the 5σ play an important role in determining the trans CO's force constant will remain true.

The trend in the trans CO of the disubstituted species allows us to compare two opposing trends in the occupancies. The replacement of two bromine atoms by two iodine atoms causes the 5σ occupation to decrease, a change which tends to strengthen the CO bond, just as in the manganese monohalide complexes. However, because the species is disubstituted, each CO trans to one halogen is cis to another. Thus, there will be an increase in the occupancy of the 2π orbital in going from bromine to iodine due to increased direct donation. The results in Table III show that for $Mn(CO)_4X_2^-$ these two effects cancel each other to produce similar force constants, but, in $Fe(CO)_4X_2$ the increase in 2π occupation dominates because of the iron's smaller covalent radius; the overall effect is to produce considerably weaker force constants for the iodide.

Distributions.—In the previous two sections we have discussed both the mono- and disubstituted species with respect to changes in the metal and in the halogen; in this section we will discuss the specific changes which occur when a second halide is substituted for a carbonyl. From the force constants in Table III we can see that both the trans and eis CO bonds are weaker in the dihalide than in the corresponding monohalide. There are two major reasons for this trend. First, the replacement of a neutral carbonyl by a negative halide causes an increase in the energy of the 3d diagonal term relative to the 5σ and 2π terms. This increase in the 3d energy is due mainly to the crystal field of the additional halide and not to any additional electron donation to the metal. As the 3d level rises in energy, fewer electrons are donated to the 3d from the 5σ orbital and more are donated from the 3d to the 2π orbital. The overall effect is an increase in both the 5σ and 2π occupations, which results in a weaker CO bond and a lower force constant.

The second important effect is that of direct donation from the halogen p_z orbitals. Because these complexes are disubstituted with the halogens cis to each other, the cis carbonyl now has two halogens capable of donating to it, while the trans carbonyl now has one. Thus, we would expect a larger increase in the occupancy of those 2π orbitals which can receive electron density directly from the halogen. We may compare the occupancies of $Mn(CO)_4Br_2^-$ with those of Mn- $(CO_5)Br$ (Table III). The small increase, average 0.015, in the $2\pi_x$ of the trans carbonyl and in the $2\pi_y$ of the cis carbonyl is due to the increased energy of the 3d metal orbital, but the larger increase, average 0.034, in the $2\pi_y$ of the trans carbonyl and in the $2\pi_x$ of the cis carbonyl is due to the combined effect of the direct donation and the higher 3d energy. Thus, direct donation is responsible for more than half of the increase in the 2π occupancy in the latter pair of orbitals.

Acknowledgment.—The authors gratefully acknowledge the National Science Foundation (Grant GP-9423) and the Wisconsin Alumni Research Foundation for support of this work.

> Contribution from the Chemistry Department, University of Hawaii, Honolulu, Hawaii 96822

1,2-Dimethylhydrazinochloro- and -fluorodiphosphines

BY MARY D. HAVLICEK AND JOHN W. GILJE*

Received July 19, 1971

 $P(NCH_3NCH_3)_3P$ and $ClP(NCH_3NCH_3)_2PCl$ react with PCl_3 to form $Cl_2PNCH_3NCH_3PCl_2$. The latter compound can also be prepared by hydrazinolysis of PCl_3 with $HNCH_3NCH_3H$. The corresponding 1,2-dimethylhydrazinofluorodiphosphines can be synthesized from the chloro derivatives by fluorination with SbF_3 . These compounds form complexes with simple BX_3 Lewis acids. Direct reaction with B_2H_6 yields the bis-borane derivatives of each of these compounds except $Cl_2PNCH_3-NCH_3PCl_2$, which undergoes decomposition. In the case of $F_2PNCH_3NCH_3PF_2$ a mono-borane adduct could also be isolated. In each of the compounds, BH_3 addition occurs exclusively at the phosphorus. With BF_3 unstable complexes form whose properties are reminiscent of the nitrogen-bonded BF_3 complexes of the aminohalophosphines.

While the aminolysis of PCl₈ was reported over 75 years ago¹ and the aminohalophosphines have received much attention since their first preparation 15 years ago,^{2,3} little is known about halophosphine derivatives of other nitrogenous bases. The preparations of some hydrazino- and hydroxylaminochloro- and -fluorophosphines have been reported.⁴ The reaction of PCl₈ with 1,1-dimethylhydrazine has been investigated,⁵

(1) A. Michaelis and G. Schröcker, *Bir.*, **17**, 100 (1000).
 (2) A. B. Burg and P. J. Slota, *J. Amer. Chem. Soc.*, **80**, 1107 (1958).

(4) A. E. Goya, M. D. Rosario, and J. W. Gilje, *Inorg. Chem.*, 8, 725 (1969).

(5) D. B. Whigan, J. W. Gilje, and A. E. Goya, *ibid.*, 9, 1279 (1970).

and closely related trifluoromethyl-,⁶ alkyl-,^{7,8} and alkylaminophosphino⁹ derivatives of several hydrazines have been synthesized and studied.

In a communication Payne, Noth, and Henniger reported¹⁰ that $P[N(CH_3)_2]_3$ reacts with HNCH₃NHCH₃. 2HCl to form $P(NCH_3NCH_3)_3P$, whose cage structure

⁽¹⁾ A. Michaelis and G. Schroeter, Ber., 27, 490 (1895).

