### Conclusion

Some fairly general procedures have been worked out for the preparation of several different types of complexes for a variety of phosphine ligands. Unfortunately, the differences in the electronic and steric properties of the various tertiary phosphines are so large as to preclude any completely general procedures. In spite of this, however, several series of complexes were prepared. There do not seem to be any really discernible trends within these groups with respect to stability, color, melting points, or carbonyl stretching frequencies.

Several interesting anomalies were noted. Whereas most of the rhodium(III) species appear to be six-coordinate as expected, the five-coordinate RhHCl<sub>2</sub>(P(i- $Pr_{3}_{3}_{2}$  is the most stable complex of this ligand. It was

also of interest to note that this compound is capable of decarbonylating both alcohols and carboxylic acids to form RhClCO( $P(i-Pr)_3$ )<sub>2</sub>.

The oxidative addition of HCl to RhCl(PR<sub>3</sub>)<sub>3</sub> to vield the hydride compound  $RhHCl_3(PR_3)_3$  was observed to proceed via a cis addition followed by a less rapid rearrangement to the product which would occur from trans addition.

Finally, evidence has been obtained for the structure of the dinuclear complexes. These are postulated as the dinuclear, chlorine-bridged isomer with all trans phosphines.

Acknowledgment.—The author is indebted to Dr. D. Dahm for the single-crystal X-ray data and to Drs. D. E. Morris, H. B. Tinker, and D. Forster, of this laboratory, for helpful discussions.

CONTRIBUTION FROM THE DEPARTMENTS OF CHEMISTRY, BROWN UNIVERSITY, PROVIDENCE, RHODE ISLAND 02912, AND CORNELL UNIVERSITY, ITHACA, NEW YORK 14850

# Spectroscopic Studies of Metal-Metal Bonding. III. Vibrational Spectra and Analyses of $M[Co(CO)_4]_2$ (M = Zn, Cd, Hg)

BY ROBERT J. ZIEGLER,<sup>1</sup> JAMES M. BURLITCH,<sup>2</sup> SUSAN E. HAYES, AND WILLIAM M. RISEN, JR.\*8

Received August 2, 1971

The vibrational spectra of the recently studied  $Zn[Co(CO)_4]_2$  and its congeners  $Cd[Co(CO)_4]_2$  and  $Hg[Co(CO)_4]_2$  have been measured in the infrared (33-4500 cm<sup>-1</sup>) and laser-Raman ( $\Delta \omega = 0-4000$  cm<sup>-1</sup>) regions. The infrared and Raman fundamentals are assigned on the basis of  $D_{3d}$  symmetry, under which no coincidences are allowed, but infrared-Raman band "pairs" are observed which are separated by interactions across the metal-metal system. The normal-coordinate analyses of these species also demonstrate significant coupling across the trinuclear M-M'-M bond and permit evaluation of vibrational coupling of coterminal metal-metal bonds as well as the strengths of the M-Co bonds. The metal-metal force constants are nearly identical, although they fall in the order  $k(\text{Zn-Co}) \ge k(\text{Cd-Co}) \ge k(\text{Hg-Co})$ . This result is discussed in terms of the reported trends in k(M-Co) from very approximate treatments and reported mass spectral results.

#### Introduction

The Hg, Cd, and Zn derivatives of  $Co(CO)_4^-$ ,  $M[Co(CO)_4]_2$ , have occupied an interesting position in the study of metal-metal bonded compounds. Their relatively early known existence<sup>4,5</sup> has made them the subject of several vibrational spectroscopic investigations,<sup>6-12</sup> of which the earliest<sup>6-8</sup> were attempts to elucidate the structures of the compounds. Subsequent X-ray crystallographic determinations<sup>13,14</sup> confirmed the spectroscopic conclusions of a linear, un-

- (1) Abstracted in part from the Ph.D. thesis of R. J. Z., Brown University, to be submitted for publication.
- (2) Fellow of the Alfred P. Sloan Foundation, 1970-1972.
- (3) Author to whom correspondence should be addressed at Brown University.
- (4) W. Hieber and U. Teller, Z. Anorg. Allg. Chem., 249, 43 (1942). (5) (a) W. Hieber, E. O. Fischer, and E. Böckly, *ibid.*, 269, 308 (1952);
- (b) W. Hieber and R. Breu, Chem. Ber., 90, 1259 (1957)
- (6) G. Bor and L. Markó, Spectrochim. Acia, 16, 1105 (1960).
- (7) H. Stammreich, K. Kawai, O. Sala, and P. Krumholz, J. Chem. Phys., 35, 2175 (1961).
  - (8) K. Noack, Helv. Chim. Acta, 47, 1555 (1964).
- (9) L. M. Bower and M. H. B. Stiddard, J. Organometal. Chem., 13, 235 (1968).
- (10) G. Bor, Inorg. Chim. Acta, 3, 196 (1969).
- (11) A. R. Manning, J. Chem. Soc. A, 1018 (1968).
- (12) A. R. Manning and J. R. Miller, ibid., A, 3352 (1970).
- (13) B. Lee, J. M. Burlitch, and J. L. Hoard, J. Amer. Chem. Soc., 89, 6362 (1967).
- (14) G. M. Sheldrick and R. N. F. Simpson, J. Chem. Soc. A, 1005 (1968).

supported Co-M-Co bonding framework. The more recent interest in the nature of metal-metal bonding in such systems has prompted reports<sup>15-19</sup> of the lowfrequency vibrational spectra of the  $M[Co(CO)_4]_2$ compounds, with particular emphasis on those bands which primarily involve M-Co stretching vibrations. Using vibrational frequency data and localized mode calculations with varying approximations in the calculations, several authors<sup>7,15,16,20</sup> have reported for these compounds metal-metal "force constants" which range from a high<sup>7</sup> of 2.6 and 2.3 mdyn/Å for k(Hg-Co)and k(Cd-Co), respectively, to a low<sup>20</sup> of 0.77 mdyn/Å for k(Cd-Co). The several approximate treatments give the order of force constants to be k(Hg-Co) >k(Cd-Co) or k(Zn-Co) > k(Hg-Co) > k(Cd-Co).

Recently J. M. B.<sup>21,22</sup> reported studies of the ionic dissociation reactions and the mass spectra of the (15) P. N. Brier, A. A. Chalmers, J. Lewis, and S. B. Wild, ibid., A, 1889 (1967).

- (16) D. M. Adams, J. B. Cornell, J. L. Dawes, and R. D. W. Kemmitt, Inorg. Nucl. Chem. Lett., 3, 437 (1967).
- (17) W. F. Edgell, A. T. Watts, J. Lyford, and W. M. Risen, Jr., J. Amer. Chem. Soc., 88, 1815 (1966).
  (18) W. P. Griffith and A. J. Wickham, J. Chem. Soc. A, 834 (1969).
- (19) D. M. Adams, J. N. Crosby, and R. D. W. Kemmitt, ibid., A, 3056 (1968).

  - (20) T. G. Spiro, Progr. Inorg. Chem., 11, 1 (1970).
    (21) J. M. Burlitch, J. Amer. Chem. Soc., 91, 4562 (1969).
  - (22) J. M. Burlitch and A. Ferrari, Inorg. Chem., 9, 563 (1970).

three  $M[Co(CO)_4]_2$  compounds. Two results of these studies are relevant to the previous spectroscopic work. First, the compounds are dissociated, to varying extents, in polar solvents. Second, the mass spectra qualitatively indicate that the order of metal-metal bond strength is Zn-Co > Cd-Co > Hg-Co.

Since the reported vibrational analyses of the M- $[Co(CO)_4]_2$  compounds were based on incomplete data and widely varying approximations, since the orders of metal-metal bond strengths from vibrational and mass spectral studies are inconsistent, and since the true order is of interest in light of the ionic dissociation and metal-exchange results, we have undertaken a study of the complete vibrational spectra. In this paper we report the infrared and laser-Raman spectra and vibrational analysis of the three compounds  $Zn[Co(CO)_4]_2$ ,  $Cd[Co(CO)_4]_2$ , and  $Hg[Co(CO)_4]_2$ .

## Experimental Section

The compounds  $M[Co(CO)_4]_2$  where M = Hg, Cd, and Zn were prepared as previously described.<sup>22,23</sup> Samples employed in the spectroscopic studies were handled *in vacuo* or under a dry nitrogen or argon atmosphere and, when possible, in the absence of light. Solvents were carefully dried, as appropriate, vacuum deaerated, and vacuum distilled. Solid samples used for laser-Raman measurements were sealed in glass capillaries under high vacuum.

