TABLE VII THERMODYNAMIC PROPERTIES FOR CIF₈O

			- (F°	
	$C_{\mathbf{p}}^{\circ}$,	$H^{\circ} - H_0^{\circ}$,	$H_0^{\circ})/T$,	S° , cal/
<i>T</i> , °K	cal/mol	kcal/mol	cal/(mol deg)	(mol deg)
0	0	0	0	0
100	9.721	0.837	49.255	57.624
200	14.932	2.072	55.613	65.971
298.15	18.593	3.732	60.159	72.675
300	18.646	3.766	60.237	72.790
400	20.875	5.751	64.108	78.486
500	22.260	7.913	67.478	83.305
600	23.160	10.187	70.470	87.448
700	23.771	12.536	73.159	91.067
800	24.200	14.936	75.602	94.271
900	24.512	17.372	77.838	97.141
1000	24.744	19.835	79.900	99.736
1100	24.921	22.319	81.813	102.103
1200	25.059	24.818	83.595	104.277
1300	25.168	27.330	85.265	106.288
1400	25.256	29.851	86.834	108.156
1500	25.328	32.380	88.314	109.901
1600	25.387	34.916	89.715	111.538
1700	25.437	37.458	91.044	113.078
1800	25.479	40.003	92.309	114.533
1900	25.514	42.553	93.516	115.912
2000	25.545	45.106	94.668	117.221

the bands characteristic for $\text{ClF}_2\text{O}^{+7}$ and $\text{ClF}_4\text{O}^{-8}$ could be detected in the spectra of liquid or solid ClF_3O .

Thermodynamic Properties.—The thermodynamic properties were computed with the molecular geometry and vibrational frequencies given above assuming an ideal gas at 1 atm pressure and using the harmonic-oscillator rigid-rotor approximation.²⁸ These properties are given for the range 0–2000°K in Table VII.

Acknowledgment.—The authors wish to express their gratitude to Dr. D. Pilipovich for continuous encouragement of this work and stimulating discussions, and to Mr. R. D. Wilson for his help in the preparation of some of the samples. We are indebted to Dr. J. Cape of the Science Center of North American Rockwell Corporation for the use of the Raman spectrophotometer. This work was supported by the Office of Naval Research, Power Branch, and by the Air Force Office of Scientific Research, Office of Aerospace Research, U. S. Air Force, under Contract AF 49(638)-1734.

(28) J. E. Mayer and M. G. Mayer, "Statistical Mechanics," Wiley, New York, N. Y., 1940.

Contribution from Rocketdyne, A Division of North American Rockwell Corporation, Canoga Park, California 91304

Chlorine Trifluoride Oxide. IV. Reaction Chemistry

BY C. J. SCHACK,* C. B. LINDAHL, D. PILIPOVICH, AND K. O. CHRISTE

Received September 8, 1971

Reactions of chlorine trifluoride oxide, $ClF_{3}O$, with Cl_{2} , $Cl_{2}O$, $ClOSO_{2}F$, $N_{2}F_{4}$, HNF_{2} , and $NF_{2}CFO$ are reported. In these reactions, $ClF_{3}O$ either fluorinates, oxygenates, or both oxygenates and fluorinates the substrates. The interaction of $ClF_{3}O$ with PtF_{6} is also described. In this reaction, $ClF_{3}O$ liberates F_{2} and forms the new complex, $ClF_{2}O^{+}PtF_{6}^{-}$. Characterizing data for the complex are given.

Introduction

In the preceding papers,¹⁻³ we reported the preparation and properties of the new chlorine oxyfluoride, $ClF_{3}O$. Since ClF_{3} is a powerful oxidative fluorinating agent, it was anticipated that $ClF_{3}O$ would be similarly reactive as a fluorinating, as well as an oxygenating agent. This paper describes some of the reaction chemistry of $ClF_{3}O$.

Experimental Section

Apparatus.—Experimental techniques used in these studies were essentially the same as those described elsewhere.¹⁻⁴ Debye– Scherrer powder patterns were taken using a Philips Norelco instrument, Type No. 12046, with copper K α radiation and a nickel filter. Samples were sealed in quartz capillaries (~0.5 mm o.d.). Gas chromatographic analyses were performed using the method of Dayan and Neale.⁶ A Hanovia utility lamp (catalog no. 30620) was used for the photolyses.