 ⁽³⁾ E. Fluck, Top. Phosphorus Chem., 4, 291 (1967).

⁽⁶⁾ E. W. Ainscough, L. K. Peterson, and D. E. Sabourin, Can. J. Chem., 48, 401 (1970), and references therein.

⁽⁷⁾ J. M. Kanamueller and H. H. Sisler, Inorg. Chem., 6, 1765 (1967), and references therein.

⁽⁸⁾ S. F. Spangenberg and H. H. Sisler, ibid., 8, 1004 (1969).

⁽⁹⁾ O. J. Sherer and J. Wokulat, Z. Naturforsch. B, 22, 474 (1967).

⁽¹⁰⁾ D. S. Payne, H. Noth, and G. Henniger, Chem. Commun., 327 (1965).

was recently confirmed.¹¹ The reaction of P(NCH₃-NCH₃)₃P with PCl₃ to yield ClP(NCH₃NCH₃)₂PCl was briefly mentioned.¹⁰ These compounds are the first of a new series of potential multidentate, in some cases chelating, phosphine ligands, $X_nP(NCH_3NCH_3)_{3-n}PX_n$ (X = halogen, n = 0-2), of considerable potential interest. The preparation of the remaining members where X = Cl or F and their acid-base reactions with BH₃ and BF₃ are reported here. The ¹⁹F nmr spectrum of F₂PNCH₃NCH₃PF₂ has already appeared¹² in a communication where its stereochemistry was discussed.

Experimental Section

All manipulations were performed in a vacuum line or under a dry nitrogen atmosphere. Starting materials, solvents, and reagents were of the highest purity available commercially. 1,2-Dimethylhydrazine was obtained from solutions of 1,2dimethylhydrazine dihydrochloride (Aldrich Chemical Co.) in concentrated NaOH by vacuum line distillation and purified by a reported procedure.¹³ Diborane was prepared by the method of Weiss and Shapiro;¹⁴ its purity was checked by vapor pressure and ir. Other reagents and solvents were dried and/or purified by appropriate means before use. Elemental analysis was performed by Galbraith Laboratories, Knoxville, Tenn.

Nmr spectra were obtained using Varian A-60 (¹H) and HA-100 (¹H and ¹⁹F) spectrometers equipped with variable-temperature probes. An NMR Specialities HD-60B ³¹P spin decoupler together with the HA-100 was utilized for the double-resonance experiments. ¹H and ¹⁹F spectra at ambient temperatures were run as solutions in CHCl₃, high-temperature spectra in *n*undecane or 1,1,2,2-tetrachloroethane, and those at low temperatures in CF₂Cl₂ or 2-methylbutane. ¹H chemical shifts are relative to internal TMS, while ¹⁹F chemical shifts were measured relative to several internal standards; they have been converted to trifluoroacetic acid reference.

Ir spectra were recorded on Beckman IR-5 and IR-9 and Perkin-Elmer 700 spectrometers. Solids were run as dispersions in KBr pellets and Nujol mulls and as solutions in CCl₄ and CHCl₈; liquids were run as films on KBr disks, and gases were run in a 10-cm gas cell fitted with KBr windows. Uv spectra were run on a Cary Model 14 spectrometer on acetonitrile solutions, and mass spectra, on a Hitachi Perkin-Elmer RMU-6D spectrometer.

Preparation of Cl₂PNCH₃NCH₃PCl₂.--(a) A mixture of 2.75 g (20.0 mmol) of PCl₃ and 1.00 g (4.24 mmol) of P(NCH₃NCH₃)₃P dissolved in 10 ml of HCCl₃ was allowed to react for 1 hr at ambient temperature on a vacuum line. The HCCl3 and excess PCl₃ were then distilled from the reaction vessel leaving 3.30 g (12.6 mmol) of Cl₂PNCH₃NCH₃PCl₂. At ambient temperature the compound disproportionates into PCl_3 and $ClP(NCH_3 NCH_3_2PCl \ (P_{dis} \approx 1 \text{ mm } (30^\circ))$ and more slowly decomposes further into an uncharacterized yellow solid. It can be stored at -78° when dissolved in PCl₃ and can be purified (nmr spectra of freshly purified material show no noticable impurities) by recrystallization from HCCl₃ at low temperature ($\sim 0^{\circ}$ or below). Molecular weight [260 (mass spectral), theoretical 260] and the isotope peaks of the parent ion in the mass spectrum which confirm the presence of four chlorines support the proposed formulation. Major ir peaks are 3000 (ms), 1480 (mw), 1275 (m), 1230 (m), 1160 (mw), 1105 (m), 1065 (ms), 965 (m), 920 (m), 760 (m), and 730 (s) cm⁻¹.

(b) After 36.0 g (0.262 mol) of PCl₃ and 3.64 g (0.0695 mol) of HNCH₃NCH₃H were condensed together at -196° , the mixture was slowly warmed and held at 27° for 1 hr. The 5.54 g (0.0415 mol) of HNCH₃NCH₃H·2HCl which had precipitated during this time was removed by vacuum-line filtration and excess PCl₃ was evaporated from the filtrate. The solid remaining in the reaction tube was recrystallized from HCCl₃ giving 2.01 g (0.0076 mol) of Cl₂PNCH₃NCH₃PCl₂.

