SELENIUM PENTAFLUORIDE CHLORIDE

these halosulfinate ions would provide a somewhat better basis for discussion, the available vibrational and electronic spectral data do indicate the trend in the S-X bond order to be S-F > S-Cl < S-Br < S-I. For a given cation, the difficulty of removal of SO₂ from the solid solvates also parallels this trend. Since the ionogenic character of halogen-containing solutes in liquid SO₂ is, undoubtedly, due to halosulfinate formation, this trend in stability suggests that iodides and bromides should be more ionized than chlorides. In support of this proposition, Lichtin⁶² has indicated that triphenyl-(62) N. N. Lichtin in "Carbonium Ions," Vol. I. G. A. Olah and P. von R.

(62) N. N. Lichtin in "Carbonium Ions," Vol. 1, G. A. Olah and P. von R Schleyer, Ed., Wiley-Interscience, New York, N. Y., 1968, p 135. bromomethane, unlike the corresponding chloride, is almost completely ionized in liquid SO_2 . Studies investigating the validity of these suggestions with a variety of halogen-containing molecules are now under way.

Acknowledgments.—Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research. The author also wishes to thank Professor G. E. Leroi of Michigan State University for the use of the laser Raman spectrometer.

Contribution from Rocketdyne, a Division of North American Rockwell, Canoga Park, California 91304

Selenium Pentafluoride Chloride, SeF₅Cl. Vibrational Spectrum, Force Constants, and Thermodynamic Properties

BY K. O. CHRISTE,* C. J. SCHACK, AND E. C. CURTIS

Received May 26, 1971

The infrared spectrum of gaseous and the Raman spectrum of liquid SeF₅Cl are reported. The observed spectrum is consistent with symmetry C_{4v} . The structure of SeF₅Cl can be derived from an octahedron with one chlorine and five fluorine atoms occupying the six corners. A modified valence force field and thermodynamic properties in the range 0-2000°K were computed for SeF₅Cl.

Introduction

The existence of the novel selenium fluoride chloride, SeF₅Cl, has recently been discovered.¹ In this paper, we wish to report its vibrational spectrum, force constants, and thermodynamic properties.

Experimental Section

The preparation, purification, physical properties, and handling of SeF₅Cl are described elsewhere.¹ The infrared spectra were recorded on a Perkin-Elmer Model 457 spectrophotometer in the range of 4000-250 cm⁻¹. The instrument was calibrated by comparison with standard calibration points.² Stainless steel cells of 5- or 10-cm path length fitted with AgCl or AgBr windows were used as sample containers. The Raman spectrum of liquid SeF₅Cl was recorded using a Coherent Radiation Laboratories Model 52 Ar laser as a source of 1.3 W of exciting light at 5145 Å. The scattered light was analyzed with a Spex Model 1400 double monochromator, a photomultiplier cooled to ~-25°; and a dc ammeter. Polarization rotator from Spectra-Physics. Clear Kel-F tubes (~2-mm i.d.) were used as sample containers in the transverse viewing-transverse excitation technique.

Results and Discussion

Vibrational Spectrum.—Figures 1 and 2 show the infrared spectrum of gaseous $SeF_{\delta}Cl$ and the Raman spectrum of liquid $SeF_{\delta}Cl$, respectively. The observed frequencies are listed in Table I.

Since SeF_5Cl can be considered as a monosubstituted derivative of octahedral SeF_6 , it should belong to point group C_{4v} . The 11 normal modes of SeF_6Cl of symmetry C_{4v} can be classified as $4 a_1 + 2 b_1 + b_2 + 4 e$.

Of these, all 11 modes will be Raman active, whereas only the a_1 and e modes will be infrared active. Of the Raman lines, the four a_1 modes should be polarized, the rest being depolarized. The assignment of the observed bands to individual modes (Table I) is based on the following arguments. There are four clearly polarized Raman lines at 721, 656, 443, and 385 cm^{-1} . As predicted by theory, these have counterparts in the infrared spectrum. Hence, these four bands must belong to species a₁. The two higher frequency lines are within the range expected for stretching modes of mainly covalent Se-F bonds. They are assigned, respectively, to the SeF and the symmetric SeF₄ stretching vibrations on the basis of their relative Raman intensities.³ Similarly, the SeCl stretching mode should be of higher Raman intensity than the SeF_4 umbrella deformation.³ Therefore, the 443-cm⁻¹ band is assigned to the SeF₄ deformation. This assignment is further supported by the fact that in the infrared spectra of both SeF4(OF)2 and SeF5OF4 very strong infrared bands were observed at about 430 cm^{-1} .