Materials.-The preparation and purification of ClF₃O, Cl₂O,

ClOSO₂F, HNF₂, and NF₂CFO are described elsewhere.^{1,6-9} Chlorine (Matheson Co.), tetrafluorohydrazine (Allied Chemical Corp.), and platinum hexafluoride (Ozark Mahoning Co.) were purchased and purified by fractional condensations.

Reactions of Chlorine Trifluoride Oxide. With Chlorine.—At room temperature, chlorine and ClF₃O do not interact. An equimolar mixture (100 cm³, 4.46 mmol each) of the two when heated at 200° for 16 hr in a 30-ml stainless steel cylinder did result in complete consumption of the ClF₃O. The products were separated by fractional condensation at -142 and -196° and analyzed by infrared spectroscopy and gas chromatography. Chlorine monofluoride was the principal product (262 cm³, 11.7 mmol) with only a small amount of ClO₂F (6.7 cm³, 0.3 mmol) and unreacted Cl₂ (15.7 cm³, 0.7 mmol) being observed. Noncondensables (O₂) were also produced. When kept at 100° for 2 days, ClF₃O reacted with Cl₂ only partially (\sim 30%) to give ClF₃, ClF, and ClO₂F as the major reaction products.

With Dichlorine Monoxide.—Chlorine trifluoride oxide (76.5 cm³, 3.42 mmol) and an equal quantity of Cl_2O were separately condensed at -196° into a Kel-F reactor fitted with a Teflon valve. (Previous experiments in stainless steel cylinders resulted in extensive decomposition of the Cl_2O , apparently due to

⁽¹⁾ D. Pilipovich, C. B. Lindahl, C. J. Schack, R. D. Wilson, and K. O. Christe, *Inorg. Chem.*, **11**, 2189 (1972).

⁽²⁾ D. Pilipovich, R. H. H. Rogers, and D. Wilson, ibid., 11, 2192 (1972).

⁽³⁾ K. O. Christe and E. C. Curtis, ibid., 11, 2196 (1972).

⁽⁴⁾ K. O. Christe, C. J. Schack, and D. Pilipovich, *ibid.*, **11**, 2205 (1972).

⁽⁵⁾ V. H. Dayan and B. C. Neale, Advan. Chem. Ser., No. 54, 223 (1966).

⁽⁶⁾ C. J. Schack and B. C. Lindahl, Inorg. Nucl. Chem. Lett., 3, 387 (1967).

⁽⁷⁾ C. J. Schack and R. D. Wilson, Inorg. Chem., 9, 311 (1970).

⁽⁸⁾ E. A. Lawton, E. F. C. Cain, D. F. Sheehan, and M. G. Warner, J. Inorg. Nucl. Chem., 17, 188 (1961).

⁽⁹⁾ G. W. Fraser and J. M. Shreeve, Inorg. Chem., 4, 1497 (1965).

reaction with the fluorinated metal surface.) The reactor was allowed to warm slowly to ambient temperature. After a total reaction period of 15 hr, the sample was separated by fractional condensation at -95, -112, -142, and -196° . Unreacted Cl₂O and ClF₃O were recovered (134 cm³, 5.98 mmol total), together with ClF (17.5 cm³, 0.78 mmol) and ClO₂F (10.3 cm³, 0.46 mmol).

With Chlorine Fluorosulfate.—Equimolar amounts (34.2 cm³, 1.53 mmol) of ClF₃O and ClOSO₂F were separately condensed into a prepassivated 10-ml stainless steel cylinder at -196° . The cylinder was allowed to warm to ambient temperature and to stand for 5 days. The reaction products were separated by several fractional condensations in a series of U traps cooled to -80, -95, -142, and -196° . Some unreacted ClF₃O was found, but all the ClOSO₂F had been consumed. The materials formed were SO₂F₂ (13.0 cm³, 0.58 mmol), S₂O₃F₂ (9.17 cm³, 0.43 mmol), ClF (26.8 cm³, 1.20 mmol), and ClO₂F (24.0 cm³, 1.07 mmol).