Laser-Raman spectra were measured using a Jarrell-Ash 25-300 spectrometer, with a calibrated accuracy of ca. 1 cm<sup>-1</sup> and resolution of at least 5 cm<sup>-1</sup>. The infrared spectra were measured on a Beckman IR-11-12 spectrophotometer, with resolution and accuracy of ca. 1 cm<sup>-1</sup>. Calibration of infrared spectra was performed using standard vapor-phase spectra.<sup>24</sup>

Solutions and mulled samples (Nujol or polyethylene matrix) of these compounds decompose when exposed to unfiltered radiation from the mercury-arc far-infrared source. This problem was eliminated by placing a carbon-black-filled polyethylene film between the source and sample when using this source in the 33-400-cm<sup>-1</sup> region and by employing a Nernst glower source in the 300-800-cm<sup>-1</sup> region.

Decomposition was also found to occur when the samples were exposed to the full power of our laser sources (He–Ne, 632.8 nm; Ar<sup>+</sup>, 514.5 nm) during preliminary Raman spectral measurements. The use of neutral-density source filters to reduce the power at the sample eliminated the problem completely, and all Raman results reported here were made on samples which showed no evidence of decomposition.

#### Spectral Results

The structures of Hg[Co(CO)<sub>4</sub>]<sub>2</sub><sup>14</sup> and Zn[Co(CO)<sub>4</sub>]<sub>2</sub><sup>13</sup> have been reported. In each case the molecule is found to have approximately  $D_{3d}$  molecular symmetry with a linear and symmetrical MCo<sub>2</sub> unit. Because of the similarity of its properties and vibrational spectrum to those of the Hg and Zn compounds, Cd[Co(CO)<sub>4</sub>]<sub>2</sub> is also taken to belong to the point group  $D_{3d}$ .

The vibrational representation of these molecules in  $D_{3d}$  symmetry is  $\Gamma_{vib} = 7 A_{1g}(R, pol) + 2 A_{1u}(ia) + 1 A_{2g}(ia) + 7 A_{2u}(ir) + 8 E_g(R, depol) + 9 E_u(ir)$ , where the symbol meanings are as follows: ir, infrared active; R, Raman active; pol, polarized in the Raman; depol, depolarized in the Raman; ia, inactive in the infrared and Raman spectra. The 51 normal modes thus occur at 34 fundamental frequencies, of which 15 are Raman active and 16 are infrared active. Because the molecules possess a center of symmetry, none of the fundamentals is predicted to be both infrared and Raman active.

The infrared and laser Raman spectra of all three compounds are reported in Table I. Since the previously referenced<sup>6-12,15-19</sup> reports of spectral work give various incomplete portions of the spectra, we have not given specific reference to each frequency in Table I that has been reported earlier. Our infrared data are in good agreement with those frequencies that have been reported, but several reported Raman bands are erroneous, as discussed below.

As detailed in Table II, on the basis of symmetry coordinates and previous work on metal carbonyls, we expect six fundamental vibrations in the 2000-cm<sup>-1</sup> region due primarily to C-O stretching vibrations:  $2 A_{1g} + 2 A_{2u} + 1 E_g + 1 E_u$ . Of these, three are expected in the infrared and three in the Raman spectrum. Vibrations which are largely  $\nu$ (M-C) and  $\delta$ -(M-C-O) are generally found in the middle-frequency region (350-700 cm<sup>-1</sup>). Thus, seven infrared- and seven Raman-active vibrations should be observable in this region. Below 350 cm<sup>-1</sup> the modes due primarily to metal-metal stretching vibrations [ $\nu_{sym}$ (Co-M-Co),  $A_{1g}$ ;  $\nu_{asym}$ (Co-M-Co),  $A_{2u}$ ] and nine skeletal distortion vibrations are expected to be active.

The observed bands assigned to fundamental vibrations are designated in Table I. The six  $\nu$ (C–O) fundamentals, the fourteen<sup>25</sup> middle-frequency modes, the two predominantly metal-metal stretching modes, and several of the very low frequency skeletal modes are observed and assigned. The bases for the specific assignments can be discussed most readily by considering the three spectral regions separately. However, there is a general characteristic of the spectrum which clarifies the interpretation.

If the  $Co(CO)_4$  moieties were vibrationally uncoupled, there would be many accidentally degenerate pairs of vibrations, of which one would be Raman active and one infrared active due to their phase relationship. Since the removal of such degeneracies results from interactions across the Co-M-Co system, which are expected to be small in the cases of C-O stretches and several of the Co-C-O bends, closely spaced infrared-Raman "pairs" of frequencies should be observed. Furthermore, the frequency separation of the two bands is a measure of these interactions.

The  $\nu(C-O)$  Region.—The strongest infrared band, occurring at *ca*. 2000 cm<sup>-1</sup> in each spectrum, is assigned as  $\nu_{26}$  of  $E_u$  symmetry. The two remaining infrared bands, observed at *ca*. 2075 and *ca*. 2020 cm<sup>-1</sup> in the spectra of all three compounds, are assigned as the fundamentals  $\nu_{11}$  and  $\nu_{12}$ , respectively, both of  $A_{2u}$ symmetry. These assignments are in agreement with the previously assigned<sup>9-11</sup> infrared spectrum of Hg-[Co(CO)<sub>4</sub>]<sub>2</sub> in this region. The stretches of only the equatorial CO groups contribute to  $\nu_{26}$ , while  $\nu_{11}$  and  $\nu_{12}$  involve both axial and equatorial CO groups.

As discussed above, one expects to observe Ramanactive, infrared-active "pairs" of vibrations in this region. That is, for a fundamental which is primarily an axial C-O stretching vibration, the form of the Raman-active  $(A_{1g})$  mode differs from the infrared-

<sup>(23)</sup> J. M.Burlitch, J. Organometal. Chem., 9, P9 (1967).

<sup>(24)</sup> For the region 2500-600 cm<sup>-1</sup> see "Tables of Wavenumbers for the Calibration of Infrared Spectrometers," IUPAC Commission on Molecular Spectroscopy, Butterworths, London, 1961. Calibration in the region 600-33 cm<sup>-1</sup> was performed with the results of L. R. Blaine, J. Res. Nat. Bur. Stand., Sect. C, 67, 207 (1963), and L. R. Blaine, E. K. Plyler, and W. S. Benedict, *ibid.*, Sect. A, 66, 223 (1962).

<sup>(25)</sup> Only 13 middle-frequency modes were observed in the spectrum of  $Cd[Co(CO)_4]_2$ .