Of the remaining six depolarized Raman bands, the 745-, 424-, and 336-cm⁻¹ lines have counterparts in the infrared region and, consequently, belong to species e. The very intense infrared band at 745 cm⁻¹ obviously represents the antisymmetric SeF₄ stretching vibration. For SeF₄(OF)₂ and SeF₆OF, this mode was observed⁴ at 743 and 750 cm⁻¹, respectively. By analogy with the known spectrum^{3.5} of the SF₆C1 molecule, one might

⁽¹⁾ C. J. Schack, R. D. Wilson, and J. F. Hon, Inorg. Chem., 11, 208 (1972).

⁽²⁾ E. K. Plyler, A. Danti, L. R. Blaine, and E. D. Tidwell, J. Res. Nat. Bur. Stand., 64, 841 (1960).

⁽³⁾ J. E. Griffiths, Spectrochim. Acta, Part A, 28, 2145 (1967).

⁽⁴⁾ J. E. Smith and G. H. Cady, Inorg. Chem., 9, 1293 (1970):

⁽⁵⁾ L. H. Cross, H. L. Roberts, P. Goggin, and L. A. Woodward, Trans. Faraday Soc., 56, 945 (1960).

	Table I		
VIBRATIONAL SPECTRUM OF SeF ₅ Cl			
Obsd freq, cm ⁻¹ Assignment for point			
Infrared, gas	Raman, liquid	group C_{4v}	
1449 vw		$2 \nu_1 = 1442 (A_1)$	
1380 w		$\nu_5 + \nu_8 = 1381 (E)$	
865 vw		$\nu_3 + \nu_9 = 861 (E)$	
821 w		$\nu_3 + \nu_4 = 824 (A_1)$	
745 vvs	745 (0.3) dp	$\nu_8(e)$	
729 ms, sh	721 (1.8) p	$\nu_1(\mathbf{a}_1)$	
654 w	656 (10) p	$\nu_2(\mathbf{a}_1)$	
• • •	636 (0.6) dp	$\nu_5(\mathbf{b}_1)$	
587 vw		$\nu_7 + \nu_{11} = 593 (E)$	
529 w			
468 w, sh			
440 vs	443 (2.2) p	$\nu_{3}(\mathbf{a}_{1})$	
421 s	424 (0.4) dp	$\nu_{\theta}(\mathbf{e})$	
384 mw	385 (8.5) p	$\nu_4(a_1) \ Cl^{35}$	
	380 dp	$\nu_7(b_2) + \nu_4(a_1) Cl^{37}$	
334 m	336 (1.2) dp	$\nu_{10}(e)$	
	$213~(1.4)~{ m dp}$	$v_{11}(e)$	

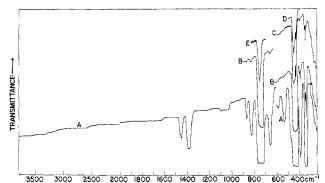


Figure 1.—Infrared spectrum of gaseous SeF₅Cl at 434 (A), 40 (B), 10 (C), 2 (D), and 1.5 mm (E) pressure in a 10-cm cell; window material AgBr.

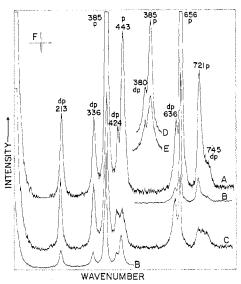


Figure 2.—Raman spectrum of liquid SeF $_{\delta}$ Cl: traces A, B, and D, incident polarization perpendicular; traces C and E, incident polarization parallel. Traces A and B were recorded at different recorder voltages; traces D and E, under higher resolution. Experimental conditions were identical for A and C and for D and E, except for change of direction of polarization. F indicates spectral slit width.

expect the F-SeF₄ wagging to have the highest and the ClSeF₄ wagging mode to have the lowest frequency of the three remaining e modes, with the antisymmetric in-plane SeF₄ deformation being intermediate. Con-

sequently, the bands at 424 and 336 cm⁻¹ are assigned to the F–Se–F₄ wagging and the antisymmetric in plane SeF₄ deformation modes, respectively. Since the infrared spectrum was not recorded below 250 cm⁻¹, it is not known if the 213-cm⁻¹ Raman band has indeed a counterpart in the infrared spectrum. However, the assignment of the 213-cm⁻¹ Raman line to the fourth e mode, the Cl–SeF₄ wagging mode, appears very plausible for the following reasons. The SeC1 stretching mode, ν_4 , occurs at a frequency (385 cm⁻¹) considerably lower than those of the three SeF₄ stretching modes. Hence, the Cl–SeF₄ deformation frequency should be lower than 300 cm⁻¹ and must be assigned to 213 and not to 380 cm⁻¹, the only remaining alternative.