With Tetrafluorohydrazine.—At ambient temperature, chlorine trifluoride oxide and N₂F₄ do not react. An equimolar mixture of the two (99.4 cm³, 4.44 mmol each) was heated in a stainless steel cylinder at 130° for 65 hr before separating the products by fractional condensation. No unreacted N₂F₄ was recovered, but 45.7 cm³ of ClF₃O (2.04 mmol) remained. The principal nitrogen containing product was NF₃ (120 cm³, 5.35 mmol), some of which may have been lost by incomplete condensation in the trap cooled to -196° . Nitrosyl fluoride (62.6 cm³, 2.80 mmol) and ClF (53.8 cm³, 2.40 mmol) were also obtained along with trace amounts of FNO₂, NF₃O, and ClO₂F. At 100° for 24 hr, ClF₃O and N₂F₄ reacted in the same fashion but somewhat less than half the N₂F₄ was consumed.

Photolysis with Tetrafluorohydrazine .--- Measured amounts of ClF₃O (85.6 cm³, 3.82 mmol) and N₂F₄ (48.0 cm³, 2.14 mmol) were condensed into a stainless steel cylinder cooled to -196° . The cylinder was equipped at its upper end with a uv grade sapphire window (5-in. diameter). After warming to ambient temperature, the contents of the cylinder was irradiated for 2 hr with a Hanovia utility lamp before separating the products. Multiple fractional condensations through U-traps cooled to -78, -95, -142, and -196° were used for this purpose. Considerable amounts of unreacted ClF₃O (60.2 cm³, 2.69 mmol) were recovered, but all the N_2F_4 had been consumed. The products were NF_{3} (68.5 cm³, 3.06 mmol), FNO + FNO₂ (15.5 cm³, 0.69 mmol), ClF (23.2 cm³, 1.04 mmol), and ClF₃ (2.3 cm³, 0.10 mmol) The chlorine trifluoride was isolated with an equivalent amount of FNO owing to the formation of the $NO^+ClF_4^-$ complex¹⁰ in the trap cooled to -78° . The discrepancy in the nitrogen material balance for the reaction is ascribed to the incomplete condensation of NF₃ at -196° since no solid residues were observed in the reactor. Mixtures of ClF_3O and N_2F_4 were also irradiated in a cylinder with a 1-in. diameter sapphire window. In these experiments, very little reaction occurred even with prolonged irradiation (2 days) and approximately 90% of the reactants was recovered. The products were NF_3O , NF_3 , FNO, ClF_3 , and ClF.

With Difluoramine (Caution!)11 and Difluoraminocarbonyl Fluoride .--- A Kel-F reactor fitted with a Teflon valve was used to avoid the incompatibility problems of ClF3O (and generated HF) with glass and HNF_2 with metal. From the glass line, HNF_2 (61.0 cm³, 2.72 mmol) was loaded at -142° , and after attachment of the container to the metal line, CIF₃O (35.9 cm³, 1.60 mmol) was condensed in at the same temperature. The closed reactor was warmed to -78° for 15 min before fractionation in the metal line was started through U traps cooled to -78, -95, -142, and -196° . The two warmest traps contained HF (not measured) and ClF₃O (8.1 cm³, 0.36 mmol). The -142° fraction was an approximately equimolar mixture of ClO₂F and Cl₂ (total 6.2 cm³, 0.28 mmol) with a trace of ClF₃. The -196° fraction consisted of NF₃O (19.5 cm³, 0.87 mmol), NF₂Cl (19.4 cm³, 0.87 mmol), and N₂F₄ (10.0 cm³, 0.45 mmol). No unreacted HNF₂ was observed, although the N₂F₄ may have arisen in part from the decomposition of HNF2 in the metal system during workup.

A similar reaction was observed between excess ClF₃O and NF₂CFO (46 cm³, 2.05 mmol). However, in this case, the predominant N-F product was N₂F₄ (18 cm³, 0.8 mmol) and COF₂ (46 cm³, 2.05 mmol), with much less NF₃O and NF₂Cl (\sim 5 cm³ each).

With Platinum Hexafluoride.-Platinum hexafluoride (32.2 cm³, 1.44 mmol) and ClF₃O (48.4 cm³, 2.16 mmol) were combined at -196° in a prepassivated 10-ml Monel cylinder. The contents of the cylinder was allowed to warm up slowly to room temperature and was kept at this temperature for 15 hr. Subsequently, the cylinder was cooled to -196° and 14.8 cm³ (0.66) mmol) of material volatile at -196° was removed. The volatile material was identified as F_2 by its vapor pressure at -196° and mass spectrum. The contents of the cylinder was allowed to warm to ambient temperature, and 14.8 cm3 (0.66 mmol) of volatile material was removed at this temperature which consisted, according to its infrared spectrum, of ClF_3O . The cylinder was opened in the glove box and contained 0.57 g of a bright yellow solid, which was identified by vibrational spectroscopy as-ClF2O⁺PtF6⁻. Therefore, PtF6 (1.44 mmol) had reacted with $ClF_{3}O$ (1.50 mmol) in a mole ratio of 1:1.04, producing F_{2} (0.66 mmol) and the solid complex, $ClF_2O^+PtF_6^-$.

