is the boron hybrid to X and

$$
\bar{\phi}_h \left[= \frac{1}{1 + \lambda_x^2} \left[\bar{\phi}_s + \lambda_x^2 \bar{\phi}_p \right] \right]
$$

signifies the average radial distance of ϕ_h . Using Slater functions for ϕ_s and ϕ_p { $\phi = [(2\zeta)^{5/2}/(4!)^{1/2}]re^{-\zeta r}$ }, we find

$$
\frac{\mathrm{d}\bar{\phi}_{\mathrm{h}}}{\mathrm{d}\lambda_{x}} = 2[\bar{\phi}_{\mathrm{p}} - \bar{\phi}_{\mathrm{s}}] \frac{\lambda_{x}}{(1 + \lambda_{x}^{2})^{2}}
$$

Thus

$$
\frac{\mathrm{d}S_3}{\mathrm{d}S_2} \cong (2\Delta R)K \frac{\lambda_x^2}{(1+\lambda_x^2)^2} = 2(\Delta R)K(f_\mathrm{s}f_\mathrm{p})
$$

where f_s and f_p are the fractional s and p characters of the B hybrid to X. By including the variation in *K* with λ_x , we compute the curve in Figure 1 for $(S_3)_2$ =

Figure 1.—Adduct bond stretch with respect to $BH₃$ bend interaction coordinate as,a function of boron per cent of s character in the adduct bond. The solid line is the theoretical curve and experimental values of $(S_3)_2$ are indicated with arrows (see insert).

 $f(f_s)$. This curve is developed by treating ΔR as a parameter, a value of 0.2 for which yields $dS_3/d\lambda_x =$ 0.06 A for sp2 boron and 0.04 A for **sp3** boron, values which are in accord with chemical intuition.⁶ When the experimental values of $(S_3)_2$ are placed on this curve, qualitatively reasonable results are obtained for the boron hybridization. With CN^- as the donor the boron is seen to take on \sim sp³ character, a value consistent with the reported value⁷ of $J_{\rm HBH}$ for BH₃CN⁻. The isoelectronic BH₃CO is found to involve \sim 16% B s character in the hybrid to CO. (CNDO/2 calculations⁴ give 26 $\%$ and 19 $\%$ s character for these hybrids, respectively.) Similarly F^- and PF_3 are found to involve $\langle 25\% \rangle$ B s characters in the B-X bonds, as expected. An especially low value for $BH₃NC⁻$ is to be noted. As mentioned above, there may be some error

(7) J. R. Berschied, Jr., and K. F. Purcell, *Inorg.* Chem., **9,** 624 (1970)

in the force field for this molecule which results in the low value. Values for the $NH₃$ and $NMe₃$ adducts⁸ are included in Figure 1 but must be treated as tentative. Those values were not computed according to the same constraints as were those of the other adducts⁴ and all force constants for these two adducts were reported in units of $mdyn/\AA$ with no indication of the value of *r* used in the unit conversion for bending coordinate constants. The per cents of s character for these adducts are not unreasonable, however.

The effect of $BH₃$ hyperconjugation is expected to be barely discernible in Figure 1. While B-X backdonation would serve to reduce $(S_3)_2$, no drastic reduction is found for BH_3CO and BH_3PF_3 . In fact, the per cent of s character for BH3CO estimated from Figure 1 is in good agreement with that deduced from the CNDO/2 description of the B-C σ bond.

In conclusion, we find the HOFF model to be applicable to these $BH₃X$ adducts with semiquantitative results. This approach to orbital following of nuclear displacement also indicates that $BH₃$ hyperconjugation is observable with $X = CO$ or PF_s but that the B-X π -bond interaction is much less significant to BH₃ electron reorganization during nuclear displacement than is the σ -bond interaction.

Acknowledgment.-We wish to thank the National Science Foundation for support of this research through Grant GP-28924.

(8) R. C. Taylor, *Advan. Chem. Sev.,* **No. 42,** 67 (1964).

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF KEBRASKA, LINCOLN, NEBRASKA 68508

2-Substituted **1,3,2-Benzodioxaphosphole** Derivatives of Tungsten Hexacarbonyl

BY A. DENISE GEORGE AND T. ADRIAN GEORGE*

Received July 7, *1971*

In connection with our current interest in phosphorus-transition metal chemistry, we wish to report some 2-substituted **1,3,2-benzodioxaphosphole** (I) derivatives of tungsten hexacarbonyl of the type $C_6H_4O_2P$ - $(X)W(CO)_5$, where $X = Cl$ or $N(C_2H_5)_2$.

The new compounds were obtained by the reactions of the appropriate ligands, I, with the tetrahydrofuran complex of tungsten pentacarbonyl, prepared in situ by the irradiation of a solution of tungsten hexacarbonyl in tetrahydrofuran.¹ Related metal complexes of I with $X = F$ have been reported by Schmutzler.² The chlorophosphole³ was prepared by the reaction of phosphorus trichloride with catechol and converted

⁽⁶⁾ **A** rough experimental value for carbon is 0.03 A.1

⁽¹⁾ W. Strohmeier, *Angew. Chem., Int. Ed. Engl.,* **3,** 730 (1964).