	TABLE II		
Fundamental	FREQUENCIES OF	SeF_5Cl and	SF ₅ Cl ^a

	SF5C1	SeF ₅ Cl
$a_1 \nu_1 \nu(XF')$	855	729
$\nu_2 \ \nu_{\rm sym}({\rm XF_4})$	707	654
$\nu_3 \delta_{\rm sym}({\rm XF}_4)$ out of plane	602	440
$\nu_4 \nu(\text{XCl})$	402	384
$b_1 \nu_5 \nu_{sym}(XF_4)$ out of phase	625	636
$\nu_6 \delta_{\rm as}({\rm XF_4})$ out of plane		
$b_2 \nu_7 \delta_{sym}(XF_4)$ in plane	505	380
$e \nu_8 \nu_{as}(XF_4)$	909	745
$\nu_9 \delta(\mathrm{FXF}_4)$	579	421
$\nu_{10} \delta_{as}(XF_4)$ in plane	441	334
$\nu_{11} \delta(\text{ClXF}_4)$	287	213

^a Frequency values taken from ref 3.

For the assignment of the remaining three (2 b₁ and b₂) modes, we are left with only two Raman lines. The unobserved Raman line is assumed to be the antisymmetric out-of-plane SeF₄ deformation mode, ν_6 . The fact that this mode has not been observed is not surprising. For the structurally similar halogen penta-fluorides (ClF₅, BrF₅, and IF₆) and for SF₅⁻ and TeF₅^{-,6} all belonging to point group $C_{4\nu}$, this mode was not observed. Of the two available Raman lines (636 and 380 cm⁻¹), the higher frequency value obviously belongs to the symmetric out-of-phase SeF₄ stretching mode, leaving the 380-cm⁻¹ band to be assigned to the SeF₄ scissoring mode.

In the infrared spectrum of the gas, several bands of very low relative intensity were observed which cannot be attributed to fundamental vibrations. Most of them can satisfactorily be assigned to overtones and combination bands (see Table I).

The above given assignments rest mainly on the Raman lines, the polarization measurements, relative intensities, and the presence or absence of counterparts in the infrared spectrum. It appears interesting to examine to what extent the infrared band contours agree with theoretical predictions. It should be kept in mind, however, that band contours are sometimes subject to unpredictable changes and, hence, do not always agree with the predictions. Ideally, the a_1 modes should show PQR structure as expected for parallel bands of a symmetric-top molecule with $I_{\rm A}$ and $I_{\rm B}$ being similar to $I_{\rm C}$. Indeed, ν_3 and ν_4 show the expected band shape. The band shape of ν_1 is not clear-cut; however, its band shape may have been influenced by Coriolis interaction with $\nu_8(\mathbf{e})$, which occurs at almost the same frequency. The band contour of ν_2 does not show a sharp PQR structure. This was also the case for ν_2 of SF₅Cl.^{3,5} (6) K. O. Christe, E. C. Curtis, C. J. Schack; and D. Pilipovich, Inorg. Chem., in press

The band contour of $\nu_9(e)$ agrees with that expected for a perpendicular band, but that of ν_{10} closely resembles that of the parallel bands. It is interesting to note that $\nu_{10}(e)$ of SF₅Cl³ and the corresponding $\nu_{9}(e)$ mode of CIF₅⁷ also showed a PQR structure different from those of the remaining perpendicular bands in species e. The fact that the band contour of the lowest perpendicular band resembles those of the parallel bands has been observed for a number of symmetric-top molecules and can be attributed to first-order Coriolis perturbations.⁸ In summary, the band contours of SeF₅Cl agree well with those³ observed for SF₅Cl, even though differing somewhat from those predicted on the basis of the rigid-rotor, harmonic-oscillator approximation.