Results and Discussion

Chlorine trifluoride oxide reacts with numerous materials causing oxidation through both fluorination and oxygenation. With hydrogen-containing species, these reactions may occur at quite low temperature and with hydrocarbon-type compounds are generally explosive. However, many chlorine, fluorine, or oxygen substituted compounds, even with lower valent central atoms, react only slowly at ambient temperature, or not at all. Thus, no reaction was observed at room temperature between ClF₃O and chlorine, chlorine fluorides, chlorine oxyfluorides, and the nitrogen fluorides, FNO, FNO₂, NF₃, and N₂F₄. However, elevated temperatures or uv photolysis have resulted in appreciable reaction of all compounds examined.

Reactions of chlorine and ClF₃O were carried out as a means of assessing the possible courses by which the oxyfluoride might undergo reduction. Basically, this could occur through fluorination or oxygenation of the Cl_2 starting material. A controllable fluorination reaction would be particularly desirable since it might yield the unknown compound, FClO. Whereas at 25°, no interaction was detected, at 200° the following reaction occurred

$$C1F_{3}O + Cl_{2} \longrightarrow 3C1F + 0.5O_{2}$$

It is tempting to interpret this equation in terms of direct oxygen elimination from ClF_3O , followed by equilibration¹² of ClF_3 and Cl_2 to ClF. However, the following evidence suggests the participation of chlorine in the initial reduction step: (1) ClF_3O alone does not undergo substantial thermal degradation under these conditions;¹ and (2) experiments at lower temperature showed ClF_3 , ClF, and ClO_2F as major reaction products. These results might be rationalized by assuming the following reaction sequence involving FClO as an unstable intermediate.

 $2CIF_{3}O + 2CI_{2} \longrightarrow 2[FCIO] + 4CIF$ $2[FCIO] \longrightarrow CIO_{2}F + CIF$ $CIO_{2}F \longrightarrow CIF + O_{2}$ $2CIF_{3}O + 2CI_{2} \longrightarrow 6CIF + O_{2}$

The thermal decomposition of ClO₂F in quartz to ClF

⁽¹⁰⁾ E. D. Whitney, R. O. MacLaren, T. J. Hurley, and C. E. Fogle, J. Amer. Chem. Soc., 86, 4340 (1964).

⁽¹¹⁾ Caution! Diffuoramine should not be cooled below -142° because of its pronounced tendency to explode after being in the solid state. In addition, chlorine fluorides or oxyfluorides must be free from chlorine oxide impurities for reactions with diffuoramine since such impurities often cause explosive deflagration.

and O_2 has previously¹⁸ been demonstrated. The fact that this reaction appears to proceed in our experiments at lower temperature might be explained by the catalytic influence¹⁴ of metal fluorides. As an alternative, the decomposition of the unstable FCIO may vary with reaction temperature. Thus, at lower temperature, FCIO might decompose to CIO_2F and CIF, whereas at higher temperature it might yield directly CIF and O_2 . The assumption of an unstable FCIO intermediate is reasonable. Numerous chlorine fluoride reaction systems, such as CIF_3-H_2O ,¹⁴ CIF_3-HONO_2 ,¹⁵ or $CIF_3O CI_2O$ (see below), are best interpreted by assuming the formation of an unstable FCIO intermediate. In addition, our repeated efforts to synthesize and isolate a stable FCIO moiety¹⁵ have been unsuccessful.