Preparation of $P(NCH_3NCH_3)_3P$ and $ClP(NCH_3NCH_3)_2$ -PCI.—These compounds were prepared by the routes mentioned Inorganic Chemistry, Vol. 11, No. 7, 1972 1625

in the literature.¹⁰ ClP(NCH₃NCH₃)₂PCl can also be prepared via the reaction of stoichiometric amounts of $P(NCH_3NCH_3)_3P$ and $Cl_2PNCH_3NCH_3PCl_2$ in $HCCl_3$ solvent at ambient temperature. The infrared spectra of these two compounds have not been published; the principal peaks are as follows: $P(NCH_3-NCH_3)_3P$: 2900 (m), 2850 (m), 1455 (m), 1420 (mw), 1215 (m), 1185 (s), 1090 (ms), 1055 (s), 915 (s), 760 (m), 745 (mw) cm⁻¹; ClP(NCH_3)2PCl: 2910 (s), 2880 (s), 1600 (w), 1465 (ms), 1390 (m), 1365 (m), 1260 (s), 1150 (w), 1110 (s), 920 (w), 750 (s) cm⁻¹.

Preparation of F₂PNCH₃NCH₃PF₂.—A 1.47-g (5.61 mmol) sample of Cl₂PNCH₃NCH₃PCl₂ was fluorinated with 3.5 g (20 mmol) of SbF₃ on the vacuum line. After about 2 hr at 27° (the initially vigorous reaction was moderated occasionally by cooling to -78°) the mixture was separated by distillation from 27° through a trap held at -78° , from which 0.63 g (3.2 mmol) of F₂PNCH₃NCH₃PF₂ was recovered, and one at -196° , which ultimately contained a trace of PF₃.

After a few minutes at room temperature pure colorless F₂-PNCH₃NCH₃PF₂ began to cloud and evolve PF₃; however, it could be stored for several weeks at -78° and only slight decomposition occurred over several months when it was stored at 0° as a solution (about 10% v/v) in CCl₃F, toluene, isopentane, or 1,1,1-trichloroethane. As a consequence of this instability, good elemental analysis could be obtained. Typical data follow. *Anal.* Calcd for F₂PNCH₃NCH₃PF₂: C, 12.25; H, 3.06; N, 14.29 (mol wt 196). Found: C, 13.52; H, 3.23; N, 15.51 (mol wt 190 (vapor density), 196 (mass spectral); vapor pressure (P_{vap}) ~26 mm at 30°)). Ir peaks are 2930 (ms), 2900 (m), 1600 (vw), 1460 (ms), 1440 (ms), 1250 (s), 1175 (ms), 1070 (s), 1000 (sh), 990 (s), 930 (mw), 820 (ms, br), 770 (s, br), 700 (ms), 650 (mw) cm⁻¹.

Preparation of FP(NCH₃NCH₃)₂PF.—A mixture of 2.18 g (8.75 mmol) of ClP(NCH₃NCH₃)₂PCl and several grams of SbF₃ contained in a sublimator attached to the vacuum line was heated to 50–70° for 6 hr. During this time 0.632 g (2.92 mmol) of white solid FP(NCH₃NCH₃)₂PF was collected at -23° on the cold finger of the sublimator. Care must be taken in the preparation: if the reaction mixture is heated above 70° or the cold finger cooled lower than about -23° , it is nearly impossible to separate the FP(NCH₃NCH₃)₂PF from impurities which collect with it.

The white $FP(NCH_3NCH_3)_2PF$ (mp 55–59°) decomposes at room temperature even under vacuum. It can be stored at -78° for reasonable periods and solutions in inert solvents appear to be moderately stable (as indicated by nmr). No good analysis could be obtained on the compound; however, typical values follow. Anal. Calcd for $FP(NCH_3)_2PF$: C, 22.22; H, 5.56; N, 25.93. Found: C, 20.99; H, 5.89; N, 23.47. The main ir peaks are 2930 (ms), 2900 (sh), 1620 (vw), 1470 (sh), 1445 (w), 1215 (s), 1050 (s), 970 (s), 890 (w), 865 (w), 825 (s), 770 (s, br), 865 (w), 675 (w) cm⁻¹.

Reaction of $P(NCH_3NCH_3)_3P$ with Diborane.— $H_3BP(NCH_3-NCH_3)_3PBH_3$ was prepared by reaction of $P(NCH_3NCH_3)_3P$ with tetrahydrofuran-borane as described by Payne, Noth, and Henniger.¹⁰ The same adduct can also be obtained from the direct reaction of $P(NCH_3NCH_3)_2P$ with B_2H_6 . The major peaks in its ir spectrum are 2920 (m), 2870 (sh), 2440 (s), 2390 (sh), 1390 (m), 1190 (sh), 1160 (s), 1080 (w), 1030 (s), 950 (m), 840 (w), 790 (s) cm⁻¹.

