known to be 
a reactive species toward noncoordinated N(CH& 
moieties. The intermediate represented as product, 
eq 5 ,  could rearrange by two paths 

(CH,)z(H)AlN(CH,),B(HXCH,) ( 6 )  

(CHJzAINCHJ2BHz CH, ( 7 )  

Both paths 6 and 7 are likely with subsequent elimina- 
tion of the boron-containing fragment, eq 8 and 9. The 

(CH3)z(H)AlN(CHa)zB(H)(CHa) --+ 
'/a[(CHa)aAIHIa + (CHa)zNB(H)CHs ( 8 )  

(CH8)sAlN ( CHa)%BHs( CHa) + 
(CHa)zAlN(CHa)2 + '/z[BHz(CHa)lz (9) 

boron-containing product species (eq 8, 9) are known to 
react with [Al(CH3)8]2; hence the excess [Al(CH3)3]2, 
present in the reaction system, would be expected to 
afford B (CH&, [(CH&NAl(CH&12, and [ (CH&AlH l a .  
Therefore the by-products associated with formation of 
I are readily explained. 

Infrared Assignments.-A considerable effort has 
been made toward ir assignments for Alc(CHs)s[N- 
(CH3)2]2H2, by correlative methods, in the hope that 
group frequency tabulations will aid others in the char- 

- -  
f 

acterization of subsequent organoaluminum species. 
In  the past, only a few such studies have been carried 
out on well-characterized (structurally) organoalumi- 
num compounds. 

The infrared spectrum of I is shown in Figure 1 and 
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TABLE I1 
IXFRARED FREQUESCIES ( c M - ~ )  A N D  TESTATIVB 

ASSIGNMENTS FOR A14(CH3)s[~(CH3)2]~H~n 
Tentative Tentative 

Freq 1 5  cm-1 assignment Freq i 5  cm--' assignment 

2970 s 876 vs 6(.4l-H ) 
2923 vs 
2882 vs v(C-€I) 775 VS, b v,,(AlCz) 
2838 m 
2799 in 670 vs, b ~ ( C H B ( A I ) )  
1860 VS, b V(A1-H) 618 vs 8jCH3(~i))  
1475 s 581 vs vs (AlC2) 
1456 vs a(CH3) 
1404 w 553 I11 V s s (  XAl2) 
1212 sh 539 ni l%( S A L )  
1194 vs p(CH3) 
1165 474 in ~ ( C H ~ C A I ) )  
1098 vs  vae (NC2) 321 m ? 
1018 vs v,INC, bridge) 288 s ? 

a Key: vs, very strong; s, strong; m,  medium; w, weak; 
vw, very weak; sh, shoulder; h ,  broad. 

summarized in Table 11. The indicated assignments 
are suggested as a consequence of comparing the spec- 
trum of I with those of [(CH3)2AlN(CH3)2]2, [(CH3)3- 
 all^, [(CH3)2AlH]3, and { [(CH3)2N]sA1)2.5 In addi- 
tion several reassignments of group vibrations are sug- 
gested which appear to  be inconsistent as indicated in 
the following discussion. 

In general, the infrared vibrations of aminomethyl- 
alanes may be divided into the following regions: 
v(CH) (3000-2800 cm-I), v(A1H) (1600-2200 cm-l), 
S(CH3) (1400-1500 cm-l), p(CH3) (1150-1250 cm-l), 
v(NC2) (1100-900 cm-l), terminal and bridging N,  
6(AlH) (940-840 cm-I?), methyl deformation asso- 
ciated with (1) terminal and bridge CH3-A1 and (2) 
bridging and terminal dimethylamino moieties (nitro- 
gen bridged) (ca. 800-575 cm-l), v(A1N) (550-500 
cm-l), bridge methyl deformation (ca. 480 cm-l). 