Chlorine monoxide and ClF_3O reacted slowly at room temperature. The use of an inert material for the reactor (Kel-F) allowed the course of the reaction to be determined without extensive, interfering side reactions.

$$C1F_{3}O + C1_{2}O \longrightarrow 2C1F + C1O_{2}F$$

Again, the fluorination of a chlorine atom (of Cl_2O) appears to be a plausible first reaction step, followed by the formation and decomposition of an unstable FCIO intermediate (see above). This reaction of Cl_2O and ClF_3O may also account, at least in part, for the less than theoretical yields of ClF_3O in its synthesis from $Cl_2O.^1$

Chlorine fluorosulfate and ClF_3O reacted at ambient temperature forming the products described by the following equations

 $ClF_{3}O + 2ClOSO_{2}F \longrightarrow S_{2}O_{5}F_{2} + ClO_{2}F + ClF$ $ClF_{3}O + ClOSO_{2}F \longrightarrow SO_{2}F_{2} + ClO_{2}F + ClF$

which account for 60 and 40%, respectively, of the $C1OSO_2F$ consumed. The formation of $S_2O_5F_2$ obviously involves a complex process, including at some point the abstraction of oxygen from the SO₃F group. Indeed, the failure to find either S₂O₆F₂ or SO₃F₂ as products suggests that SO3F radicals are not involved in the reaction. Further, it appears that the overall process may be quite similar to that noted¹ in the preparation of ClF₃O from Cl-O-X species (where X is any other radical, such as Cl, NO₂, or SO₂F). Namely, fluorination of the chlorine atom of the hypochlorite group facilitates O-X bond rupture in preference to the Cl-O bond-breaking process. Such a mechanism would yield SO₂F radicals which can either be fluorinated to SO_2F_2 or can react with additional $ClOSO_2F$ to give $S_2O_5F_2$. However, direct fluorination at the sulfur of ClOSO₂F cannot be excluded as an alternate route to SO_2F_2 . The chlorine compounds produced, ClF and ClO_2F , are again the same as those generally obtained from ClF₃O on reaction with Cl-O-containing compounds as expected for an unstable FCIO intermediate.

Tetrafluorohydrazine and ClF_3O reacted at an appreciable rate only above 100° . Nitrogen trifluoride and nitrosyl fluoride were obtained in fair agreement with the stoichiometry shown.

$$C1F_{3}O + 2N_{2}F_{4} \longrightarrow 3NF_{3} + FNO + C1F$$

(15) K. O. Christe, Inorg. Chem., 11, 1220 (1972).

The nitrogen fluoride products are the result of oxygenation and fluorination by ClF₃O. Overall, the reaction is quite similar to that reported 16 for N_2F_4 and OF_2 which also yielded NF_3 and FNO in a 3:1 ratio. Only a trace of the more highly oxidized nitrogen fluoride, NF₃O, was observed. However, this indicated that alternate conditions might more fully take advantage of the ability of ClF_3O to fluorinate and oxygenate. To this end, ultraviolet irradiations of N2F4-ClF3O mixtures were carried out. It was found that limitation of the intensity of the uv irradiation (through the use of a small reactor window, 1-in. diam) allowed greater amounts of NF₃O to be formed than in the thermal reaction. But these quantities were still small, about 5 mol %/mol of N₂F₄. Increasing the window area (and hence the admitted light) by a large factor led to complete conversion of the N_2F_4 to NF_3 , FNO, and FNO₂. No attempts were made to maximize conditions for oxidizing N₂F₄ to NF₃O using ClF₃O.

Chlorine trifluoride oxide and difluoramine underwent smooth, fast reaction at temperatures where pure ClF_3O is a solid. Three N-F-containing compounds, NF₃O, $ClNF_2$, and N₂F₄, were formed and the first two of these were always produced in nearly equimolar amounts. Thus, the major reactions may be

$$ClF_{3}O + 2HNF_{2} \longrightarrow [FClO] + 2HF + 2NF_{2} \cdot 2NF_{2} \cdot + [FClO] \longrightarrow NF_{2}Cl + NF_{3}O$$

 $ClF_{3}O + 2HNF_{2} \longrightarrow NF_{2}Cl + NF_{3}O + 2HF$

accompanied by the following competing reactions

$$2NF_{2} \longrightarrow N_{2}F_{4}$$

$$2[FCIO] \longrightarrow CIO_{2}F + CIF$$

$$CIF + HNF_{2} \longrightarrow HF + NF_{2}CI$$

$$2[FCIO] + HNF_{2} \longrightarrow CIO_{2}F + NF_{2}CI + HF$$

The high yield of NF₃O (70% based on ClF₃O consumed) noted here is remarkable when compared to previously reported^{17,18} and unreported^{19,20} yields obtained under a variety of conditions.