Reaction of ClP(NCH₃NCH₈)₂PCl with Diborane.—A solution of 0.230 g (0.92 mmol) of ClP(NCH₃NCH₈)₂PCl and 2.25 mmol of B₂H₆ in 1 ml of diethyl ether was allowed to react at -78° for about 12 hr. The diethyl ether and excess B₂H₆ were than distilled from the reaction flask and separated by vacuum line distillation. A 1.30-mmol amount of B₂H₆ was recovered; hence 0.95 mmol of B₂H₆ had reacted. The pale yellow solid material (mp 130° dec) remaining in the reaction flask was sparingly soluble in chloroform. Its ir spectrum shows peaks at 2950 (m), 2880 (sh), 2440 (s), 2370 (m), 1470 (s), 1400 (m), 1380 (m), 1270 (m), 1170 (w), 1130 (s), 1030 (w), 750 (s) cm⁻¹.

Reaction of Cl₂PNCH₃NCH₃PCl₂ with Diborane.—The direct reaction of Cl₂PNCH₃NCH₃PCl₂ with B₂H₆ and that in ethereal solutions were attempted several times at temperatures at and well below ambient. In all cases an irreproducible amount of H₂ and unidentified yellow solids were produced; molar ratios of consumed B₂H₆ to Cl₃PNCH₃NCH₃PCl₂ were usually a little less than 2:1. This reaction was not characterized further.

Reaction of $FP(NCH_3NCH_3)_2PF$ with Diborane.—A tube con-

⁽¹¹⁾ W. Van Doorne, G. W. Hunt, R. W. Perry, and A. W. Cordes, *Inorg. Chem.*, **10**, 2591 (1971).

⁽¹²⁾ T. T. Bopp, M. D. Havlicek, and J. W. Gilje, J. Amer. Chem. Soc., 93, 3051 (1971).

⁽¹³⁾ J. R. Crook and K. Schug, J. Amer. Chem. Soc., 86, 4271 (1964).
(14) H. C. Weiss and I. Shapiro, *ibid.*, 81, 6167 (1959).

taining 0.0473 g (0.220 mmol) of FP(NCH₃NCH₃)₂PF and 1.26 mmol of B₂H₆ was kept at -126° for 2 hr and then at 27° until B₂H₆ consumption had ceased. Unreacted B₂H₆ (1.01 mmol) was distilled from the mixture; consequently 0.25 mmol of B₂H₆ was consumed. This consumption indicated a formula of H₃ BFP(NCH₃)₂PFBH₃ for the adduct. The major peaks in its ir spectrum are 3000 (mw), 2420 (ms), 2380 (ms), 1600 (w), 1470 (w), 1430 (w), 1210 (ms), 1080 (s), 1020 (sh), 935 (m), 835 (w) cm⁻¹.

Reaction of F₂PNCH₃NCH₃PF₂ with Diborane.—Depending on the molar ratio of reactants, a mono- or bis-borane adduct could be isolated from this reaction. In a typical preparation of F₂PNCH₃NCH₃PF₂·BH₃, 2.17 mmol of B₂H₅ and 0.723 g (3.69 mmol) of F₂PNCH₃NCH₃PF₂ were held at 27° for 12 hr. (During this time the mixture turned light yellow indicating some decomposition.) The mixture was then distilled through traps held at -78 and -196°. Excess diborane (0.45 mmol) was recovered in the -196° trap, and the F₂PNCH₃NCH₃PF₂· BH₃ ($P_{vap} \approx 12 \text{ mm} (27^\circ)$) was retained at -78°.

The bis-borane adduct could be obtained if an excess of B₂H₆ was employed. For example, after 0.260 g (1.33 mmol) of F_2 -PNCH₃NCH₃PF₂ and 1.91 mmol of B₂H₆ were allowed to react at 27° for about 15 hr and the reaction mixture was distilled through -78 and -196° traps, only 0.42 mmol of B_2H_6 was recovered, indicating a consumption of one B₂H₆ per F₂PNCH₃-NCH₃PF₂. The F₂PNCH₃NCH₃PF₂·2BH₃ ($P_{vap} \approx 3 \text{ mm}$ (27°)), which slowly decomposes at room temperature, was obtained from the -78° trap. The ir spectra of these two adducts are as follows: $F_2PNCH_3NCH_3PF_2 \cdot BH_3$: 2960 (m), 2930 (m), 2430 (s), 2360 (m), 1470 (ms), 1450 (ms), 1260 (ms), 1180 (ms), 1125 (m), 1075 (s), 1055 (ms), 1010 (s), 910 (sh), 885 (s, br), 835 (s), 810 (s), 775 (s), 680 (s), 655 (w) cm⁻¹; F_2PNCH_3 -NCH₃PF₂·2BH₃: 2930 (mw), 2900 (mw), 2430 (s), 2400 (s), 1620 (w), 1490 (m), 1450 (ms), 1270 (ms), 1120 (sh), 1080 (s, br), 1020 (sh), 900 (s, br), 810 (w) cm⁻¹.

Reactions with BF₃.—Reactions of the various compounds with BF₃ were conducted on the vacuum line under a variety of conditions. Temperature was varied between -112° and room temperature, reactions with both excess phosphine and excess BF₃ were conducted, and reaction times of between several minutes and several days were employed. With P(NCH₃-NCH₃)₃P, ClP(NCH₃NCH₃)₂PCl, and Cl₂PNCH₃NCH₅PCl₂ the consumption of BF₃ was not reproducible and yellow, uncharacterized products, which usually liberated some BF₃ upon warming, formed. Mass and nmr spectra of these products showed that decomposition of the ligands had taken place. Only in the case of ClP(NCH₃NCH₃)₂PCl, where peaks for a bis-BF₃ complex appeared in the mass spectrum, was possible complexation of an intact ligand indicated. With FP(NCH₃-NCH₃)₂PF no reaction was observed.