# TABLE I

# Observed and Assigned Vibrational Bands and Calculated Vibrational Modes for the $M[Co(CO)_4]_2$ Molecules

| Ir freq,<br>cm <sup>-1</sup> | State<br>(ir) | Raman<br>freq, <sup>a</sup> cm <sup>-1</sup> | Vi                           | $\Gamma_i$                                               | $\nu_{\rm calcd}$ , cm $^{-1}$ | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------|---------------|----------------------------------------------|------------------------------|----------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |               |                                              | I                            | A. $Zn[Co(CO)_4]_2$                                      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              |               | 2002                                         |                              | A                                                        | 2002                           | $u(R_{\rm ex}) + u(R_{\rm ex})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2077                         | Ь             | 2002                                         | V1<br>V1                     | Aau                                                      | 2077                           | $\nu(R_{ex}) + \nu(R_{eg})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2026                         | b             |                                              | ν <sub>12</sub>              | $A_{2u}$                                                 | 2026                           | $\nu(R_{eq}) + \nu(R_{ax})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -0-0                         | Ŭ             | 2028                                         | $\nu_2$                      | A <sub>1g</sub>                                          | 2028                           | $\nu(R_{eg}) + \nu(R_{ex})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2003                         | b             |                                              | V26                          | $\tilde{\mathbf{E}_{u}}$                                 | 2003                           | $\nu(R_{eq})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                              |               | 1976                                         | $\nu_{18}$                   | $\mathbf{E}_{\mathbf{g}}$                                | 1975                           | $\nu(R_{eq})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                              |               | 728                                          | $2\nu_{30}$                  |                                                          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              |               | 561                                          | $\nu_3$                      | $A_{1g}$                                                 | 561                            | $\delta(eta_{	ext{op}}) + \delta(\gamma_{	ext{eq}}) + \delta(\Delta_{	ext{op}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 548                          | С             |                                              | $\nu_{13}$                   | $A_{2u}$                                                 | 548                            | $\delta(\beta_{ m op}) + \delta(\Delta_{ m op}) + \delta(\gamma_{ m eq})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              |               | 541                                          | $\nu_{19}$                   | $E_{g}$                                                  | 539                            | $\delta(\beta_{\mathrm{op}}) + \delta(\beta_{\mathrm{ax}}) + \delta(\Delta_{\mathrm{op}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 534                          | С             |                                              | $\nu_{27}$                   | $E_u$                                                    | 534                            | $\delta(\beta_{\rm op}) + \delta(\beta_{\rm ax}) + \delta(\Delta_{\rm op})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              |               | 513                                          | $\nu_{20}$                   | E <sub>g</sub>                                           | 513                            | $\delta(\beta_{\rm ip}) + \delta(\Delta_{\rm ip}) + \nu(r_{\rm eq})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 512                          | С             | 400                                          | $\nu_{28}$                   | Eu<br>Tr                                                 | 512<br>401                     | $\delta(\beta_{ip}) + \delta(\Delta_{ip}) + \nu(r_{eq})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 199                          | <i>c</i>      | 492                                          | $\nu_{21}$                   | Eg<br>F                                                  | 491                            | $\delta(\rho_{\rm op}) + \delta(\rho_{\rm ax})$<br>$\delta(\rho_{\rm op}) \perp \delta(\rho_{\rm op})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 400                          | i             | 463                                          | V29                          | A                                                        | 463                            | $u(r_{}) + u(r_{}) + u(L)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                              |               | 426                                          | 24<br>12:                    | A                                                        | 426                            | $\frac{\nu(r_{ex}) + \nu(r_{eq}) + \nu(\Sigma)}{\nu(r_{ex})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 419                          | d             | 120                                          | P 5                          | A <sub>2</sub> ,                                         | 419                            | $\mathbf{v}(\mathbf{r}_{ex}) + \mathbf{v}(\mathbf{r}_{ex}) + \mathbf{v}(L)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 398                          | d<br>d        |                                              | P 14                         | A2"                                                      | 398                            | $\frac{v(r_{eq}) + v(r_{eq})}{v(r_{eq}) + v(r_{eq})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 000                          | Ū.            | 369                                          | V22                          | E                                                        | 368                            | $\nu(r_{eq}) + \delta(\beta_{ip})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 365                          | d             |                                              | V30                          | $\mathbf{E}_{\mathbf{u}}$                                | 365                            | $\nu(r_{\rm eg}) + \delta(\beta_{\rm ip})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 284                          | d             |                                              | $\nu_{16}$                   | $A_{2u}$                                                 | 284                            | $\nu(L)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              |               | 170                                          | $\nu_6$                      | $A_{1g}$                                                 | 170                            | $ u(L) + \delta(\gamma_{eq}) + \delta(\beta_{op}) + \delta(\Delta_{op}) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              |               |                                              | $\nu_{81}$                   | $\mathbf{E}_{\mathbf{u}}$                                | 135                            | $\delta(\gamma) + \delta(\Delta) + \delta(\theta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                              |               |                                              | $\nu_{23}$                   | $\mathbf{E}_{\mathbf{g}}$                                | 128                            | $\delta(\Delta) + \delta(\beta_{ip}) + \delta(\beta_{ax}) + \delta(\gamma_{ax})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              |               |                                              | $\nu_{17}$                   | A <sub>2u</sub>                                          | 113                            | $\delta(\Delta_{ m op}) + \delta(eta_{ m op}) + \delta(\gamma_{ m eq})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |               |                                              | $\nu_{24}$                   | $E_g$                                                    | 110                            | $\delta(\Delta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              |               |                                              | $\nu_{82}$                   | Eu                                                       | 109                            | $\frac{\delta(\Delta)}{\delta(\Delta)} + \frac{\delta(\gamma_{eq})}{\delta(\Delta)} + \frac{\delta(\gamma_{eq})}$ |
|                              |               | 00                                           | $\nu_{33}$                   | E <sub>u</sub>                                           | 101                            | $\delta(\Delta_{ip}) + \delta(\theta) + \delta(\gamma_{eq}) + \delta(\beta_{ip})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              |               | 92                                           | <i>V</i> 7                   |                                                          | 90<br>65                       | $\mathcal{V}(L) + \mathcal{O}(\gamma_{\text{Bq}}) + \mathcal{O}(\beta_{\text{op}}) + \mathcal{O}(\Delta_{\text{op}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              |               | 01                                           | V25                          | E.                                                       | 42                             | $\delta(\gamma) + \delta(\Delta_{ip})$<br>$\delta(\theta) + \delta(\alpha)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              |               |                                              | $\epsilon = 0.60 \text{ cm}$ | -1 ~u                                                    | 12                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              |               |                                              |                              |                                                          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                              |               |                                              | E                            | $\mathbf{S}.  \mathbf{Cd}[\mathbf{Co}(\mathbf{CO})_4]_2$ |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2051                         | -             | 2087                                         | $\nu_1$                      | $A_{1g}$                                                 | 2088                           | $\nu(R_{\rm ax}) + \nu(R_{\rm eq})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2071                         | 6             |                                              | $\nu_{11}$                   | $A_{2u}$                                                 | 2071                           | $\nu(R_{\rm ex}) + \nu(R_{\rm eq})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2010                         | 0             | 2020                                         | $\nu_{12}$                   | A <sub>2u</sub>                                          | 2010                           | $\nu(R_{eq}) + \nu(R_{ax})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1005                         | Ъ             | 2020                                         | ν <sub>2</sub>               | Alg<br>F                                                 | 1005                           | $\nu(R_{eq}) + \nu(R_{ax})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1990                         | U             | 1976                                         | V28                          | E.                                                       | 1976                           | $v(R_{eq})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              |               | 726                                          | 2220                         | Ξg                                                       | 1010                           | (1-6d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                              |               | 561                                          | 2 · 30<br>23                 | Alg                                                      | 561                            | $\delta(\beta_{\rm op}) + \delta(\gamma_{\rm eq}) + \delta(\Delta_{\rm op})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 548                          | d, $e$        | 001                                          | ¥18                          | $A_{2n}$                                                 | 548                            | $\delta(\beta_{\rm op}) + \delta(\gamma_{\rm eg}) + \delta(\Delta_{\rm op})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | . *           | 548                                          | $\nu_{19}$                   | $\mathbf{E}_{\mathbf{g}}$                                | 546                            | $\delta(\beta_{\rm op}) + \delta(\beta_{\rm ax}) + \delta(\Delta_{\rm op})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 538                          | d, e          |                                              | $\nu_{27}$                   | $\mathbf{E}_{\mathbf{u}}$                                | 538                            | $\delta(\beta_{\mathrm{op}}) + \delta(\beta_{\mathrm{ax}}) + \delta(\Delta_{\mathrm{op}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                              |               | 520                                          | $\nu_{20}$                   | $\mathbf{E}_{\mathbf{g}}$                                | 516                            | $\delta(eta_{ m ip}) + \delta(\Delta_{ m ip}) + \nu(r_{ m eq})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 511                          | e             |                                              | $\nu_{28}$                   | $\mathbf{E}_{\mathbf{u}}$                                | 509                            | $\delta(eta_{	ext{ip}}) + \delta(\Delta_{	ext{ip}}) + \nu(r_{	ext{eq}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 487                          | е             |                                              | $\nu_{29}$                   | $\underline{\mathbf{E}}_{\mathbf{u}}$                    | 484                            | $\delta(\beta_{\rm ax}) + \delta(\beta_{\rm op})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              |               | 486                                          | $\nu_{21}$                   | Eg                                                       | 490                            | $\delta(\beta_{\mathrm{ax}}) + \delta(\beta_{\mathrm{op}}) + \delta(\beta_{\mathrm{ip}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              |               | 401                                          | $\nu_4$                      | A <sub>1g</sub>                                          | 460                            | $\nu(r_{\rm ax}) + \nu(r_{\rm eq}) + \nu(L)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 490                          | 4.            | 431                                          | $\nu_5$                      | A <sub>1g</sub>                                          | 431                            | $\nu(r_{eq}) + \nu(r_{ax})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 420                          | a, e          |                                              | $\nu_{14}$                   | $\Delta_{2u}$                                            | 420                            | $\nu(r_{ex}) + \nu(r_{eq}) + \nu(L)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 401                          | E.            | 372                                          | V 15                         | E.                                                       | 372                            | $\nu(r_{eq}) + \nu(r_{ax})$<br>$\nu(r_{eq}) + \delta(\beta_{eq})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 365                          | d, e          | 012                                          | F 22                         | E,                                                       | 364                            | $\nu(r_{eq}) + \delta(\beta_{in})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 218                          | d, e          |                                              | ¥16                          | $\overline{A}_{211}$                                     | 218                            | $\nu(L)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              | , -           | 163                                          | ¥6                           | A <sub>1g</sub>                                          | 163                            | $\nu(L) + \delta(\gamma_{eq}) + \delta(\beta_{op}) + \delta(\Delta_{op})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              |               | 127                                          | $\nu_{23}$                   | Eg                                                       | 127                            | $\delta(\Delta) + \delta(\beta_{ip}) + \delta(\beta_{ax}) + \delta(\gamma_{ax})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 119                          | е             |                                              | $\nu_{31}$                   | Eu                                                       | 124                            | $\delta(\Delta) + \delta(\gamma_{\mathtt{B}\mathtt{X}}) + \delta(\beta_{\mathtt{ip}}) + \delta(\beta_{\mathtt{B}\mathtt{X}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 111                          | e             |                                              | $\nu_{17}$                   | $A_{2u}$                                                 | 111                            | $\delta(\Delta_{	ext{op}}) + \delta(\gamma_{	ext{eq}}) + \delta(eta_{	ext{op}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              |               | 108                                          | $\nu_{24}$                   | $E_{g}$                                                  | 109                            | $\delta(\Delta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              |               |                                              | $\nu_{32}$                   | Eu                                                       | 107                            | $\delta(\Delta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              |               | 100                                          | $\nu_7$                      |                                                          | 99                             | $\nu(L) + \delta(\gamma_{eq}) + \delta(\beta_{op}) + \delta(\Delta_{op})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              |               | 73                                           | $\nu_{25}$                   | Lg<br>T                                                  | 70<br>67                       | $o(\gamma) + o(\Delta_{ip})$<br>$\delta(\alpha) + \delta(\theta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 51                           | ø             |                                              | V 33                         | E.                                                       | 48                             | $\delta(\gamma) = \delta(\theta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ΟT.                          |               |                                              | $\epsilon = 1.07 \text{ cm}$ | -1                                                       | TU                             | ~\v)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Ir freq,<br>cm <sup>-1</sup> | State<br>(ir) | Raman<br>freq, <sup>a</sup> cm <sup>-1</sup> | νi                           | $\Gamma_i$                | $\nu_{\rm calcd},  {\rm cm}^{-1}$ | Description                                                                                 |
|------------------------------|---------------|----------------------------------------------|------------------------------|---------------------------|-----------------------------------|---------------------------------------------------------------------------------------------|
|                              |               |                                              | C                            | $Hg[Co(CO)_4]$            | 2                                 |                                                                                             |
|                              |               | 2090                                         | $\nu_1$                      | $A_{1g}$                  | 2090                              | $\nu(R_{\rm ex}) + \nu(R_{\rm eg})$                                                         |
| 2072                         | Ь             |                                              | $\nu_{11}$                   | $A_{2u}$                  | 2072                              | $\nu(R_{\rm ax}) + \nu(R_{\rm eq})$                                                         |
| 2022                         | b             |                                              | $\nu_{12}$                   | $A_{2u}$                  | 2022                              | $\nu(R_{\rm eq}) + \nu(R_{\rm ax})$                                                         |
|                              |               | 2027                                         | $\nu_2$                      | $A_{1g}$                  | 2027                              | $\nu(R_{eq}) + \nu(R_{ax})$                                                                 |
| 2007                         | Ь             |                                              | $\nu_{26}$                   | $\mathbf{E}_{\mathbf{u}}$ | 2007                              | $\nu(R_{eq})$                                                                               |
|                              |               | 1982                                         | $\nu_{18}$                   | $\mathbf{E}_{\mathbf{g}}$ | 1983                              | $\nu(R_{eq})$                                                                               |
|                              |               | 720                                          | $2\nu_{80}$                  | -                         |                                   |                                                                                             |
|                              |               | 580                                          | $\nu_3$                      | $A_{1g}$                  | 580                               | $\delta(\beta_{\mathrm{op}}) + \delta(\gamma_{\mathrm{eq}}) + \delta(\Delta_{\mathrm{op}})$ |
| 546                          | е             |                                              | $\nu_{13}$                   | $A_{2u}$                  | 546                               | $\delta(\beta_{\rm op}) + \delta(\Delta_{\rm op}) + \delta(\gamma_{\rm eq})$                |
|                              |               | 543                                          | $\nu_{19}$                   | $\mathbf{E}_{\mathbf{g}}$ | 542                               | $\delta(\beta_{\rm op}) + \delta(\gamma_{\rm eq})$                                          |
| <b>53</b> 2                  | е             |                                              | V27                          | $\mathbf{E}_{\mathbf{u}}$ | 530                               | $\delta(\beta_{\rm op}) + \delta(\Delta_{\rm op}) + \delta(\beta_{\rm ax})$                 |
| 499                          | е             |                                              | V28                          | $\mathbf{E}_{\mathbf{u}}$ | 496                               | $\delta(\beta_{\rm ip}) + \delta(\Delta_{\rm ip}) + \nu(r_{\rm eq})$                        |
|                              |               | 498                                          | $\nu_{20}$                   | $\mathbf{E}_{\mathbf{g}}$ | 498                               | $\delta(\beta_{\rm ip}) + \delta(\Delta_{\rm ip}) + \nu(r_{\rm eq})$                        |
|                              |               | 477                                          | $\nu_{21}$                   | $\mathbf{E}_{\mathbf{g}}$ | 476                               | $\delta(\beta_{ex}) + \delta(\beta_{eq})$                                                   |
| 476                          | е             |                                              | <b>v</b> 29                  | $\mathbf{E}_{\mathbf{u}}$ | <b>4</b> 72                       | $\delta(\beta_{ax}) + \delta(\beta_{eq})$                                                   |
|                              |               | <b>4</b> 62                                  | V4                           | $A_{1g}$                  | <b>4</b> 62                       | $\delta(r_{\rm ax}) + \nu(L)$                                                               |
|                              |               | 417                                          | $\nu_5$                      | $A_{1g}$                  | 417                               | $\nu(r_{eq})$                                                                               |
| 416                          | е             |                                              | $\nu_{14}$                   | $A_{2u}$                  | 416                               | $\nu(r_{\rm ex}) + \nu(r_{\rm eq}) + \nu(L)$                                                |
| 400'                         |               |                                              | V15                          | $A_{2u}$                  | 400                               | $\nu(r_{\rm eq}) + \nu(r_{\rm ax})$                                                         |
|                              |               | 372                                          | $\nu_{22}$                   | $\mathbf{E}_{\mathbf{g}}$ | 371                               | $\nu(r_{eq}) + \delta(\beta_{ip}) + \delta(\beta_{ex})$                                     |
| 368                          | е             |                                              | $\nu_{30}$                   | $\mathbf{E}_{\mathbf{u}}$ | 367                               | $\nu(r_{eq}) + \delta(\beta_{ip}) + \delta(\beta_{ax})$                                     |
| 195                          | е             |                                              | $\nu_{16}$                   | $A_{2u}$                  | 195                               | $\nu(L)$                                                                                    |
|                              |               | 163                                          | Ve                           | $A_{1g}$                  | 163                               | $ u(L) + \delta(\gamma_{eq}) + \delta(\Delta_{op}) + \delta(eta_{op})$                      |
| 126                          | е             |                                              | $\nu_{31}$                   | $\mathbf{E}_{\mathbf{u}}$ | 127                               | $\delta(\Delta) + \delta(\gamma_{ax}) + \delta(\beta_{ax}) + \delta(\beta_{ip})$            |
|                              |               |                                              | $\nu_{28}$                   | $\mathbf{E}_{\mathbf{g}}$ | 124                               | $\delta(\Delta) + \delta(\beta_{ax}) + \delta(\gamma_{ax})$                                 |
| 109                          | е             |                                              | $\nu_{17}$                   | $A_{2u}$                  | 109                               | $\delta(\gamma_{ m eq}) + \delta(\Delta_{ m op}) + \delta(eta_{ m op})$                     |
|                              |               | 101ª                                         | $\nu_{24}$                   | $\mathbf{E}_{g}$          | 109                               | $\delta(\Delta)$                                                                            |
|                              |               |                                              | $\nu_{32}$                   | $\mathbf{E}_{\mathbf{u}}$ | 108                               | $\delta(\Delta)$                                                                            |
|                              |               | 101,                                         | $\nu_7$                      | $A_{1g}$                  | <b>9</b> 2                        | $ u(L) + \delta(\gamma_{eq}) + \delta(\Delta_{op}) + \delta(\beta_{op}) $                   |
|                              |               |                                              | V33                          | $\mathbf{E}_{\mathbf{u}}$ | 78                                | $\delta(\gamma) + \delta(\theta) + \delta(\Delta_{\rm ip})$                                 |
|                              |               |                                              | $\nu_{25}$                   | $\mathbf{E}_{\mathbf{g}}$ | 70                                | $\delta(\gamma) + \delta(\Delta_{\mathrm{op}})$                                             |
| 45                           | е             |                                              | V34                          | $\mathbf{E}_{\mathbf{u}}$ | <b>4</b> 2                        | $\delta(	heta)$                                                                             |
|                              |               |                                              | $\epsilon = 0.76 \text{ cm}$ | 1-1                       |                                   |                                                                                             |