The reaction between diffuoraminocarbonyl fluoride, F_2NCFO , and ClF_3O yielded again NF_3O and $ClNF_2$ in nearly equimolar amounts. However, the yields were much lower (20% based on ClF_3O consumed) with N_2F_4 being the main N-F containing product. By analogy with the HNF_2 - ClF_3O reaction (see above), the following reaction sequence might be proposed

$$ClF_{3}O + 2F_{2}NCFO \longrightarrow 2COF_{2} + [FClO] + 2NF_{2} \cdot 2NF_{2} \cdot + [FClO] \longrightarrow NF_{2}Cl + NF_{3}O$$

 $ClF_{3}O + 2F_{2}NCFO \longrightarrow NF_{2}Cl + NF_{3}O + 2COF_{2}$

with the competing reactions being identical with those written for the CIF_3O-HNF_2 reaction.

The formation of the ClF_2O^+ cation by the reaction

(17) (a) N. Bartlett, J. Passmore, and E. J. Wells, Chem. Commun., 213
 (1966); (b) N. Bartlett and S. P. Beaton, *ibid.*, 167 (1966); (c) N. Bartlett,

S. P. Beaton, and N. K. Jha, *ibid.*, 168 (1966).
(18) W. B. Fox, et al., J. Amer. Chem. Soc., 88, 2604 (1966).

(19) E. A. Lawton and D. Pilipovich, U. S. Patent 3,505,015 (April 7, 1970); British Patent 1,104,711 (Feb 15, 1965).

⁽¹³⁾ M. J. Heras, P. J. Aymonino, and H. J. Schumacher, Z. Phys. Chem. (Frankfurt am Main), 22, 161 (1959).

⁽¹⁴⁾ R. Bougon, M. Carles, and J. Aubert, C. R. Acad. Sci., Ser. C, 265, 179 (1967).

⁽¹⁶⁾ M. Rubinstein, J. E. Sicre, and H. J. Schumacher, Z. Phys. Chem. (Frankfurt am Main), 48, 51 (1964).

⁽²⁰⁾ Just as Bartlett and coworkers showed that PtF_{θ} or OsF_{θ} reacts with FNO to give low or trace amounts of NF $_{\theta}O$, so also ClF $_{\theta}$ and FNO have been noted to form slight amounts of NF $_{\theta}O$: D. Pilipovich and H. F. Bauer, unpublished results.

Figure 1.—Infrared spectrum of solid $ClF_2O^+PtF_6^-$ as AgCl disk.

Figure 2.—Raman spectrum of solid ClF₂O⁺PtF₆⁻ at three different recorder voltages: exciting line 6471 Å; spectral slit width for curves A and B 8 cm⁻¹; for curve C 2 cm⁻¹.

of $ClF_{3}O$ with strong Lewis acids is reported elsewhere.^{4,21} The same cation was found to result from the interaction of platinum hexafluoride and $ClF_{3}O$, according to

 $ClF_{3}O + PtF_{6} \longrightarrow ClF_{2}O^{+}PtF_{6}^{-} + 0.5F_{2}$

While all the reactions described earlier in this report showed ClF_3O functioning as an oxidizing agent, here it can be seen that platinum hexafluoride is the more powerful oxidizing agent. However, the oxidation is confined to one of the fluorine ligands of ClF_3O and does not affect the oxidation state of the chlorine central atom which would result in the most interesting ClF_3O molecule. All the PtF_6 reacted and excess ClF_3O was recovered unchanged.

The bright yellow, crystalline solid, $\text{ClF}_2\text{O}+\text{PtF}_6^-$, was characterized by vibrational spectroscopy. Figures 1 and 2 show the infrared and Raman spectrum, respectively, of the solid. Table I lists the observed frequencies together with their assignment. All bands expected for $\text{ClF}_2\text{O}^{+21}$ have been observed with proper frequencies and intensities. In addition to the ClF_2O^+ bands, the vibrational spectrum shows the bands characteristic²² for PtF_6^- . Consequently, the solid obtained from the $\text{ClF}_3\text{O}-\text{PtF}_6$ reaction has the ionic composition $\text{ClF}_2\text{O}^+\text{PtF}_6^-$.