A complex of 1:1 F₂PNCH₃NCH₃PF₂:BF₃ ratio formed at low temperature. In a typical experiment, 0.676 g (3.54 mol) of F₂PNCH₃NCH₃PF₂ and 8.54 mmol of BF₃ were cooled to -78° until the pressure had equilibrated. The excess BF₃ (4.69 mmol) was drawn off leaving a colorless complex of nominal stoichiometry F₂PNCH₃NCH₃PF₂·BF₃. Upon warming the complex dissociates ($P_{\rm dis} = 122$ mm (25°)). Nmr spectra at room temperature and -70° are almost identical with the spectra of the free ligand, with the exception of a peak at +74.0 ppm from BF₃ which appears in the ¹⁹F spectrum.

Results and Discussion

1,2-Dimethylhydrazinohalophosphines.—The reactions of $P(NCH_3NCH_3)_3P$ and the preparation of CIP- $(NCH_3NCH_3)_2PC1$ which have previously been reported^{8,10} and preparations of the 1,2-dimethylhydrazinochlorophosphines reported in this paper

 $P(NCH_3NCH_3)_3P + 2nPCl_3 \longrightarrow$

$$(n + 1)$$
Cl_nP(NCH₃NCH₃)_{3-n}PCl_n

$$2PCl_3 + 2HNCH_3NCH_3H \longrightarrow$$

 $Cl_2PNCH_3NCH_3PCl_2 + HNCH_3NCH_3H \cdot 2HCl$

are entirely analogous to known reactions of $P[N-(CH_3)_2]_3$ and the substitution reactions commonly used to synthesize aminochlorophosphines.³ Likewise the fluorination reactions

$$\mathrm{Cl}_{n}\mathrm{P}(\mathrm{NCH}_{3}\mathrm{NCH}_{3})_{3-n}\mathrm{PCl}_{n}\xrightarrow{\mathrm{SbF}_{3}}\mathrm{F}_{n}\mathrm{P}(\mathrm{NCH}_{3}\mathrm{NCH}_{3})_{3-n}\mathrm{PF}_{n}$$

closely resemble those used with the aminophosphines.¹⁵ This behavior further demonstrates the chemical similarities between the halophosphine derivatives of various nitrogenous bases which have been commented on before.^{4,5}

Ir Spectra.—In the 4000–1000-cm⁻¹ region the ir spectra of all of these compounds are quite similar to one another and to a spectrum 1,2-dimethylhydrazine from which the bands arising from N–H vibrations have been removed.¹⁶ P–N and P–F stretching modes are generally found¹⁷ between 1000 and 650 cm⁻¹ and, as observed, spectral differences between the various compounds should occur in this region. These data imply that no rearrangements have occurred in the hydrazine moiety during the reactions studied here.

Nmr Spectra.—Supporting the conclusion that the hydrazine unit is intact the ¹H nmr spectrum of each of the compounds (Figure 1 and Table I) consists of a

Figure 1.—Hydrogen-1 spectra: (a) $P(NCH_3NCH_3)_3P$; (b) ClP(NCH_3NCH_3)_2PC1; (c) Cl_2PNCH_3NCH_3PCl_2; (d) FP-(NCH_3NCH_3)_2PF; (e) F_2PNCH_3NCH_3PF_2; compared to a line spectrum calculated using the parameters described in the text.

single resonance which is only slightly shifted from the N-CH₃ signal in HNCH₃NCH₃H or P(NCH₃NCH₃)₂P. The multiplicities of the resonances observed in the ¹H spectrum (Figure 1) of ClP(NCH₃NCH₃)₂PCl and ¹H (Figure 1) and ¹⁹F spectra (doublet of doublets of septets) of FP(NCH₃NCH₃)₂PF are identical with

(17) D. E. C. Corbridge, Top. Phosphorus Chem., 6, 235 (1969).

⁽¹⁵⁾ J. F. Nixon, Advan. Inorg. Chem. Radiochem., 13, 363 (1970).

^{(16) (}a) R. H. Pearson, A. N. Fletcher, and E. St. C. Gantz, Anal. Chem.,
28, 1218 (1956); (b) D. W. E. Axford, G. J. Janz, and K. E. Russell, J. Chem. Phys., 19, 704 (1951); (c) D. Hadzi, J. Jan, and A. Ocvirk, Spectrochim. Acta, Part A, 25, 97 (1969).