TABLE I (Continued)

<sup>*a*</sup> All Raman shifts measured on powdered samples. <sup>*b*</sup> Hexane solution. <sup>*c*</sup> Heptane solution. <sup>*d*</sup> Cyclohexane solution. <sup>*e*</sup> Nujol mull. <sup>*f*</sup> Frequency reported by Manning.<sup>11</sup> <sup>*o*</sup> The 101-cm<sup>-1</sup> band is very broad, including both  $\nu_7$  and  $\nu_{24}$ , but is not included in calculating  $\epsilon$ .

| Symmetries of Vibrational Modes for the     |                        |                                           |  |  |  |  |  |  |
|---------------------------------------------|------------------------|-------------------------------------------|--|--|--|--|--|--|
| $M[Co(CO)_4]_2$ MOLECULES $(D_{3d})$        |                        |                                           |  |  |  |  |  |  |
| Internal coordinate                         | Symbol                 | Representation                            |  |  |  |  |  |  |
| (C–O) <sub>ax</sub> str                     | $R_{\mathrm{ax}}$      | $1 A_{1g} + 1 A_{2u}$                     |  |  |  |  |  |  |
| (C-O <sub>eq</sub> str                      | $R_{eq}$               | $1 A_{1g} + 1 A_{2u} + 1 E_{g} + 1 E_{u}$ |  |  |  |  |  |  |
| (Co-C) <sub>ax</sub> str                    | $r_{\rm ax}$           | $1 A_{1g} + 1 A_{2u}$                     |  |  |  |  |  |  |
| (Co-C) <sub>eq</sub> str                    | $r_{eq}$               | $1 A_{1g} + 1 A_{2u} + 1 E_{g} + 1 E_{u}$ |  |  |  |  |  |  |
| (M–Co) str                                  | L                      | $1 A_{1g} + 1 A_{2u}$                     |  |  |  |  |  |  |
| (Co-C-O) <sub>eq,op</sub> bend              | $\beta_{op}$           | $1 A_{1g} + 1 A_{2u} + 1 E_{g} + 1 E_{u}$ |  |  |  |  |  |  |
| (Co-C-O) <sub>eq,ip</sub> bend              | $\beta_{ip}$           | $1 A_{1u} + 1 A_{2g} + 1 E_{g} + 1 E_{u}$ |  |  |  |  |  |  |
| (Co-C-O) <sub>ax</sub> bend                 | $\beta_{ax}$           | $1 E_g + 1 E_u$                           |  |  |  |  |  |  |
| (C-Co-C) <sub>eq,ip</sub> bend <sup>a</sup> | $\Delta_{ip}$          | $1 A_{1g} + 1 A_{2u} + 1 E_{g} + 1 E_{u}$ |  |  |  |  |  |  |
| $(C_{ax}-Co-C_{eq})_{op} def$               | $\Delta_{\mathrm{op}}$ | $1 A_{1g} + 1 A_{2u} + 1 E_{g} + 1 E_{u}$ |  |  |  |  |  |  |
| $(M-Co-C)_{eq} def^b$                       | $\gamma_{eq}$          | $1 A_{1g} + 1 A_{2u} + 1 E_{g} + 1 E_{u}$ |  |  |  |  |  |  |
| (M–Co–C) <sub>ax</sub> def                  | $\gamma_{ax}$          | $1 E_g + 1 E_u$                           |  |  |  |  |  |  |
| (Co-M-Co) def                               | θ                      | $1 E_u$                                   |  |  |  |  |  |  |
| Torsion                                     | au                     | 1 A <sub>1u</sub>                         |  |  |  |  |  |  |

TABLE II

<sup>*a*</sup>  $A_{1g}$  and  $A_{2u}$  modes redundant with those of  $\Delta_{op}$ . <sup>*b*</sup> All modes redundant with those of  $\Delta_{op}$ .

active  $(A_{2u})$  mode only in the phase relationship of the stretching motion of the axial C–O group in one Co- $(CO)_4$  unit to that in the other  $Co(CO)_4$  unit. In the  $A_{1g}$  mode, both axial C–O groups vibrate in phase while in the  $A_{2u}$  mode one axial C–O group vibrates 180° out of phase with respect to the other. The same argument applies to the  $A_{1g}$  and  $A_{2u}$  modes which are predominantly equatorial C–O stretching vibrations.

The symmetry coordinates for these modes, when used in the Wilson GF matrix method<sup>26</sup> approach to the solution of the vibrational secular equation, generate the diagonal elements of the symmetrized F (potential energy) matrix which, for the vibrations being considered here, have the forms.

$$F_{ax}(A_{1g}) = k_{ax} + k'_{ax,ax}$$

$$F_{eq}(A_{1g}) = k_{eq} + 2k_{eq,eq} + k'_{eq,eq} + 2k''_{eq,eq}$$

$$F(_{ax}A_{2u}) = k_{ax} - k'_{ax,ax}$$

$$F_{eq}(A_{2u}) = k_{eq} + 2k_{eq,eq} - k'_{eq,eq} - 2k''_{eq,eq}$$

The symbols  $k_{ax}$ ,  $k_{eq}$ , and  $k_{eq,eq}$  are the general notations for diagonal and interaction valence force constants; the symbols k' and k'' refer to interaction forces between C-O groups that, in the  $D_{3d}$  point group, are equivalent to one another under the symmetry operations i and  $S_6$ , respectively. The coupling of the C-O groups in one Co(CO)<sub>4</sub> unit to those in the other Co(CO)<sub>4</sub> unit across the Co-M-Co bonding framework is not expected to be large, so the interaction force constant  $k'_{ax,ax}$  and the sum  $(k'_{eq,eq} + 2k''_{eq,eq})$  should be small and the  $A_{1g}, A_{2u}$  "pairs" are nearly degenerate.

In the absence of Raman polarization measurements which would have permitted unambiguous assignment of the Raman spectra of the three compounds in this spectral region, we have utilized the above argument to assign the three bands observed in the Raman spectra. Thus, the bands observed at *ca*. 2090 and *ca*. 2025 cm<sup>-1</sup> are assigned as  $\nu_1$  and  $\nu_2$ , respectively, the A<sub>1g</sub> analogs of  $\nu_{11}$  and  $\nu_{12}$ . The remaining band at *ca*.

<sup>(26)</sup> E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, "Molecular Vibrations," McGraw-Hill, New York, N. Y., 1955.

1975 cm<sup>-1</sup> is assigned as the fundamental  $\nu_{18}$  of  $E_g$  symmetry.

The relatively large frequency difference between the bands assigned as  $\nu_{18}$  and  $\nu_{26}$  is also explained by the above arguments. For these two modes, the diagonal elements in the symmetrized F matrix are  $F_{eq}(E_g) = k_{eq} - k_{eq,eq} + k'_{eq,eq} - k''_{eq,eq}$  and  $F_{eq}(E_u) = k_{eq} - k_{eq,eq} - k'_{eq,eq} + k''_{eq,eq}$ . Requiring the magnitude of the sum  $(k'_{eq,eq} + 2k''_{eq,eq})$  to be small imposes no other restrictions on the signs and magnitudes of  $k'_{eq,eq}$  and  $k''_{eq,eq}$ . It appears that their signs and magnitudes are such as to make the sum  $(k'_{eq,eq} - k''_{eq,eq})$  large enough to cause an appreciable separation between  $\nu_{18}$  and  $\nu_{26}$ .

The Middle-Frequency Region.—Observed bands in this region  $(300-800 \text{ cm}^{-1})$  are due primarily to Co-C stretching vibrations and Co-C-O bending vibrations and include seven Raman-active fundamentals (3 A<sub>1g</sub> and 4 E<sub>g</sub>) and seven infrared-active fundamentals (3 A<sub>2u</sub> and 4 E<sub>u</sub>).

The observed infrared spectra of the three compounds in the middle-frequency region are very similar, having one group of four bands between 475 and 550 cm<sup>-1</sup> and a second group of three bands between 365 and 425 cm<sup>-1</sup>. The former group is collectively assigned to the primarily Co-C-O bending vibrations (1 A<sub>2u</sub>, 3 E<sub>u</sub>) and the latter to the primarily Co-C stretching vibrations (2 A<sub>2u</sub>, 1 E<sub>u</sub>).

We employ the results of Manning's investigation<sup>11</sup> of the infrared spectrum of Hg  $[Co(CO)_4]_2$  and its axially substituted derivatives, Hg  $[Co(CO)_3L]_2$ , in assigning the band observed at *ca*. 547 cm<sup>-1</sup> in the infrared spectrum of all three compounds as the fundamental  $\nu_{13}$  of A<sub>2u</sub> symmetry. The three remaining bands in this group are assigned as the fundamentals  $\nu_{27}$ ,  $\nu_{28}$ , and  $\nu_{29}$  of E<sub>u</sub> symmetry.

