all lose oxygen before melting when heated in air; the temperatures at which oxygen loss begins is indicated in Table I. Reactions between Na_2TeO_4 .

TABLE I Crystallographic^a and Stability Data

Compound		Angle, ^b					Dec	
	a, Å	b, Å	c, Å	deg	$d_{\mathbf{x}}^{c}$	$d_{\mathbf{m}}$	pt, ^d °C	
MgTeO₄	4.6860	5.5848	5.0198	93.211	5.466	5.43	630	
CdTeO₄	5,0036	12.5254	4.9881		6.458	6.43	630	
CaTeO₄	5.2299	12.6785	4.9809		4.658	4.64	700	
SrTeO₄	5.5757	13,1144	5.0032		5.068	5.02	730	
BaTeO₄	5.9224	13.5117	5.0230	93.483	5.444	5.49	790	
$PbTeO_4$	5.4129	4.9471	6.0185	99.596	8.333	8.28	740	

^a Errors estimated from standard deviations are ± 0.0004 Å for the 4-5 Å edges, ± 0.0008 Å for 12-13 Å edges, and $\pm 0.006^{\circ}$ on the angles. ^b The angle is β for MgTeO₄ and PbTeO₄ but γ for BaTeO₄. ^c Calculated density based on crystallographic data. ^d Decomposition temperature by tga.

 $2H_2O$ and a chloride gave small crystals which were suitable for single-crystal X-ray diffraction studies.

Single crystals of $SrTeO_4$ were found to be orthorhombic with a space group of $Pca2_1$ or Pcam. The refined cell dimensions are given in Table I. CaTeO₄ and CdTeO₄ were judged isomorphous with $SrTeO_4$ by comparison of their X-ray powder patterns; the refined cell dimensions of CaTeO₄ and CdTeO₄ are given in Table I. Density measurements (Table I) indicate four formula units per unit cell for these tellurates.

Single crystals of BaTeO₄ found to be monoclinic with a space group of $P2_1/c$ where a = 5.9225 Å, b = 5.0229 Å, c = 15.0796 Å, and $\beta = 116.56^{\circ}$. The cell may also be described by a = 5.9225 Å, b = 5.0229 Å, c = 13.5117 Å, $\beta = 93.48^{\circ}$, and a space group of $P2_1/n$. This cell has an obvious similarity to the cells of Cd-TeO₄, CaTeO₄, and SrTeO₄. Consequently, in Table I the cell dimensions have been rearranged to facilitate comparison. It appears that BaTeO₄ has a distorted version of the structure which exists for CdTeO₄, CaTeO₄, and SrTeO₄.

Single crystals of PbTeO₄ were found to be monoclinic, and the refined cell dimensions are given in Table I. The space group is C2, Cm, or C2/m, and there are two formula units per unit cell.

The powder pattern of MgTeO₄ was readily indexed by assuming it had a wolframite-type structure. Intensities were calculated using the published³ positional parameters for NiWO₄, and a comparison of observed and calculated intensities supports this structure type for MgTeO₄.

Discussion

Of the tellurates prepared only MgTeO₄ appears to be of a known structure type. These tellurates are clearly not isostructural with the analogous sulfates and selenates. This is probably due to the preference of Te⁶⁺ for octahedral rather than tetrahedral coordination to oxygen. MgTeO₄ is isostructural with several tungstates; however, in this structure all cations are six-coordinated to oxygen. The other A^{2+} -TeO₄ tellurates are not isostructural with known structures of analogous tungstates, molybdates, or uranates.

X-Ray powder patterns of $BaTeO_4$ have been given by Engelbrecht and Sladky¹ and by Knyazeva and Kurapova.² These agree very well with our powder

(3) R. O. Keeling, Acta Crystallogr., 10, 209 (1957).

pattern, and thus it is certain that we all have the same phase.

Knyazeva and Kalugina⁴ have reported the preparation of SrTeO₄; however, their powder pattern is entirely different than ours. Furthermore, their preparation temperature (750°) is very close to the decomposition temperature of SrTeO₄.

Natansohn^{5,6} has reported the preparation of Mg-TeO₄, CaTeO₄, SrTeO₄, and BaTeO₄. However, preparative temperatures of $900-1000^{\circ}$ were used, and such tellurates are not stable under these conditions.

It is possible that the valence states in PbTeO₄ are 4–4 instead of 2–6. However, PbTeO₄ is not merely a solid solution of PbO₂ and TeO₂ because it is not isomorphous with any form of PbO₂ or TeO₂. Furthermore, varying the reactant ratios in the PbO₂–TeO₂ system did not indicate a significant range of stoichiometry for PbTeO₄.

(4) R. N. Knyazeva and Z. I. Kalugina, Russ. J. Inorg. Chem., 15, 895 (1970).

(5) S. Natansohn, U. S. Patent 3,509,064 (1970).

(6) S. Natansohn, Abstracts, Spring Meeting of the Electrochemical Society, Los Angeles, Calif., May 1970, No. 61.