1,2-DIMETHYLHYDRAZINOCHLORO- AND -FLUORODIPHOSPHINES

		-							
Nmr Data									
						Coupli	ng con	stants, Hz	
	Chem shifts, ppm		PNCH						
	¹ H (from	¹⁹ F (from			+ PN-				
Compound	TMS)	F_3CCO_2H)	PNCH	PNNCH	NCH	FPNCH	\mathbf{PF}	FPNNP	Other
P(NCH ₃ NCH ₃) ₃ P	-2.74				14.9				
ClP(NCH ₃ NCH ₃) ₂ PCl	-2.98		16.5						
Cl ₂ PNCH ₃ NCH ₃ PCl ₂	-3.18				7.0				
FP(NCH ₃ NCH ₃) ₂ PF	-2.85	+26.3	15.0			3.5	1023	19	
$F_2PNCH_3NCH_3PF_2$	-2.87	a	3.5	2.5		3	a		3.5 (PP)
$H_{3}B \cdot P(NCH_{3}NCH_{3})_{8}P \cdot BH_{3}$	-2.90 (CH ₃)				13.3				
$H_3B \cdot ClP(NCH_3NCH_3)_2PCl \cdot BH_3$	$-3.07 (CH_3)$		10.5						
$H_3B \cdot FP(NCH_3NCH_3)_2PF \cdot BH_3$	$-3.00 (CH_3)$	+4.5	8.0			3.5	1159		
$H_3B \cdot F_2PNCH_3NCH_3PF_2 \cdot BH_3$	-3.12 (CH ₃)	-8.3	7.2			2.5	1197	20	104 (BH), 15 (HBPF)
, · · · ·	$-0.67 (BH_3)$								16 (PBH), 20 (BPF)
$H_3B \cdot F_2PNCH_3NCH_3PF_2$	$-3.11 (CH_3)$	Ъ	8.4			3.2			87 (BH), 4 (PBH)
	-0.15 (BH ₃)								
$H_3B \cdot F_2PNCH_3NCH_3PF_2$	-2.98 (CH ₃)	Ъ	5.8			3.0			
HNCH3NCH3H	-2.47 (CH ₃)								

Тапть Т

^a Temperature dependent—see ref 12. ^b Temperature dependent—see text.

predicted simple first-order spectra. Coupling constants (Table I) are well within the ranges of about $J_{PNCH} = 8-20$ Hz, $J_{FPNCH} = 2-5$ Hz, and $J_{PF} = 1000-$ 1400 Hz reported previously¹⁸ for couplings in other trivalent phosphorus compounds and compare well to $J_{\rm PF} = 971 \text{ Hz for FP}[\text{NCH}_3\text{N}(\text{CH}_3)_2]_2$.¹⁹ (The assignment of ³¹P-¹H and ³¹P-¹⁹F coupling was confirmed by ³¹P double-resonance experiments.) The ¹⁹F chemical shift of FP(NCH₃NCH₃)₂PF (+26.3 ppm) is close to the values observed in $FP[N(CH_3)_2]_{2^{18}}(+22.3 \text{ ppm})$ and $FP[NCH_3N(CH_3)_2]_{2^{19}}$ (+23.8 ppm). While we could not obtain ³¹P spectra with our spectrometer, a crude indor experiment was performed on FP(NCH₃NCH₃)₂-PF by systematically incrementing, at low power, the ⁸¹P decoupling frequency. In this study, two decoupling regions, one centered at 1468 Hz and the other at 2348 Hz, were observed. The separation, 1120 Hz (compared to $J_{\rm PF} = 1123$ Hz obtained from ¹⁹F spectrum), confirms the expected doublet ³¹P spectrum.

The ¹H spectra of the other compounds (Figure 1) are complex; nonetheless their interpretation is straightforward. The peculiar triplet observed for $P(NCH_3$ -NCH₃)₃P has previously⁸ been rationalized in terms of "virtual coupling" of the ³¹P nuclei. Similarly the ¹H spectrum of Cl₂PNCH₃NCH₃PCl₂, which is also a triplet, can arise by coupling of the two ³¹P nuclei. This interpretation was confirmed when the triplets in the spectra of both compounds collapsed into sharp singlets upon double irradiation of the ³¹P. Unfortunately, neither J_{PNCH} nor J_{PNNCH} can be extracted from these spectra (the separation of the outer peaks of the triplets equals $|J_{PNCH} + J_{PNNCH}|$). Further, since appreciable PNNCH coupling occurs in F₂PNCH₃- NCH_3PF_2 (see below), J_{PNNCH} cannot be ignored and J_{PNCH} be set equal to the separation of the outer peaks. For acyclic hydrazines,²⁰ aminophosphines,²¹ and F₂-PNCH₃NCH₃PF₂¹² the nmr spectra have been observed to be temperature dependent as a result of hindered P-N and N-N bond rotation. Likewise the ¹H spectrum of Cl₂PNCH₃NCH₃PCl₂ broadened at low temperatures, but as slow exchange had not been reached

(19) M. D. Rosario and J. W. Gilje, unpublished data.

(20) M. J. S. Dewar and W. B. Jennings, *Tetrahedron Lett.*, 339 (1970).
(21) A. H. Cowley, M. I. S. Dewar, W. R. Jackson, and W. B. Jennings, *Contemporation of the second second* J. Amer. Chem. Soc., 92, 5206 (1970).

at -150° , the lower limit of our spectrometer, the exchange processes occurring in this molecule could not be determined.