The infrared bands due to primarily Co–C stretching vibrations are assigned, in decreasing frequency order, to the fundamentals  $\nu_{14}(A_{2u})$ ,  $\nu_{15}(A_{2u})$ , and  $\nu_{30}(E_u)$ , respectively. The very weak band assigned as  $\nu_{15}$  was not observed in the infrared spectrum of Hg[Co(CO)<sub>4</sub>]<sub>2</sub>. Manning,<sup>11</sup> however, did observe this band and we include in Table I his reported frequency.

We expect the same near degeneracy of infraredand Raman-active band "pairs" in this region as was observed in the  $\nu$ (C–O) region. For bands of E symmetry, this near degeneracy is observed with, for example, the bands in the Raman spectrum of Zn[Co-(CO)<sub>4</sub>]<sub>2</sub> observed at 541, 513, 492, and 369 cm<sup>-1</sup> and assigned as the fundamentals  $\nu_{19}-\nu_{22}$  of E<sub>g</sub> type correlating with the observed infrared bands at 534, 512, 488, and 365 cm<sup>-1</sup> of E<sub>u</sub> symmetry.

For bands of A symmetry in this region, increased coupling with Co–M distentions and consequent interactions across the Co–M–Co framework is expected to cause rather large separations of the ir and Raman "pairs." Thus, we assign the Raman bands at 561 (Zn, Cd) and 580 cm<sup>-1</sup> (Hg) as  $\nu_3$ , at 463 (Zn) and 462 cm<sup>-1</sup> (Hg) as  $\nu_4$ , and at 426 (Zn), 431 (Cd), and 417 cm<sup>-1</sup> (Hg) as  $\nu_5$ , all of A<sub>1g</sub> symmetry. No band assignable as  $\nu_4$  was observed for Cd[Co(CO)<sub>4</sub>]<sub>2</sub>.

The Raman frequencies reported by Stammreich, et al.,<sup>7</sup> for Cd[Co(CO)<sub>4</sub>]<sub>2</sub> in methanol solution deviate significantly from the data, obtained from powdered samples, that we report. Because of the similarity of

the Raman powder spectrum of the Cd compound to those of the Zn and Hg compounds, because of the similarity of the Raman spectra of all three compounds to their respective infrared spectra, and because of the changes observed in the  $\nu$ (C–O) region of the infrared spectrum of these compounds on dissolution in more polar solvents such as methanol, we conclude that they exist in methanol, not as  $M[Co(CO)_4]_2$  molecules, but as partially dissociated or solvent-complexed species.<sup>27–29</sup> Support for this conclusion comes from Stammreich's data. Stammreich<sup>30</sup> observed Raman bands at 532 and  $619 \text{ cm}^{-1}$  in the spectrum of an aqueous solution of NaCo(CO)<sub>4</sub> and Edgell and Lyford<sup>31</sup> observed a band at 558 cm<sup>-1</sup> in the Raman spectrum of the same system. All three frequencies agree, within experimental error, with bands reported by Stammreich in the Raman spectrum of  $Cd[Co(CO)_4]_2$  at 530, 560, and 619 cm<sup>-1</sup> and may be due to  $Co(CO)_4^-$ . However, recent 5- $\mu$  spectra and conductance measurements<sup>28</sup> indicate relatively low  $Co(CO)_4$  - concentrations in methanol, so the origin of the extra bands observed by Stammreich in this solvent is not unequivocally established.

The Low-Frequency Region.—This spectral region is characterized by a strong Raman-active band  $(\nu_6,~A_{1g})$  and a strong infrared-active band  $(\nu_{16},~A_{2u})$ due primarily to the symmetric and asymmetric stretching motions, respectively, of the M-Co bonds. These bands, shown in Figure 1, are easily identifiable in the observed spectra of the three compounds. The Ramanactive symmetric stretching motion should be insensitive to the mass of the central metal atom; the band observed at ca. 165 cm<sup>-1</sup> in all three molecules is accordingly assigned as the fundamental  $\nu_6$ . For reasons discussed above, Stammreich's<sup>7</sup> observed value of 152  $cm^{-1}$  for  $\nu_6$  in the Cd compound is considered erroneous. The infrared-active bands assigned as  $\nu_{16}$  exhibit the expectedly strong dependence on the mass of M and are observed at 284, 218, and 195 cm<sup>-1</sup>, respectively, for the Zn, Cd, and Hg compounds.

The remainder of the bands observed in this region are due to C–Co–C and skeletal bending deformations. Four such bands are expected in the Raman  $(1 A_{Ig} + 3 E_g)$  and five are expected in the infrared spectrum  $(1 A_{2u} + 4 E_u)$ , with the "extra" infrared band being due to a bending vibration of the Co–M–Co unit which has no Raman counterpart because the M atom occupies the center of symmetry.

The spectrum of the Cd compound, in which seven of the nine predicted modes were observed, is used as the basis for assigning these low-frequency bands. The Raman band at 100 cm<sup>-1</sup> and the infrared band at 111 cm<sup>-1</sup> are assigned as  $\nu_7(A_{1g})$  and  $\nu_{17}(A_{2u})$ , respectively, and are due primarily to M-Co-C<sub>eq</sub> and C-Co-C<sub>op</sub> deformations. The remaining Raman bands at 127, 108, and 73 cm<sup>-1</sup> are  $\nu_{23}$ ,  $\nu_{24}$ , and  $\nu_{25}$  of E<sub>g</sub> type; the in-

- (29) M. J. Mays and J. D. Robb, J. Chem. Soc. A, 561 (1969).
- (30) H. Stammreich, K. Kawai, Y. Taveres, P. Krumholz, J. Behmoiras, and S. Bril, J. Chem. Phys., 32, 1482 (1960).
- (31) W. F. Edgell and J. Lyford, *ibid.*, **52**, 4329 (1970).

<sup>(27)</sup> In contrast to Hg[Co(CO)<sub>4</sub>]<sub>2</sub> which exhibits  $\nu$ (C-O) at 2066 (m) and 1998 (s) cm<sup>-1</sup> in methanol, the infrared spectrum of Cd[Co(CO)<sub>4</sub>]<sub>2</sub> in this solvent contains bands at 2065 (w), 2048 (m), 1981 (s, sh), 1967 (s), 1954 (s, sh), and 1916 (vw) cm<sup>-1,28</sup> The presence of solvated three- or four-coordinated cadmium species is strongly indicated by the complexity of the spectrum and by the shift of the principal bands to lower frequencies. Mays and Robb<sup>29</sup> have noted similar shifts in complexes of Cd[M(CO)<sub>3</sub>C6H<sub>6</sub>]<sub>2</sub> (M = Mo, W) with nitrogen bases.

<sup>(28)</sup> J. M. Burlitch and T. Blackmore, unpublished observations.



Figure 1.—Spectral comparison of the predominantly metalmetal stretching modes  $\nu_{16}(A_{2u}, \text{ infrared})$  and  $\nu_6(A_{1g}, \text{ Raman})$  in the  $M[Co(CO)_4]_2$  series.

frared band at 119 cm<sup>-1</sup> is  $\nu_{81}$  of  $E_u$  type. These four bands and the unobserved  $\nu_{82}$  and  $\nu_{33}$  are expected to be complex mixtures of the C-Co-C<sub>ip</sub>, C-Co-C<sub>op</sub>, M-Co-C<sub>eq</sub>, and M-Co-C<sub>ax</sub> bending vibrations. The lowest frequency infrared band at 51 cm<sup>-1</sup> is assigned as  $\nu_{84}(E_u)$  and is primarily a Co-M-Co bending deformation.

Although fewer bands have been observed in this region for the Zn and Cd compounds, the similarities of the observed band positions to those in the Cd compound lead to the assignments given in Table I.

# Vibrational Analysis and Molecular Force Fields

The complete infrared and Raman spectra, taken together with the similarity of these compounds, our reported work on MCo(CO)<sub>4</sub>-containing systems,<sup>32,33</sup> and the energy factoring that is observed for metal carbonyls, provide a basis for evaluating a valence force field for each of the closely related compounds in the  $M[Co(CO)_4]_2$  series. The spectra of each compound were found to be independent of the physical (mull, solution) state of the sample in all regions, except for broadening of mull spectra in the  $5-\mu$  region. The similarity of solid and solution spectra is not surprising for a nonpolar, nonionic system. In the 5- $\mu$  region, data on dilute solutions in nonpolar solvents have been used since they are most free of intermolecular perturbations on intramolecular modes. The force field evaluation has been done as discussed below.