Comparison between the vibrational spectra of SF5Cl^{3,5} and SeF5Cl shows good agreement. However, the SeF₅Cl data and results from force constant calculations⁹ indicate that for SF₅Cl, the original assignment of the S–Cl wagging mode, $\nu_{11}(e)$, to the 287-cm⁻¹ band by Cross, et al.,⁵ should be retained. The revision of this assignment by Griffiths³ was based on the fact that he observed an infrared counterpart for the 396-cm⁻¹ Raman band. The latter, however, might equally well be interpreted as the ³⁷Cl isotope band of the S-Cl stretching mode, ν_4 , at 402 cm⁻¹, the splitting and relative intensity being in good agreement with predictions. Furthermore, the infrared spectrum of SF5Cl showed³ a broad band at about 280 cm^{-1} which might represent the counterpart to the Raman band at 271 cm^{-1} . Hence, the original assignment⁵ for ν_{11} does not violate the selection rules and results in a more reasonable frequency value. The high relative intensity of the 396cm⁻¹ band in the Raman spectrum of SF₅Cl and its infrared activity also argue against its proposed assignment⁵ to ν_6 since for all the remaining related molecules, it either has not been observed or has been of very low intensity. Consequently, we propose that for SF_5Cl , ν_6 either has not been observed or is hidden underneath the intense ν_4 band. In summary, the vibrational spectrum of SeF₅Cl is consistent with symmetry C_{4v} . Ten out of eleven fundamentals were observed and assigned in agreement with the selection rules for C_{4v} .

Force Constants.—A normal-coordinate analysis was carried out to aid the spectral assignment. The kinetic and potential energy metrics were computed by a machine method,⁹ assuming the following geometry and coordinate definitions: $R_{\text{SeF}'} = 1.68 \text{ Å}$, $D_{\text{SeCl}} = 2.14 \text{ Å}$, $r_{\text{SeF}} = 1.68 \text{ Å}$, $\alpha = \angle \text{FSeF} = 90^\circ$, $\beta = \angle \text{F'SeF} = 90^\circ$, and $\delta = \angle \text{CISeF} = 90^\circ$, where F' refers to the axial (unique) fluorine ligand. The deformation coordinates were weighted by unit (1 Å) distance. The bond lengths were estimated using the Schomaker-Stevenson rule.¹⁰

The force constants were calculated by trial and error with the aid of a time-sharing computer to get exact agreement between the observed and computed frequencies using the simplest possible modified valence force field. Unique force constants could not be computed since the general valence field has 38 constants and there are only ten observed frequencies. How-

(8) R. E. Moynihan, Ph.D. Dissertation, Purdue University, 1954; University Microfilms, Ann Arbor, Mich., Publication 9881.

(9) E. C. Curtis, Rocketdyne Report R-6768, Oct 1966.

(10) L. Pauling, "Nature of the Chemical Bond," 3rd ed, Cornell University Press, Ithaca, N. Y., 1960, p 229.

ever, numerical experiments showed that some of the principal force constants are quite independent of the chosen interaction constants and, hence, should approach those of a general valence force field. The computed values are $\bar{f}_{R} = 4.42$, $f_{D} = 2.75$, $f_{\tau} = 4.31$, $f_{\tau\tau} = 0.07$, and $f_{\tau\tau'} = 0.35 \text{ mdyn/Å}$; $f_{\alpha} = 1.26$, $f_{\beta} = 1.92$, $f_{\delta} = 1.16, f_{\beta\beta'} = 0.30, \text{ and } f_{\delta\delta'} = 0.18 \text{ mdyn/Å radian}^2;$ and $f_{D\delta} = 0.28 \text{ mdyn/Å}$ radian. The two interactions $f_{\beta\beta'}$ and $f_{\delta\delta'}$ were determined from only one symmetry force constant value making the assumption $f_{\beta\beta'}/f_{\delta\delta'} =$ f_{β}/f_{δ} .

The values of the stretching force constants f_R and f_{τ} of SeF₅Cl are not significantly different indicating similar bonding for both the axial and the equatorial fluorine ligands. Furthermore, their magnitude (4.3-4.4 mdyn/Å) approximates those obtained for other mainly covalent, hexavalent selenium compounds such as SeF₆ (5.01 mdyn/Å),¹¹ SeO₂F₂ (4.44 mdyn/A),¹² or SeO_3F^- (4.23 mdyn/Å)¹² with bond orders¹²⁻¹⁴ close to 1. The slight decrease of the stretching force constant values from SeF_6^{11} toward SeF_5Cl parallels that found for the analogous pair SF_6^{15} and SF_5C1^{12} (see Table III).

		Table III		
Sh	RETCHING FOR	RCE CONSTAN	ts (in mdyn/	Å) of
SeF_6 A	ND SeF5Cl CO	MPARED TO TH	HOSE OF SF6 A	and SF₅C1
	${\rm SF_6}^a$	SF5C1b	SeF6 ^c	SeF₅C1
R		4.83		4.42
	5.26		5.01	
f_r		4.52		4.31
^d Refere	nce 15. ^b Ref	erence 12. ° l	Reference 11.	