The complex proton spectrum of F₂PNCH₃NCH₃PF₂ (Figure 1), obtained at ambient temperature, can be duplicated by a calculated spectrum based on the formulation of the compound as 1,2-bis(difluorophosphino)-1,2-dimethylhydrazine using the parameters $J_{PNCH} =$ 3.5 Hz, $J_{\text{PNNCH}} = 2.5 \text{ Hz}$, $J_{\text{PP}} = 3.5 \text{ Hz}$, and $J_{\text{FPNCH}} =$ 3.0 Hz. (These values compare with $J_{\text{FPNCH}} = 3.5 \text{ Hz}$ and $J_{PP} = 3.5 \text{ Hz obtained}^{12}$ from the ¹⁹F spectrum at -40° .) The spectrum is not extremely sensitive to small changes in the two PH coupling constants and hence their values may not be exact; it was possible to vary them by as much as 0.3 Hz and still obtain a reasonable calculated spectrum as long as the sign of the two coupling constants was the same and $|J_{PNCH} +$ $J_{\text{PNNCH}} = 6.0 \pm 0.2$ Hz. While J_{PNCH} usually is greater than 3-4 Hz, values as low as 0.8 Hz have recently been reported^{22,23} in compounds containing a π -bonded group attached to the nitrogen. Since the P-N bonds in F₂PNCH₃NCH₃PF₂ may have appreciable $p\pi$ -d π character, a similar effect may account for its low PNCH coupling constant. The 'H spectrum broadens upon cooling, but at -150° the slow exchange limit had not been reached. The ${}^{19}F$ spectrum of F_2PNCH_3 -NCH₃PF₂, which has already been discussed,¹² is temperature dependent and indicates that the P-N-N-P framework is planar on the nmr time scale with restricted rotation about both the P-N and N-N bonds. Further confirmation of the compound's formulation comes from the ³¹P spectrum which was determined to be a triplet, as expected for equivalent PF_2 groups, by indor experiments in which partial decoupling of both the ¹H and ¹⁹F spectra occurred at three ³¹P decoupling frequencies separated by about 1200 Hz ($J_{\rm PF} \approx 1200$ Hz from the ¹⁹F spectrum¹²).

Reactions with B_2H_6.—The dimethylhydrazinodiphosphines, like related aminophosphines,^{24,25} form strong, phosphorus-bonded borane adducts. H₃B·P-(NCH₃NCH₃)₃P·BH₃ has previously been reported,¹⁰

- (22) D. C. H. Bigg, R. Spratt, and B. J. Walker, Tetrahedron Lett., 107 (1970).
- (23) J. Nelson, R. Spratt, and B. Walker, J. Chem. Soc. D., 1509 (1970).
- (24) H. Noth and H. J. Vetter, Chem. Ber., 96, 1298 (1963).
 (25) (a) S. Fleming and R. W. Parry, Inorg. Chem. 11, 1 (1972);
- (b) W. Van Doorne, Ph.D. Dissertation, University of Michigan, 1966.

^{(18) (}a) G. S. Reddy and R. Schmutzler, Z. Naturforsch. B, 20, 104 (1965); (b) J. F. Nixon and R. Schmutzler, Spectrochim. Acta, 22, 565 (1966).

and in this study bis-borane adducts of ClP(NCH₃- NCH_3)₂PCl, FP(NCH₃NCH₃)₂PF, and F₂PNCH₃NCH₃- PF_2 also were isolated, as was the mono-borane adduct of $F_2PNCH_3NCH_3PF_2$. Only Cl₂PNCH₃NCH₃PCl₂ did not form a stable adduct; instead its reaction with B₂H₆ invariably led to decomposition and the generation of uncharacterized yellow solids. It is interesting that this behavior parallels that of $Cl_2PN(CH_3)_2$ which, alone among the dimethylaminochloro- and fluorophosphines, decomposes when treated with B2H6.24 Coordination of the other hydrazinophosphines without rearrangement is indicated by the ir spectra of the BH3 complexes which closely resemble the spectra of the parent compounds with the exception of peaks at about 2400, 1100, and 800 cm⁻¹ which can be attributed to B-H modes.

Nmr Spectra of BH₃ Complexes.—In common solvents the solubility of the BH₃ adducts is considerably less than that of the parent compounds. Since concentrated solutions could not be obtained in every case, the BH_3 signals, which are usually broad and low in intensity, could not be resolved in the proton spectra of several of the compounds. The N-CH₃ peaks, however, could be seen clearly and in all the bis-borane complexes appeared as a single resonance chemically shifted about (0.1-0.2 ppm downfield from their positions)in the spectra of the parent ligands. The N-CH₃ peaks $H_3B \cdot P(NCH_3NCH_3)_3P \cdot BH_3$, $H_{3}B \cdot ClP(NCH_{3}$ in $\mathbf{NCH}_3)_2\mathbf{PCl}\cdot\mathbf{BH}_3,\ \text{and}\ \mathbf{H}_3\mathbf{B}\cdot\mathbf{FP}(\mathbf{NCH}_3\mathbf{NCH}_3)_2\mathbf{PF}\cdot\mathbf{BH}_3$ qualitatively resemble the 1H spectra of the uncomplexed ligands with coupling constants and chemical shifts as given in Table I. The ¹⁹F spectrum of H_3B . $FP(NCH_3NCH_3)_2PF \cdot BH_3$ is a single doublet, $J_{PF} =$ 1159 Hz, δ +4.53 ppm, each member of which shows incipient but unresolved splitting. The magnetic equivalence of the NCH_3 and PF groups, the chemical shift changes occurring upon adduct formation, and the failure to observe coupling of the NCH₃ group with the BH3 indicate that coordination has occurred at phos-(A 0.05-0.20-ppm downfield shift occurs in phorus. the NCH₃ peak when BH₃ coordinates phosphorus in aminophosphines;²⁵ when nitrogen in a methylamine is complexed, this peak is shifted by about 1 ppm.²⁶ The 21.8-ppm downfield shift of the 19F signal in $FP(NCH_3NCH_3)_2PF$ upon addition of BH_3 compares with an 18-ppm downfield shift for this resonance between $FP[N(CH_3)_2]_2$ and its phosphorus-bonded borane complex.²⁵ Spin coupling of the N-methyl groups with BH3 is seen in the amine-boranes²⁶ but not the aminophosphine-boranes.²⁵)