The vibrational spectrum of each molecule was computed employing the normal-coordinate analysis programs GMAT and VSEC.<sup>34</sup> The symmetry coordinates, based on valence-type internal coordinates, were generated in the conventional manner.<sup>26,35</sup> The vibrational analysis program of Edgell and Yantis<sup>36</sup> was employed in initial force field definition.

The force fields reported here were obtained by the following procedure. First, approximate values for the k(CO)'s and associated interaction constants were calculated for one Co(CO)<sub>4</sub> moiety, assumed uncoupled from the rest of the molecule, by solving the energy-factored eigenvalue problem with the average frequency of each ir-Raman spectral "pair." These values were refined and coupling across the Co-M-Co system was introduced by approximately solving the similar problem for the case of the entire C-O oscillator system uncoupled from the remainder of the molecule. At this point the values of the calculated constants for the molecule  $Hg[Co(CO)_4]_2$  were in reasonable agreement with those resorted by Bor<sup>10</sup> based on the <sup>13</sup>CO isotope absorption bands observed in the infrared spectrum. Bor's procedure, however, does not consider coupling of the C–O oscillator system with the remainder of the molecule and, as such, does not include contributions of Co-CO stretching motions to the  $\nu(CO)$  modes. We have found that such motions contribute 5–10% to the total energy of the  $\nu(CO)$ modes; the effect of this contribution is substantially to lower the values of several of the CO interaction force constants from the values reported by Bor.<sup>10</sup>

Next, the middle- and low-frequency spectra were computed in a perturbed localized mode calculation to approximate agreement with the observed spectra using the Edgell-Yantis program<sup>36</sup> using force field elements transferred from work on  $X_{\delta}MCo(CO)_4$  compounds<sup>32,33</sup> as a starting point. The Co-M and Co-M, Co-M constants were approximated from  $\nu_6$  and  $\nu_{16}$ using a pseudotriatomic model by assigning the Co atoms an effective mass of 87 amu, which corresponds to that of Co and the axial C-O. On this basis, the initial values of k(M-Co) were 1.30, 1.16, and 1.19 mdyn/Å for Zn-Co, Cd-Co, and Hg-Co, respectively. These are closer in magnitude to the final values than those based on any other approximation reported to date, but they are not sufficiently good since they do not give the correct ordering or an indication of just how similar the values actually are. We will deal with the problem of formulating more accurate localized model approximations for metal-metal stretching modes in a future paper.<sup>37</sup>

Finally, coupling between the C–O oscillator system and the remainder of the molecule was introduced and the force field refinement was carried out by first adjusting the main diagonal elements,  $F_{ii}$ , to obtain a common force field that gave an approximately correct calculated spectrum for the three compounds. This approach is suggested by the similarity of their spectra. However, the observed spectra require the three force fields to differ. Thus, analogous  $A_{1g}$  and  $E_g$  type bands in the three compounds do not coincide despite the symmetry-required exclusion of any dependence of these frequencies on the mass of the central metal. Therefore, the initial force field was perturbed sepa-

<sup>(32)</sup> K. L. Watters, J. N. Brittain, and W. M. Risen, Jr., Inorg. Chem., 8, 1347 (1969).

<sup>(33)</sup> K. L. Watters, W. M. Butler, and W. M. Risen, Jr., *ibid.*, **10**, 1970 (1971).

<sup>(34)</sup> J. H. Schachtschneider, Technical Reports No. 231-64 and 57-65, Shell Development Co., Emeryville, Calif.

 $<sup>\</sup>left(35\right)$  For a partial tabulation of the symmetry coordinates employed, see ref 11.

<sup>(36)</sup> W. F. Edgell and R. L. Yantis, unpublished work; R. L. Yantis, Sc.M. Thesis, Purdue University, 1964.

<sup>(37)</sup> K. L. Watters, J. R. Johnson, and W. M. Risen, Jr., to be submitted for publication.

|                                                                                    |                                                              | Ford   | e Field Elements <sup>b,c</sup>                                                    | Constant for the Serie                                            | s                                                                                           |        |                                                           |  |
|------------------------------------------------------------------------------------|--------------------------------------------------------------|--------|------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------|--|
| $k_{	au,R} \ k_{R_{ m ax},R_{ m eq}} \ k_{r_{ m ax},r_{ m eq}} \ k'_{L,r_{ m ax}}$ | $\begin{array}{c} 0.735 \\ 0.17 \\ 0.1 \\ -0.05 \end{array}$ |        | $k_{r_{ m ax},eta_{ m op}} \ k_{\Delta} \ k_{\gamma_{ m eq}} \ k_{\gamma_{ m ax}}$ | $egin{array}{c} 0.15 \\ 0.157^d \\ 0.10^d \\ 0.075^d \end{array}$ | $egin{array}{l} k	heta\ keta_{eta_{ar{1}p}},eta_{ar{1}p}\ keta\ \lambda,\Delta \end{array}$ |        | $\begin{array}{c} 0.085^{d} \\ 0.03 \\ 0.007 \end{array}$ |  |
|                                                                                    |                                                              | Force  | Field Elements <sup>b,c</sup> V                                                    | Which Vary for the Ser                                            | ies                                                                                         |        |                                                           |  |
|                                                                                    | Zn                                                           | Cd     | Hg                                                                                 |                                                                   | Zn                                                                                          | Cd     | Hg                                                        |  |
| $k_L^d$                                                                            | 1.30                                                         | 1.28   | 1.26                                                                               | $k_{L,r_{ex}}$                                                    | 0.27                                                                                        | 0.25   | 0.24                                                      |  |
| $k_{L,L}$                                                                          | 0.10                                                         | 0.14   | 0.08                                                                               | $k_{L,\gamma_{eq}};$                                              |                                                                                             |        |                                                           |  |
|                                                                                    |                                                              |        |                                                                                    | $-k_{L,\Delta_{\mathrm{op}}}$                                     | 0.04                                                                                        | 0.07   | 0.045                                                     |  |
| $k_{R_{ax}}d$                                                                      | 17.47                                                        | 17.38  | 17.40                                                                              | $k_{\beta_{ax}}d$                                                 | 0.272                                                                                       | 0.274  | 0.236                                                     |  |
| $k'_{R_{ax},R_{ax}}$                                                               | 0.108                                                        | 0.118  | 0.126                                                                              | $k_{\beta_{\rm ip}} d$                                            | 0.273                                                                                       | 0.267  | 0.244                                                     |  |
| $k_{R_{eq}}d$                                                                      | 16.45                                                        | 16.35  | 16.48                                                                              | $k_{\beta_{op}}{}^d$                                              | 0.31                                                                                        | 0.32   | 0.33                                                      |  |
| $k_{Req}, Req}$                                                                    | 0.100                                                        | 0.061  | 0.078                                                                              | $k_{\beta_{\text{op}}}$ , $\beta_{\text{op}}$                     | 0.00                                                                                        | 0.00   | 0.00                                                      |  |
| $k'_{R_{eq},R_{eq}}$                                                               | -0.179                                                       | -0.130 | -0.149                                                                             | $k' \beta_{op}, \beta_{op}$                                       | 0.00                                                                                        | 0.00   | 0.01                                                      |  |
| $k''_{R_{eq},R_{eq}}$                                                              | 0.049                                                        | 0.034  | 0.061                                                                              | $k^{\prime\prime}\beta_{\rm op},\beta_{\rm op}$                   | -0.004                                                                                      | -0.006 | -0.00                                                     |  |
| kraxd                                                                              | 2.30                                                         | 2.33   | 2.30                                                                               | $k_{\beta_{\text{BX}},\beta_{\text{ip}}}$                         | -0.027                                                                                      | -0.019 | -0.027                                                    |  |
| $k'_{r_{ax},r_{ax}}$                                                               | 0.130                                                        | 0.098  | 0.155                                                                              | $k_{\gamma eq}, \gamma_{eq}$                                      | 0.023                                                                                       | 0.029  | 0.017                                                     |  |
| $k_{r_{eq}}^{d}$                                                                   | 1.90                                                         | 193    | 1.94                                                                               | k' yeq, yeq                                                       | 0.021                                                                                       | 0.028  | 0.014                                                     |  |
| kreg, reg                                                                          | 0.47                                                         | 0.48   | 0.41                                                                               | k'' yeq, yeq                                                      | 0.019                                                                                       | 0.018  | 0.007                                                     |  |
| k'regireg                                                                          | 0.08                                                         | 0.10   | 0.06                                                                               | $k_{\theta,\gamma_{eq}}$                                          | -0.012                                                                                      | -0.023 | -0.012                                                    |  |
| k''reg, reg                                                                        | 0.065                                                        | 0.064  | 0.031                                                                              | $k_{\theta,\gamma_{\mathrm{EX}}}$                                 | -0.01                                                                                       | -0.02  | -0.01                                                     |  |
| mi i i                                                                             |                                                              |        |                                                                                    |                                                                   |                                                                                             |        | ~                                                         |  |

# Table III $M[Co(CO)_4]_2$ Molecular Force Fields<sup>a</sup>

<sup>a</sup> The numerical values reported here are those used in calculating the spectra reported in Table I. They have been rounded off to the limits of physical significance, but for no element did the roundoff involve more than 0.005 mdyn/Å. <sup>b</sup> All force field elements in millidynes per ångström. <sup>c</sup> All internal valence coordinates are defined as positive for bond stretching or angle opening; thus all force field elements have unique signs. Internal coordinate symbols are defined in Table II, columns 1 and 2. <sup>d</sup> Diagonal element; corresponds to  $k_{ii}$  for internal valence coordinate  $\xi_i$ .

rately in each case to bring the calculated spectrum into agreement with the observed spectrum.