Concerning the infrared spectrum of I ,  the CH assign- 
ment (Table 11) above 1100 cm-' requires no discus- 
sion. The broad band centered a t  1860 crn-I is un- 
equivocally assigned to v(A1H) and the extreme breadth 
of the absorption is consistent with bridging rather 
than terminal A1H. The nitrogen-bridged NC2 vibra- 
tions vas(NCz) (1098 cm-') and vs(NC2) (1018 cm-l) are 
assigned with respect to [ (CH3)2AlN(CH3)& (1049 
and 918 cm-l), respectively. Concerning the bridging 
6(AlH), Hoffman has assigned the bands observed in 
[(CH3)2AlH]3 a t  760 and 940 cm-' to different defor- 
mation modes.6 The assignment a t  940 cm-l appears 
questionable because i t  is based on a comparison of 
noncoincident polarizable Raman absorptions with 
weak infrared bands. The assignment of 760 cm-' 
may be correct; however, this region of the ir spec- 
trum is extremely rich due to CH3A1 deformation. 
Hoffman was not able to  characterize the strong absorp- 
tion he found centered a t  850 cm-l in [(CH3)2AlH]g. 
When one compares the infrared spectra of the five 
previously cited compounds, only [ (CH3)2AlH]3 and 
I have strong sharp bands from 875 to 850 cm-'-for 
this reason the absorption a t  876 cm-I is tentatively 
assigned to S(A1H). The specific absorptions, Table 
11, in the region 800-575 cm-l are to be considered 
tentative because specific assignments are most diffi- 
cult ; however, these assignments are consistent with 
the cited literature assignments. Assignments are 

( 5 )  12. E. Hall a n d  E. P. Schram, Inovg. Chem., 8, 270 (1969). 
(6) G. E. Hoffman, Z. Elekivochem., 64, 616 (1960). 

not made for the bands a t  618 and 581 cm-' because the 
only consistent assignment involves bridging 6(CH3,,,)) 
and there are no bridging methyl groups associated 
with I .  Assignments for the low-energy absorptions 
321 and 288 cm-' are not made because of lack of com- 
parative data. 

Two regions remain to  be assigned, 474 and ca. 540- 
550 cni-'. Hoffman6 has assigned the band observed 
a t  480 cm-' in [(CH3)3A1]2 to  a bridging G(CH3Al) 
mode--of the compounds under discussion both 
[ (CH3)zAlN (CH3)2]2 and I also exhibit such absorptions 
a t  476 and 474 crn-l, respectively. For this reason the 
476-cm-I band is assigned to terminal G(CHaA1). The 
absorptions found a t  553 and 539 cm-1 are assigned to  
vas(NA12) and vS(NAl2), respectively, by comparison 
with the assignment for [ ( C H ~ ) Z A ~ N ( C H ~ ) Z ] ~  (v(NA12) 
509 cm-l), { [(CH3)2N]3A1j~ (v,,(NA12) 546 cm-' and 
vs(NA12) 524 cm-l). 

The chemistry of I is currently under development. 
I ts  reaction (1) with O(CH3)2 affords CH4 (as does 
[(CH3)2AlH]3), (2) with N(CH3)3 affords either (CH3)z- 
AlHN(CH3)3 and [(C3H3)2NA1(CH3)2]2 or (CH3)ZAlHN- 
(CH8)3 and A13(CH3)6 [N(CHa)z]zH, depending on spe- 
cific reaction conditions, (3) with C2H4 forms both H- 
insertion and 7r complexes, and (4) with affords a 
borohydride derivative. The details of these chemical 
transformations will be reported shortly. 

Experimental Section 
Apparatus and Procedures.-Equipment, techniques, and 

analytical methods employed have been previously de~c r ibed .~  
Infrared data were recorded from Nujol and Fluorolube mulls 
prepared in a drybox employing Na-E: alloy as the drying-deoxy- 
genating agent. Both mulling agents were dried with Linde 
5A Molecular Sieves. 

Reagents.-Dimethylaminoborane, [(CH3)gNBH2]2, prepared 
by the literature method, had a vapor tension of 9.5 Torr a t  23.0" 
after sublimation; lit. value 9.1 Torr at 23.0°.7 Trimethyl- 
aluminum, [Al(CW3)3]2, obtained from the Ethyl Carp., was 
fractionated through a trap a t  -22.9' into a -45.2' trap. The 
material retained a t  -45.2' had a vapor tension of 8.9 Torr a t  
20'; lit. value 8.8 Torr.8 

Preparation of AI4 ( C H S ) ~  [N(CH~)P] 2H2.-Trimethylaluminum, 
Al(CH3)a (20 mmol), was condensed onto dimethylaminoborane, 
ca. 5 mmol of H2BrU'(CH3)2, and the mixture was stirred for 24 
hr at 80". The materials which were volatile a t  -78",  were 
perodically removed. Boron trimethyl, ca. 4 mmol, was removed 
from the reaction mixture maintained at -78" and characterized 
by its vapor tension a t  -78' (29 Torrs) and its infrared spec- 
trum. The materials volatile at 25' consisted of [(CHa)zAlN- 
( C H S ) ~ ] ~ ,  [(CH3)2.41HIz, and excess [(CHl)aAl]g. The infrared 
spectrum of the [(CH3)2AlN(CH3)2]2 was identical with that of an 
authentic sample, and the 'H nrnr spectrum consists of two sin- 
glets a t  -2.06 and $0.56 ppm from TMS in a 1 : l  area ratio; 
these same values were obtained for an authentic sample. The 
infrared spectrum6 and vapor tension of the [(CH3)2AlH]3 agreed 
with those of a known sample (1.8 Torr a t  24.7'); the excess 
[.41(CH3)3] 2 was identified by its infrared spectrum.6 