Contribution from the Department of Chemistry, York University, Downsview, Toronto, Ontario, Canada

The Application of Symmetry Ascent Selection Rules to a Factor Group Analysis of Red Mercuric Iodide

By B. R. HOLLEBONE AND A. B. P. LEVER

Received August 9, 1971

The study of metal-ligand vibrations^{1,2} has played an important role in the development of coordination chemistry. However ambiguity in band assignment has often vitiated the value of such studies. Recently single-crystal infrared and Raman studies, e.g.,^{3,4} have become more common and present the possibility of unambiguous band assignment. However, even in such cases where high-resolution polarized data are obtained, the number of observed vibrations may be less than that calculated on the basis of a factor group analysis. In such circumstances the polarization data may allow assignment of a vibration to a particular symmetry species but it may be impossible to distinguish whether the vibration concerned is internal to a molecular species in the crystal or is external thereto, *i.e.*, is a lattice mode.

For example, vibrational studies of red mercuric iodide^{5,6} were recently substantiated by a single-crystal Raman study.⁷ This revealed only four of the six expected Raman-active transitions down to an ob-

(1) D. M. Adams, "Metal-Ligand and Related Vibrations," E. Arnold, London, 1967.

(2) I. Nakagawa, Coord. Chem. Rev., 4, 423 (1969).

- (3) D. M. Adams, M. A. Hooper, and M. H. Lloyd, J. Chem. Soc. A, 946 (1971).
 - (4) D. M. Adams and R. R. Smardzewski, *ibid.*, 8, 10, 714 (1971).
- (5) J. P. Mon, C. R. Acad. Sci., Ser. B, 262, 493 (1966).

⁽⁶⁾ R. P. J. Cooney, J. R. Hall, and M. A. Hooper, Ausi. J. Chem., 21, 2145 (1968).

⁽⁷⁾ D. M. Adams and M. A. Hooper, *ibid.*, **24**, 885 (1971).

servation limit of 2.5 cm⁻¹. The factor group analysis predicts three E_g modes (two internal to HgI_2 and one external) and two B_{1g} modes (one internal and one external) as well as an internal A_{1g} mode. Of the four bands observed, two were assigned to *internal* E_g modes, one was assigned to an *internal* B_{1g} mode, and one was assigned to the internal A_{1g} mode. No evidence was presented to substantiate that the E_g and B_{1g} modes were in fact internal rather than external. Since the internal E_g modes have energies of 17 and 29 cm⁻¹, remarkably low for vibrations of a covalent metalligand bond, it was of especial interest, from the viewpoint of metal-ligand bonding, to substantiate that these vibrations were indeed correctly assigned as internal modes. The conclusions can be confirmed by an examination of the selection rules of these translational modes after requiring the crystal symmetry to ascend from the D_{4h}^{15} (P4₂/nmc) space group to an equivalent octahedral group.

The distortion of the red mercuric iodide lattice from an octahedral space group is very small. Cubic close packing would be perfect if the ratio c/a were 2.828 rather than the observed⁸ 2.84. The removal of the tetragonal distortion from each sublattice results in the ascent in symmetry of the mercury sites from D_{2a} to O_h and of the iodide sites from C_{2v} to T_a symmetry (Figure 1). The new octahedral space group is un-

Figure 1.—The ascent in symmetry of the D_{4h}^{15} space group to O_{h}^{5} .

equivocally O_{h^5} (Fm3m) in which all Hg-Hg, I-I, and Hg-I distances, respectively, become equal.

Since the wavelength of infrared radiation is very long compared to the unit cell dimensions, it is usually assumed⁹ that propagation takes place only at the center of the Brillouin zone. This point may correspond in either the D_{4h} or the O_h factor groups to the center of the face adjoining two unit cells in the *c* direction. The relevant vibration unit in the octahedral space group is a cluster of six mercury and eight iodine atoms (Figure 2). A previous assignment⁶ used only a part of this unit and it appears that the modes described as B_{1g} are essentially ungerade in character with respect to motion of the mercury atoms (see Figure 2). Since four of these atoms lie in the horizontal plane of the factor group, they cannot move parallel to the *z* axis in any gerade mode.

Figure 2.—The Brillouin zone of the D_{4h} ¹⁶ space group for wave propagation parallel to the z axis: mercury, small circles; iodine, large circles. The atoms labeled A-F are the subgroup of the Bravais unit cell used for vibrational analysis in ref 2.

The upgrading of this zone to an octahedral factor group results in the addition of two orthogonal fourfold axes to the symmetry of this vibration unit. The correlation of D_{4h} vibrational wave functions (Table I) to those of the O_h factor group displays the effects of the additional operators. Some of the allowed modes correlate into partly forbidden representations in the higher symmetry. The vibrational wave functions have been normalized in the O_h group to preserve the correct number of modes, under the initial assumption that equal parts of each O_h mode are required (footnote c, Table I).