⁽²⁾ R. Schmutzler, *Ber.*, 96, 2435 (1963).

⁽³⁾ P. C. Crofts, J. H. H. Markes, and H. N. Rydon, *J. Chem. Soc.*, 4250 (1958).

to the diethylamino derivative upon reaction with diethylamine.

In the reactions of the chlorophosphole with AgNCO, AgNCS, C_6H_5SH , CH₃SH, and CH₃OH,⁴ spectroscopic data indicated that the isolated products were, respectively, I, where $X = NCO$, NCS, SC_6H_5 , SCH_3 , and OCH3. However, these phospholes changed their identity rapidly, and we were unable to obtain pure samples for satisfactory identification and further reaction with $W(CO)_{5}$. THF. The literature contains many examples of the lability of phospholes toward Arbuzov and similar reactions.⁵ Attempts to stabilize the labile ligands, by immediate reaction with the tetrahydrofuran complex of tungsten pentacarbonyl, in many cases gave isolatable complexes which decomposed rapidly both *in vacuo* and under nitrogen to give uncharacterized blue residues. In contrast, the new compounds $C_6H_4O_2P(Cl)W(CO)_5$ and $C_6H_4O_2P/N(C_2 H₅2$ W(CO)₅ have been stable for up to 2 years in a nitrogen atmosphere.

The reactions of the chlorophosphole with silver cyanide (in dichloromethane and in xylene, under re**flux)** and with methyl- or phenylmagnesium bromide did not yield the desired derivatives of I. Furthermore, we were unable to obtain a pure sample of the phenylphosphole from the reaction of phenylphosphorus dichloride with catechol. $6,7$

The proton nmr spectrum of the aminophospholetungsten pentacarbonyl complex, when compared to that for the uncomplexed ligand, shows a downfield shift for all the ligand protons consistent with a formal oxidation state change from **3+** to *5+* for phosphorus upon complexation (assuming that phosphorus is coordinating to tungsten),

Experimental Section

Physical Measurements.--Infrared spectra were determined using a Perkin-Elmer Model 21 sodium chloride spectrophotometer and a Perkin-Elmer 621 grating spectrometer. Proton nmr spectra were obtained by means of a Varian A-60 spectrometer using tetramethylsilane as an internal standard. Mass spectra were taken using a Perkin-Elmer Hitachi RMU-BD doublefocusing spectrometer at 70-eV ionizing energy. Irradiation was carried out in a quartz vessel using a Hanovia 679A36 medium-pressure lamp. Analyses were carried out by Schwarz-kopf Microanalytical Laboratories, Woodside, N . Y ., and Micro-Tech Laboratories, Inc., Skokie, Ill.

Materials.-Tungsten hexacarbonyl was a generous gift from the Climax Molybdenum Co. **2-Chloro-1,3,2-benzodioxaphos**phole was prepared by a literature method4 and all solvents were dried before use by standard procedures. All manipulations were carried out under nitrogen.

Preparation of $C_6H_4O_2P(Cl)W(CO)_5$ (II).---A solution of 1.76 **g (5** mmol) of tungsten hexacarbonyl in 50 ml of tetrahydrofuran was irradiated for *5* hr, during which time 5 mmol of carbon monoxide was evolved. The resulting yellow solution was added quickly to 0.87 g (5 mmol) of $C_6H_4O_2PC1$ and the mixture was stirred for 20 min at ambient temperature. Solvent was removed *in vacuo* and the residual yellow solid sublimed. Unreacted tungsten hexacarbonyl (0.35 g) was collected at 30° (0.05 mm) and identified by it sinfrared spectrum. Fine colorless needles of product $(0.75 \text{ g}, 40\%)$ were collected at $50\text{--}55^\circ$ (0.05 mm), mp 80-81°. *Anal.* Calcd for C₁₁H₄ClO₇PW: C, 26.5; H, 0.8; Cl, 7.1. Found: C, 26.5; H, 1.1; Cl, 7.2. Ir spectrum (hexane solution): *v(C0)* 2083 (m), 1981 (vs), 1950 (m sh) cm-l. A parent ion was observed in the mass spectrum at 500 (calcd: 500 for **ls4W** and 37Cl).