Purification and Characterization of A ~ ~ ( C H S ) ~ [ N ( C H ~ ) Z ] ~ H Z . -  
This white solid was sublimed at 50-60' to a cold-water con- 
denser with contindal pumping to remove traces of [(CH3)rAlN- 
(CH3)2] 2 and [(CH3)2A1Hl3. The sublimed crystals melt sharply, 
97-98", but decompose with repeated meltings as indicated by 
subsequently lower melting points and longer melting point 
ranges. The original white solid is soluble in pentane and ben- 
zene but with rapid decomposition as evidenced by the formation 
of new 'H nrnr absorptions within 15 min. 

A 41 .6-mg sample of this white solid reacts very exothermically 
with H2O to afford 0.251 mmol of hydrogen and. 1.036 mmol of 
methane. This noncondensable gaseous mixture was char- 

( 7 )  A. B. Burg and C. L. Randolph, J .  Amev. Chem. Soc., 71, 3451 (1949). 
(8) R. J. Sanderson, '"Vacuum Manipulation of Volatile Compounds," 

Wiley, New York, N. Y.,  1948, p 123 
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acterized by combustion over CuO to water and water plus COZ 
a t  300 and 800", respectively. 

Reaction of [ (CH3)pAlHI with [ (CHI)ZNA~(CH~)Z] .--Treat- 
ment of [(CH3)1AlNR2]2, 1.46 mmol, with [(CH3)zAlH]3, 1.95 
mmol, was effected in a sealed ampoule a t  various temperatures 
from 25 to 84". Subsequent separations of the reaction mix- 
tures via fractional condensation afforded only starting materials 
as characterized by those infrared spectra. 

Preliminary X-Ray Single Crystal Study .-A crystal of sub- 
limed Ala(CH3)8[N(CH3)2]2H~ was mounted in a 0.5-mni X-ray 
capillary tube and sealed under a nitrogen atmosphere. The 
space group P2,/n was determined by the systematic absences 
k = 212 + 1 for OkO and h + 1 = 2n + 1 for ,401 observed in two 
zero-level and two first-level precession photographs. The 

crystal was then mounted on a Picker four-circle X-ray diffrac- 
tion apparatus and 18 reflections were located. A least-squares 
refinement of these 18 data points gave cell dimensions a = 
14.177 (0.009), b = 10.371 (0.007), c = 7.693 (0.005) A,  and cos 
,L3 = -0.0129 (0.0004)". The density calculated from these 
dimensions, a molecular weight of 318.37, and 2 = 2 is 0.934 
g/cm3. The experimental density could not be determined due 
to the reactive nature of this substance. Collection of data and 
solution of the structure will be published a t  a later date. 
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The microwave spectra of four isotopic species of (CH3)3P.BH3 and nine isotopic species of CHaPHz'BH3 have been assigned. 
For (CH3)3P+BH3, the followingostructural parameters were determined: r (PB) = 1.901 f 0.007 A; r (PC) = 1.819 f 
0,010 b; r(CH) = 1.08 i 0.02 A; r(BH) = 1.212 i 0.010 A ;  LHBH 
= 113.5 f 0.5'. In deriving the structure, the methyl groups were assumed to be symmetric with a hydrogen-hydrogen 
distance of 1.760 A. For CH3PH2.BH3, the following structural parameters were determined: r (PH) = 1.404 f 0.006 A ;  
r(PB) = 1.906,4& 0.006 A; r(PC) = 1.809 i: 0.006 b; r(BHs) = 1.234 i 0.023 b; Y(BH,) = 1.229 f 0.022 A; r(CH,) = 
1.087 zt 0.004 A ;  r(CH,) = 1.098 i 0.016 b; LH,BH, = 116.1 f 0.8'; LH,BH, = 112.3 i 1.2"; LH,CH, = 110.4 f 
0.6"; LH,CH, = 108.1 i 0.4"; LHPH = 99.9 i 0.4'; LHPC = 103.2 i 0.6'; LCPB = 115.7 i 0.4"; LHPB = 
116.3 f 0.6'; LPCH, = 108.3 f 0.4'; LPCH, = 111.3 f 1.0". 