It can be explained by the substitution of one fluorine atom in XF_{6} by a less electronegative ligand, such as Cl. This causes an increased polarity $(S^{\delta+}-F^{\delta-})$ of the remaining SF bonds. Since stretching force constants reflect only the contributions from covalent bonding,^{12,14} their value should correspondingly decrease. The interaction constants are in accord with our experience with similar molecules.6 The value given for $\bar{f}_{D\delta}$ was determined from $\sqrt{2}(f_{D\delta} - f_{D\beta}) \approx 0.4$, which was required to fit ν_3 and ν_4 . This is not too surprising considering the mixing of the two modes (see Table IV).

TABLE IV

POTENTIAL ENERGY DISTRIBUTION FOR SeF₅Cl^a

		• • • • • • • • • • • • • • • • • • • •
\mathbf{a}_1	ν_1 729	$0.88 f_R$
	$\nu_2 654$	$0.90 f_r$
	v ₃ 440	$0.41f_D + 0.36f_\beta + 0.21f_\delta + 0.11f_R$
	$\nu_4 384$	$0.58f_D + 0.15f_{\beta} + 0.15f_{\delta}$
\mathbf{b}_1	v ₅ 636	$0.95 f_r$
	ν_6 (336)	$0.54f_{eta} + 0.33f_{\delta}$
\mathbf{b}_2	v ₇ 380	$1.10f_{\alpha} - 0.10f_{\alpha\alpha'}$
e	ν_8 745	$1.00f_r$
	v ₉ 421	$1.04f_{\beta} - 0.16f_{\beta\beta'}$
	ν_{10} 334	$0.79 f_{\alpha}$
	ν_{11} 213	$1.02f_{\delta} - 0.16f_{\delta\delta'}$
~		

^a Contributions of less than 0.10 are not listed.

No evidence was found for the similar terms $f_{R\beta}$, $f_{r\beta}$, and $f_{\tau \delta}$ being nonzero, although this cannot be ruled out and might be expected from our experience with similar molecules⁶ or from orbital following arguments.

(11) S. Abramowitz and I. W. Levin, Inorg. Chem., 6, 538 (1967).

⁽⁷⁾ G. M. Begun, W. H. Fletcher, and D. F. Smith, J. Chem. Phys., 42, 2236 (1965).

⁽¹²⁾ W. Sawodny, Habilitationsschrift, University of Stuttgart, Stuttgart, Germany, 1969.

⁽¹³⁾ H. Siebert, Z. Anorg. Allg. Chem., 273, 170 (1953).

⁽¹⁴⁾ J. Goubeau, Angew. Chem., 78, 565 (1966).
(15) A. Ruoff, J. Mol. Struct., 4, 332 (1969).

TABLE V Computed Thermodynamic Properties of $\mathrm{SeF}_5\mathrm{Cl}^a$ Т, °К C_p° $H^{\circ} - H^{\circ}_{0} - (F^{\circ} - H^{\circ}_{0})/T$ S°. 0 0 0 0 0 100 12.035 51.14960.103 0.895 20021.7202.60458.53471.55427.800 5.06281.472 298.1564.494 27.88564.600 81.644 300 5.11340031.3388.091 69.959 90.18650033.331 11.33374.74697.412 600 34.548 79.053 103 605 14.732 700 35.336 18.22882.954 108.994 21.790 800 35.87086.512 113.750 900 36.24825.397 89.778 117.998 1000 36.524 29.037 92.795 121.832 1100 36.731 32.700 95.596 125.323 1200 36.891 36.381 98.208 128.526 1300 37.016 40.077100.656131.484 1400 37.116 43.784 102.957 134.231 1500105.128136.79537.19747.4991600 37.264 51.223 107.183139.1981700 37.320 54.952109.134141.458 180037.367 58.686 143.593110.989 1900 37.406 62.425112.759145.6142000 37.440 66.167 147.534114.450

^a Units for C_p° , S° , and F° are calories, moles, and degrees Kelvin; for H° units are kilocalories and moles.