Numerically, the extent of calculated-observed agreement is given commonly by  $\epsilon = (\Sigma_i | \nu_i (\text{calcd}) - \nu_i (\text{obsd}) |)/n$ , where *n* is the number of observed fundamentals. The  $\epsilon$  values in this work are given in Table I. However, requiring  $\epsilon$  to approach zero, once it is less than about 3 or 4 cm<sup>-1</sup>, is not a particularly meaningful measure of force field validity, because of isotopic distribution, anharmonicity, and experimental effects. At that point, more meaningful criteria include requiring that the calculated eigenvectors and potential energy contributions for each mode correspond to the character of the vibrational mode to which the observed band is assigned. Each of these criteria has been applied here.

The force fields with which the calculated frequencies given in Table I were obtained are given in Table III. As can be seen, the force fields for the three molecules are very similar, and, in fact, many of their elements are identical. Only a few elements differ significantly, and in most of these cases the differences are within the inaccuracy with which the values reported there are known. There are, however, three characteristics of the force field evaluation that require comment. First, the spectra clearly require that certain relationships exist between equivalent force constants for the series of compounds. For example, the  $\nu$ (C–O) bands in the  $Cd[Co(CO)_4]_2$  spectra are lower in frequency than analogous bands in the  $Zn[Co(CO)_4]_2$  spectra, so it is to be expected that the C-O stretching force constants for the Cd molecule would be a bit lower than those for the Zn molecule. We have examined each of the trends in force constants, including the interaction constants, and find that they are consistent with the observed spectral variations. It must be reemphasized, however, that the variations in both the spectra and the force constants are relatively small.

The second characteristic of this calculation is that the diagonal force field elements for the skeletal deformations have been held to constant values while the low-frequency modes which depend on them have been fit with their interaction force constants. Since the metal-metal stretching modes, especially  $\nu_6$ , mix significantly with these deformations (the contribution of the M-Co stretching motion to the potential energy of modes  $\nu_6$ ,  $\nu_7$ ,  $\nu_{16}$ , and  $\nu_{17}$  was calculated to be, on the average, 65, 33, 100, and 5%, respectively), the validity of k(M-M) values depends upon the deformation modes being accurately calculated. Thus, the fit of these modes with identical diagonal deformation force constants and small variations in interaction deformation force constants supports the calculated magnitudes of the metal-metal force constants reported here.

The third characteristic of the calculation concerns the interaction force constants. There are two types of interaction constants of interest: those of the metal-metal system with the  $Co(CO)_4$  moieties and those between these moieties across the Co-M-Co system. Those of the latter type are small and are required by the observed nondegeneracy of the infrared-Raman "pairs" discussed earlier. Their required nonzero values prevent the force field from having fewer elements than that reported in Table III. Interaction constants of the former type were varied as necessary to fit the calculated spectra. For example, the value for the Co-M,Co-C<sub>ax</sub> interaction was initially set to 0.25 mdyn/Å for all three molecules on the basis of preliminary calculations and the similarity of the observed spectra. It was varied within the constraints placed by the axial Co-C stretching mode and the greatly different extents of its involvement in the Co-M stretching modes.

Interaction force constants within the  $Co(CO)_4$ moieties are, for the most part, typical of those found in previous publications. Thus, the Co-C,C-O interactions involving a common carbon atom have been set to 0.735 mdyn/Å, the value employed in earlier calculations for metal carbonyls.<sup>82,33,38</sup>

### Discussion

The most intriguing result of the vibrational analysis is that the three metal-metal force constants are so nearly equal. We have found that the loci of possible k(M-Co) values are sufficiently closely restricted to a small region about the reported values that the trend in them, which is also supported by the experimental spectra, is probably real. However, within strictly numerical criteria for the absolute accuracy of such force constants at this level, they may be considered identical. In any event, there are not the 10-25%differences between the three k(M-Co) values previously reported.<sup>7,20</sup>

The simplest description of Co-M bond in these molecules is, of course, that of a single  $\sigma$ -type covalent bond which is formally the result of  $(CO)_4Co \rightarrow M$  electronpair donation. On this basis alone and the naive assumption that the bond strengths depend only on the difference of Co and M electronegativities, one would expect the Zn-Co bond to be a bit stronger than the Cd-Co or Hg-Co bonds. Although this expectation appears to be borne out by the k(M-Co) values, it is too facile.

It is straightforward to show that Co-M  $\pi$ -type bonding can exist in addition to  $\sigma$  bonding and that it may be significant. Thus, with conventional coordinate system definitions, the M ns and M  $np_z$  orbitals transform as  $A_{1g}$  and  $A_{2u}$  and form the primary M atom basis for M-Co(CO)<sub>4</sub>  $\sigma$  bonding, since  $\Gamma_{\sigma}$ (Co-M-Co)  $= A_{1g} + A_{2u}$  Symmetry-proper combinations of either Co atomic orbitals or "molecular orbitals" of a pseudomolecular  $C_{3v}$  Co(CO)<sub>4</sub><sup>-</sup> construct are readily formed to complete the  $\sigma$ -bonding theory. With either description of the  $Co(CO)_4^-$  ligand orbitals, *i.e.*, Co atomic orbitals or  $C_{3v}$  Co(CO)<sub>4</sub><sup>-</sup> pseudomolecular orbitals, there are based on this moiety orbitals which transform as  $E_u$  in the whole-molecule point group and have the proper spatial properties to overlap with the  $E_u(M np_x, np_y)$  orbital pair. Since these  $Co(CO)_4$ --(38) L. H. Jones, R. S. McDowell, and M. Goldblatt, Inorg. Chem., 8, 2349 (1969).

based  $E_u$  orbitals are formally filled and the M  $np_{x,n}p_y$ pair is formally empty,  $\pi$ -type bonding is feasible. The resulting symmetrized basis orbitals will mix, in the eigenvalue solution, with the other  $E_u$  basis functions. From overlap considerations it is estimated that the greatest mixing will be with those generated from both axial and equatorial CO  $\pi^*$  orbitals. Since the resulting  $E_u$  molecular  $\pi$ -type orbitals extend over the entire molecule, the possible importance of  $\pi$ -type bonding in determining the k(M-Co) values is seen, and the necessity for significant interaction force constants across the Co-M-Co system, such as  $k'_{\tau,\tau}$  or  $k'_{R,R}$ , is understood. The extent of  $\pi$ -type overlap is expected to be greater in the Zn compound, because of its size relationship to Co, than in the Hg compound.

The 70-eV mass spectra of the  $M[Co(CO)_4]_2$  compounds have been interpreted to indicate that the Zn-Co and Cd-Co bonds are substantially stronger than the Hg-Co bond, with respect to fragmentation by electron impact.<sup>22</sup> However, such a conclusion does not derive simply from the 70-eV spectra alone. Thus, the higher normalized mass spectral intensities for MCo<sub>2</sub>-containing fragments in the Zn and Cd cases than in the Hg case do not necessarily result only from relative resistance to M-Co cleavage in the three unperturbed molecules and may result, for example, from the greater ability of the Zn and Cd to stabilize, through  $\pi$  bonding, metastable polymetallic species in the mass spectrometer. We do not accept a great difference in the M-Co bond dissociation energies of the groundstate molecules as being firmly established by the mass spectral measurements reported to date. It is clear that the M-Co bond strengths, as given by k(M-Co), in the three ground-state molecules are very similar.

Acknowledgment.—We gratefully acknowledge the support of this work by the Advanced Research Projects Agency under Contract SD-86 with Brown University. The laser-Raman instrument purchase was made possible through Grant GP-10187, and the research was supported in part by the National Science Foundation. Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research.