LCPC = 105.0 f 0.4"; LHCH = 109.3 f 1.0'; 

LPBH, = 102.9 i 0.6"; LPBH, = 104.2 i 1.0'; 
The BH3 and CH3 groups were staggered with respect to the PH bonds. 
and 4.66 rt 0.05 D for CH3PH2.BH3 were obtained from Stark splittings. 

Dipole moments of 4.99 f 0.2 D for ( C H ~ ) ~ P . B H I  

Introduction 
Trimethylphosphine-borane and methylphosphine- 

borane are addition compounds formed by the re- 
action of BzHe with (CH&P and CH3PH2, respectively. 
Burg and Wagner first characterized the compounds. 
They discovered that (CH3)3P BH3 is a crystalline solid 
which melts a t  103', while CHzPH2.BH3 is a liquid a t  
room temperature. The adducts are quite stable; 
(CH&P.BHs can be heated to about 200" before de- 
composing slightly, while CH3PH2 * BH3 produces Hz 
and polymeric material above 80". There was no 
evidence for dissociation of either adduct a t  room tem- 
perature. 

Several structural studies have been completed for 
various borane  adduct^,^-^ but no structural data exist 
for the simple methylphosphine-boranes. Conse- 
quently, a study of (CH3)3P.BH3 and CH3PHz.BH3 
was undertaken in order to relate their structures and 
stabilities to other phosphorus-boron compounds. 
Since these adducts are stable toward dissociation, i t  
was of particular interest to compare their P-B bond 
distances to that in F3P. BH3 which is extensively dis- 
sociated a t  room temperature. 

A detailed structural determination of CH3PH2. 

(1) A. B. Burg and R. I. Wagner, J .  Amev. Chem. Soc., 75, 3872 (1953). 
(2) R. L. Kuczkowski and D. R. Lide, Jr. ,  J .  Chem. Phys . ,  46,  357 (1967). 
(3) C. E. Nordman, Acta Cuyslallogr., 13, 635 (1960). 
(4) J. P. Pasinski and R. L. Kuczkowski, J .  Chem. Phys . ,  84 ,  1903 (1971). 

BH3 was also prompted by the recent study of HFzP. 
BH3 which found a pronounced tilt of the borane group 
away from the fluorine Since both adducts 
contain an asymmetrically substituted phosphorus 
atom, i t  was hoped that the structural results for CH3- 
PH2.BH3 would aid in identifying the origin of the tilt 
found in HFzP.BH3. 

Experimental Section 
Apparatus.-The spectra were measured with a Stark-modula- 

tion microwave spectrometer which employed 80-kHz square- 
wave modulation . K  The transition frequencies were measured 
using both oscilloscope display and pen recordings. The record- 
ings were obtained by using a gear assembly to sweep the klystron 
slowly through a narrow frequency range. The frequencies were 
measured directly from the traces which were marked a t  fre- 
quency intervals of 1.0 MHz. All measurements were made at 
about 0". The transitions for (CH3)3P.BH3 and its isotopic 
species were reproducible to  k 0 . 2  MHz except for the (CH3)3- 
BH2D species where the uncertainties were 1 0 . 3  MHz. The 
transitions for the CH$PH2.BH3 species were measured with a 
precision of about f 0 . 1  MHz. 

Materials.-The (CH3)3P.BHs was prepared by the reaction of 
(CH3)sP with B2He.l The spectra of both (CH3)3P<"BH3 and 
(CH3)3P.l0BHa were obtained from this sample. The (CD3)- 
(CH3)zP.BHz was prepared by allowing ( C D ~ ) ( C H ~ ) Z P  to react 
with B2H6. The ( C D ~ ) ( C H ~ ) Z P  was prepared by treating 
(CH3)rPH with 99.5% C D S I . ~  The (CH3)3P.BH~D was pre- 
pared by allowing (CH3)3P to react with a gaseous mixture con- 
sisting of two parts B2H6 and one part B2De. This diborane mix- 

(5) R.  L. Kuczkowski, J .  Arne!,. Chem. Soc., 90, 1705 (1968) 
(6) W. L. Jolly, Inorg. S y n . ,  11, 124 (1968). 