In contrast to the complex splitting of the NCH₃ resonance in F₂PNCH₃NCH₃PF₂ the ¹H spectra of its two borane complexes are simple first order. With H₃B·F₂PNCH₃NCH₃PF₂·BH₃ the N-CH₃ signal is a double of triplets ($J_{\text{PNCH}} = 7.2$ Hz, $J_{\text{FPNCH}} = 2.5$ Hz, $\delta - 3.12$ ppm) and the BH₃ protons appear as a broad quartet of doublets ($J_{\text{BH}} = 104$ Hz, $J_{\text{PBH}} = 16$ Hz, δ -0.67 ppm). The temperature-independent (between

(26) C. W. Heitsch, Inorg. Chem., 4, 1019 (1965).

+30 and -50°) ¹⁹F spectrum of this compound is a doublet, $J_{\rm PF} = 1197$ Hz, $\delta - 8.3$ ppm, each member of which is further split into a complex multiplet which can be duplicated by a spectrum calculated using the parameters $J_{\text{PNNPF}} = 20$ Hz, $J_{\text{BPF}} = 16$ Hz, $J_{\text{HCNPF}} =$ 3 Hz, and $J_{\text{HBPF}} = 15$ Hz. These values of J_{BPF} and J_{PBH} are typical²⁵ of a FPBH linkage and, along with the chemical shift the PF_2 , which is near the value of -4.3 ppm observed in $H_3B \cdot F_2PN(CH_3)_2$,²⁵ and the chemical shift of the N-CH₃ group, indicate coordination of the phosphorus. Likewise coordination of the phosphorus in H₃B·F₂PNCH₃NCH₃PF₂ is indicated by the chemical shifts and the P-B coupling constant. As expected the two N-CH₃ groups are magnetically nonequivalent; each appears as a doublet of triplets with the spectral parameters listed in Table I. The high-field signal ($\delta - 2.98$ ppm) can be assigned, by analogy to the chemical shifts in F₂PNCH₃NCH₃PF₂ and $H_3B \cdot F_2PNCH_3NCH_3PF_2 \cdot BH_3$, to the NCH₃ group adjacent to the uncomplexed PF₂; likewise the resonance at -3.11 ppm is assigned to the NCH₃ bonded to the F_2PBH_3 moiety. The BH_3 group appears as a broad quartet of doublets. The 4-Hz HBP coupling constant is typical of this linkage.²⁵ The ¹⁹F spectrum is temperature dependent; because of the compound's decomposition, we were unable to observe the fastexchange region (somewhere above 25°) and consequently have been unable to interpret completely the low-temperature data. The stereochemical interchanges taking place in this and related compounds are currently under investigation in this laboratory.

Reactions with BF₃.—Only F₂PNCH₃NCH₃PF₂ forms a simple complex with the other common boroncontaining Lewis acid BF₃. At -78° a 1:1 adduct forms which dissociates as temperature is increased. Of the other hydrazinodiphosphines $P(NCH_3NCH_3)_3P$, ClP(NCH₃NCH₃)₂PCl, and Cl₂PNCH₃NCH₃PCl₂ decompose to form uncharacterized yellow solids, while FP(NCH₃NCH₃)₂PF does not react with BF₃. Similar behavior is encountered in the reactions between BF3 and the aminophosphines where decomposition,²⁴ disproportionation,27 and unstable complex formation, presumably through coordination of the nitrogen, 25, 28, 29 occur. In view of the similarities between the aminoand hydrazinophosphines the difficulties in characterizing the BF_3 reactions are probably not surprising, and with BF₃'s tendency to complex nitrogen in the aminohalophosphines, quite complex behavior might be expected for the hydrazino analogs with their plethora of nitrogen donor sites.

Acknowledgment.—Acknowledgment is gratefully made to the Petroleum Research Fund administered by the American Chemical Society for support of this research. We also wish to thank Dr. Thomas T. Bopp for running many of the nmr spectra.

(29) R. W. Parry, "Coordination Chemistry," S. Kirschner, Ed., Plenum Press, New York, N. Y., 1969, p 207.

⁽²⁷⁾ R. R. Holmes and R. P. Wagner, J. Amer. Chem. Soc., 84, 357 (1962).

⁽²⁸⁾ R. G. Cavell, J. Chem. Soc., 1992 (1964).