Coriolis coupling coefficients were computed for SeF₅Cl in the belief that the e-block band contours could support the assignment. The computed values using the above given force constants were $\zeta_8 = 0.5$, $\zeta_9 = 0.5$, $\zeta_{10} = -0.4$, and $\zeta_{11} = 0.7$. However, the values of the moments of inertia are such that these values for

 ζ do not result in very distinctive band shapes.⁸ The band shapes are further complicated by the natural chlorine and selenium isotopes and by hot bands. Although the observed band shapes are not inconsistent with those predicted, the contours could not be used to verify the computed ζ 's.

The potential energy distribution was computed using the above force constants and is shown in Table IV. The assignment listed in Table I is supported by these values. The mixing of ν_3 and ν_4 is large, so that, strictly, one is not a stretching and one a deformational mode, but rather a symmetric and antisymmetric combination of the two motions.

Thermodynamic Properties.—The thermodynamic properties were computed for this molecule using the rigid-rotor, harmonic-oscillator¹⁶ approximation. The results are given in Table V. The frequencies used were those of Table II, assuming a computed value of 336 cm⁻¹ for ν_6 . The moments of inertia used were $I_x = I_y = 312$ and $I_z = 214$ amu Å² computed from the geometry assumed above, with a symmetry factor of 4.

Acknowledgment.—We are indebted to Dr. D. Pilipovich for continuous encouragement and to Dr. J. Cape for the use of the Raman spectrometer. This work was supported by the Office of Naval Research, Power Branch.

(16) J. E. Mayer and M. G. Mayer, "Statistical Mechanics," Wiley, New York, N. Y., 1940.

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, McMaster University, Hamilton, Ontario, Canada

The Formation of Br_2^+ , Br_3^+ , $BrOSO_2F$, and $Br(OSO_2F)_3$ by the Oxidation of Bromine with Peroxydisulfuryl Difluoride in Solution in Fluorosulfuric Acid and the Superacid System SbF_5 -3SO₃-HSO₃F

BY R. J. GILLESPIE* AND M. J. MORTON

Received July 15, 1971

The oxidation of bromine with peroxydisulfuryl difluoride, $S_2O_8F_2$, in solution in fluorosulfuric acid and in the superacid system $SbF_3-3SO_3-HSO_8F$ has been studied by electrical conductivity and magnetic susceptibility measurements and by Raman spectroscopy. It is shown that in fluorosulfuric acid solution Br_8^+ , $BrOSO_2F$, and $Br(OSO_2F)_8$ are stable species although $BrOSO_2F$ is disproportionated to some extent into Br_8^+ and $Br(OSO_2F)_8$. In the superacid system $SbF_3-3SO_3-HSO_3F$ the Br_2^+ cation can also be obtained, but it is not very stable and is in equilibrium with the disproportionation products Br_8^+ and $BrOSO_2F$. The Raman spectra of the bromine cations Br_2^+ and Br_8^+ and the bromine fluorosulfates $BrOSO_2F$ and $Br(OSO_2F)_8$ have been obtained and the resonance Raman spectrum of the Br_2^+ cation is described.

The I_{2}^{+} and I_{3}^{+} cations of iodine are well established^{1,2} but at the time the present investigation was commenced there was no evidence for the existence of the corresponding bromine cations Br_{2}^{+} and Br_{3}^{+} . Although the I_{3}^{+} cation is stabilized by the very weak basicity of sulfuric acid, the I_{2}^{+} cation is almost completely disproportionated in this solvent and it needs the still weaker basicity of fluorosulfuric acid to enable it to exist in sufficient concentration for identification by its intense blue color (λ_{max} 640 nm). Nevertheless, the very small concentration of I_2^+ in 100% sulfuric acid can be detected by its strong-resonance Raman spectrum.³ It is to be expected that the corresponding bromine cations would be stronger Lewis acids than the iodine cations and that they would only be stable in still less basic media than can be used to stabilize the iodine cations. Thus although Br_3^+ might be obtained in solution in fluorosulfuric acid it was anticipated that it would probably need the acidity of the superacid system $SbF_3-3SO_3-HSO_3F^4$ to stabilize the Br_2^+ cation.

⁽¹⁾ R. J. Gillespie and J. B. Milne, Inorg. Chem., 5, 1577 (1966).

⁽²⁾ R. A. Garrett, R. J. Gillespie, and J. B. Senior, *ibid.*, **4**, 563 (1965).

⁽³⁾ R. J. Gillespie and M. J. Morton, J. Mol. Spectrosc., 30, 178 (1969).

⁽⁴⁾ R. C. Thompson, J. Barr, R. J. Gillespie, J. B. Milne, and R. A. Rothenbury, *Inorg. Chem.*, 4, 1641 (1965).