We propose that the selection rules governing the intensities of the octahedral modes are preserved on descent in symmetry to the D_{4h} factor group. This selection rule correlation has recently been discussed¹⁰ with respect to electronic spectroscopy and magnetic phenomena and appears to be relevant to vibrational spectroscopy. Since D_{4h} is a subset of O_h , the wave function basis set is unchanged¹¹ on descent in symmetry from O_h to D_{4h} . If the representation in the subset is related to more than one representation of the generic octahedral group, then the intensity of the D_{4h} vibration is determined only from the proportion of the allowed generic mode.

⁽⁸⁾ R. W. C. Wyckoff, "Crystal Structures," Vol. 1, Interscience, New York, N. Y., 1963.

⁽⁹⁾ S. S. Mitra and P. J. Gielisse, Progr. Infrared Spectrosc., 2, 47 (1964).

⁽¹⁰⁾ B. R. Hollebone, A. B. P. Lever, and J. C. Donini, Mol. Phys., 22, 155 (1971).

⁽¹¹⁾ The selection rules are completely preserved only if configuration interaction, which may become allowed in the less symmetric group, remains insignificant.

		Table I					
THE CORRELATION OF VIBRATIONAL MODES							
from the D_{4h} to O_h Factor Group							
$Mode^{a}$	D_{4h}^{b}	$O_{\hbar}^{c,d}$					
Internal	$ \mathrm{A}_{1g\iota} angle$	$(1/\sqrt{2})[A_{1g}0+\rangle + E_g0+\rangle]$					
raman	$ { m B_{1g}\iota} angle$	$(1/\sqrt{2})[\mathbf{A}_{2g}0-\rangle + \mathbf{E}_{g}0-\rangle]$					
active	$_{2} \bigvee \left \left \mathbf{E}_{\mathbf{g}} \theta \right\rangle \right $	$(1/\sqrt{2})[T_{1g} - 1 + \rangle + T_{2g} + 1 - \rangle]$					
	$^{2} \wedge \langle \mathbf{E}_{g} \epsilon \rangle$	$(1/\sqrt{2})[T_{1g} + 1+\rangle - T_{2g} - 1-\rangle]$					
Internal	$ A_{2ul}\rangle$	$ T_{1u}0+\rangle$					
infrared	$ {f B}_{2u}\iota angle$	$ T_{2u}0+\rangle$					
active	$_{2} \checkmark \left \mathrm{E}_{\mathrm{u}} \theta \right\rangle$	$(1/\sqrt{2})[T_{1u} - 1+\rangle + T_{2u} + 1-\rangle]$					
	$^{2} \wedge \langle \mathbf{E}_{\mathbf{u}} \epsilon \rangle$	$(1/\sqrt{2})[T_{1u} + 1+\rangle - T_{2u} - 1-\rangle]$					
Acoustic	$ A_{2ul}\rangle$	$ T_{1u}0+\rangle$					
infrared	$ \mathrm{E}_{\mathrm{u}} heta angle$	$(1/\sqrt{2})[T_{1u} - 1+\rangle + T_{2u} + 1-\rangle]$					
active	$ \mathrm{E}_{\mathrm{u}}\epsilon angle$	$(1/\sqrt{2})[T_{1u} + 1+\rangle - T_{2u} - 1-\rangle]$					
Lattice	$ \mathbf{B}_{1gl}\rangle$	$(1/\sqrt{2})[\mathbf{A}_{2\mathbf{g}}0-\rangle - \mathbf{E}_{\mathbf{g}}0-\rangle]$					
raman	$ \mathrm{E}_{g} heta angle$	$(1/\sqrt{2})[T_{1g} - 1+\rangle + T_{2g} + 1-\rangle]$					
active	$ \mathrm{E}_{g\epsilon}\rangle$	$(1/\sqrt{2})[T_{1g} + 1+\rangle - T_{2g} - 1-\rangle]$					

On ascent in symmetry to the octahedral Brillouin zone, the correlation of some of the D_{4h} representations into more than one octahedral mode can be regarded as a resolution of the motion implied by the D_{4h} mode into those implied by the O_h mode. For example, the z axis directed motion of the iodine atoms in the B_{1g} mode is resolved in the O_h group into a motion at 45° to the z axis corresponding to an A_{2g} mode and into one in the xy plane corresponding to the E_g mode (Figure 3). The former forbidden mode corresponds to the lattice translation since it causes planes of iodine atoms to interact while the allowed E_g mode of O_h can be regarded as internal. A similar analysis for

Figure 3.—The resolution of the B_{1g} mode of the D_{4h}^{15} iodine sublattice (denoted O) into the A_{2g} mode at 45° to the z axis (forbidden) and the E_g mode in the xy plane (allowed) of O_h^5 .

the E_g modes of $D_{4\hbar}$ reveals again that the lattice mode is the forbidden T_{1g} vibration in O_{\hbar} and thus confirms that the experimentally observed E_g modes are indeed internal.

The application of selection rules appertaining to a higher group than that actually present has been recognized informally in the past.¹² It is hoped that the publication¹⁰ of a mathematical formalism to deal with this problem will lead to a more rigorous application in the future.

(12) H. J. Buttery, G. Keeling, S. F. A. Kettle, I. Paul, and P. J. Stamper, Trans. Faraday Soc., 47, 48 (1969).