(4) A. E. Arbuzov and F. *G.* **Valitova,** *Bull. Acad. USSR, Div. Chem. Sci.,* **529 (1940);** *Chem. Abstr.,* **86, 3690 (1941).**

(5) R. G. Harvey bud E. R. DeSombre, *Top. Phosphoriis Chem.,* **1, 67 (1964).**

(6) K. D. Berlin and M. Nagabhushanam, *J. Org. Chem.,* **29, 2056 (1964). (7) M. Wieber and W, R. Hoos,** *Tefvahedron Left.,* **61, 5333 (1968).**

Preparation of 2-Diethylamino-1,3,2-benzodioxaphosphole, C₆- $H_4O_2\overline{PN}(C_2H_5)_2.$ -A 2.9-g (40-mmol) sample of diethylamine in 20 ml of benzene was added dropwise, over a 4-hr period, to 3.5 g (20 mmol) of 2-chloro-1,3,2-benzodioxaphosphole in 20 ml of benzene, cooled to 0" in a two-necked flask equipped with a mechanical stirrer. Vigorous stirring was maintained for a further 16 hr at ambient temperature under nitrogen. Solvent was removed *in vacuo* and the residue was shaken with pentane. The mixture was filtered, solvent was removed, and the residual oil was distilled under reduced pressure. The product $(1.9 \text{ g}, 46\%)$ was distilled under reduced pressure. The product $(1.9 \text{ g}, 46\%)$ was collected at $113-115^{\circ}$ (0.25 mm) . *Anal.* Calcd for C₁₀H₁₄NO₂-P: C, 56.9; H, 6.6; N, 6.6; P, 14.7. Found: C, 58.4; H, 6.9; N, 6.4; P, 14.0. Proton nmr (carbon tetrachloride solution): τ 3.23 (four phenyl protons), 7.14 (six methylene protons), 9.02 (six methyl protons).

Preparation of $C_6H_4O_2P[N(C_2H_5)_2]W(CO)_5$. The preparation was essentially the same as for I1 above *[0.88* g (2.5 mmol) of tungsten hexacarbonyl, 7 hr irradiation, and $0.52 \times (2.5 \text{ mmol})$ of ligand]. After removal of solvent the pink solid was sublimed to give 0.13 g of unreacted tungsten hexacarbonyl $(40^{\circ}$ $(0.05 \text{mm}))$ and fine colorless needles of product $(0.76 \text{ g}, 67\%)$ at 75° $(0.05$ mm), mp 67[°]. *Anal*. Calcd for $C_{15}H_{14}NO_7PW$: C, 33.7; H, 2.6; P, 5.8; W, 34.4. Found: C, 33.9; H, 2.6; P, 5.9; W, 33.3 Ir spectrum (hexane solution): *v(C0)* 2081 (m), 1962 (vs) cm⁻¹. A parent ion was observed in the mass spectrum at 535 (calcd: 535 for 184W). Proton nmr (carbon tetrachloride solution): τ 3.07 (four phenyl protons), 6.82 (four methylene protons), 8.84 (six methyl protons).

Reaction **of 2-Chloro-1,3,2-benzodioxaphosphole** with Silver 1sothiocyanate.-A 8.73-g (50-mmol) sample of 2-chloro-l,3,2 benzodioxaphosphole and 8.30 g (50 mmol) of silver isothiocyanate in 100 ml of benzene were heated under reflux for 16 hr , The cooled mixture was filtered, solvent was removed *in vacuo,* and the residual viscous liquid was distilled. The main fraction (5.15 g) was collected at **70'** (1.5 mm). The mass spectrum showed a parent ion at 197 which agrees with the calculated value of 197 for $C_7H_4NO_2PS$. However, this product rapidly turned into a yellow-orange oil upon standing at room temperature, *in vacuo,* in the dark.

> CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY OF THE UNIVERSITY OF CALIFORNIA AND THE INORGANIC MATERIALS RESEARCH DIVISION OF THE LAWRENCE BERKELEY LABORATORY, BERKELEY, CALIFORNIA 94720

The Nitrogen Is Binding Energies of Transition Metal Nitrosyls

BY PATRICIA FINN AND WILLIAM L. JOLLY*

Received July 15, 1971

The bonding and electronic structure of transition metal nitrosyls have been frequently studied in recent $years¹⁻⁶$ Two limiting situations have been identified: linearly coordinated NO+ groups and angularly coordinated ("bent") NO^- groups. We have investigated the X-ray photoelectron spectra⁷ of a series of these compounds to attempt correlations of the nitro-

(1) **B. F.** *G.* **Johnson and J. A. McCleverty,** *Pvogv. Inoug. Chem.,* **7, 277 (1966).**

(2) P. Gans, *Chem. Commun.,* **144 (1968).**

(3) D. J. **Hodgson,** N. *C.* **Payne, J. A. McGinnety, R.** *G.* **Pearson, and** J. **A. Ibers,** *J. Amev. Chem. SOL,* **90, 4486 (1968).**

- **(4) D. J. Hodgson and J. A. Ibers,** *Inoug. Chem.,* **7, 2345 (1968).**
- **(5) D. J. Hodgson and J. A.** Ibers, *ibid., 8,* **1282 (1969).**

(7) K. Siegbahn, C. Nordling, A. Fahlman, R. **Nordberg, K. Hamrin,** J. **Hedman,** *G.* **Johannson, T. Bergmark,** *S.* E. **Karlsson, I. Lindgren, and B. Lindberg, "ESCA Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy," Almqvist and Wiksells AB, Stockholm, 1967.**

⁽⁶⁾ **D. M.** P. **Mingos and** *5.* **A. Ibers,** *ibid.,* **10, 1479 (1971).**