The X-ray powder diffraction pattern of ClF_2O^+ -PtF₆⁻ is listed in Table II. The observed lines were

TABLE I	
VIBRATIONAL SPECTRUM OF ClF2O+PtF6- ANI) ITS
Assignment Compared to That of ClF ₂ O+As	sF6 ^{-a}
——————————————————————————————————————	Assignment
$ClF_2O^+PtF_6^ClF_2O^+AsF_6^ClF_2O^+AsF_6^$	(for C1F ₂ O ⁺

					(for ClF_2O^+	
It	r	Raman		Ir	Raman	in C_s)
1326	ms	$1324 \ (0.6)^{b}$	1331	ms	1333 (2) ^b	v ₁ (A') ⁸⁵ C1
1313	mw	1311(0.2)	1319	mw	1320(1)	𝒫1(A') ³⁷ C1
737	s	737(2.7)	750	br, s	757 br (3)	$\nu_2(A')$
705	s	705(0.8)	695	vs	696(1)	$\nu_{\mathfrak{z}}(\mathbf{A''})$
643	vs	658(4.2)	695	vs)	
630	sh	630 (10)	675	sh, w	674(10)	XF_6^-
F.0.4			501		F(0) (0)	Ū.
204	s	504(2.9))	201	ms	903 (3) J	
508	s	$506\ (0.5)$	509	ms	511(2)	$\nu_{\mathfrak{z}}(\mathbf{A'})$
401	ms	401(0.7)	407	s	406(2)	$\nu_6(A^{\prime\prime})$
			388	s		XF_6
386	ms	386(0.2)	378	$^{\rm sh}$	378 sh	$\nu_4(A')$
		280(0.3)			371(4)	XF_6^-
		239 (7.9)				
		140(0.3)				
		115(0.2)				Lattice
		58(1.0)				modes

^a K. O. Christe, E. C. Curtis, and C. J. Schack, *Inorg. Chem.*, 11, 2212 (1972). ^b Uncorrected Raman intensities.

 $\label{eq:table_integral} \begin{array}{c} \text{Table II} \\ \text{X-Ray Powder Data for $ClF_2O^+PtF_6^-$} \end{array}$

d.	Å		
Obsd	Caled	Intensity	hkl
7.43	7.43	mw	110
5.47	5.50	m	111
4.95	4.97	mw	200
4.25	4.26	vs	201
4.09	4.10	s	002
3.72	3.70	ms	030
3.61	3.60	vw	112
3.38	3.37	W	031
3.31	3.31	s	300
3.17	3.17	m	310
3.02	3.04	W	212
2.98	2.99	\mathbf{ms}	231
2.86	2 , 85	w	320
2.77	2.78	m	040
2.59	2.57	m	302
2.48	2.49	m	400
2.33	2.34	mw	322
2.20	2.20	ms	223
2.14	2.15	vw	051
2.07	2.07	VW	313
2.04	2.03	m	250
1.99	1.99	mw	500
1.93	1.93	ms	501

indexed on the basis of an orthorhombic unit cell with a = 9.94, b = 11.12, and c = 8.21 Å. Assuming that the volume of the oxygen atoms will be comparable to that of the fluorine atoms, and neglecting contributions from the highly charged central atoms to the volume (as suggested by Zachariasen^{23,24}), an average volume of 17–18 Å³ can be expected for each fluorine or oxygen atom in ClF₂O+PtF₆⁻. Thus, values of 17.8 and 17.0 Å³ have been reported for IF₆+AsF₆⁻²⁵ and NF₄+-AsF₆^{-,26} respectively. Based on this assumption, one can deduce six molecules per unit cell for ClF₂O+PtF₆⁻, resulting in an average volume of 16.81 Å³ per F or O atom. The powder pattern of ClF₂O+PtF₆⁻ is similar

- (25) K. O. Christe and W. Sawodny, Inorg. Chem., 6, 1783 (1967).
- (26) K. O. Christe, J. P. Guertin, and A. E. Pavlath, Inorg. Nucl. Chem. Lett., 2, 83 (1966).

⁽²¹⁾ K. O. Christe, E. C. Curtis, and C. J. Schack, Inorg. Chem., 11, 2212 (1972).

⁽²²⁾ N. Bartlett, Angew. Chem., Int. Ed. Engl., 7, 433 (1968); N. Bartlett and S. P. Beaton, Chem. Commun., 167 (1966).

⁽²³⁾ W. H. Zachariasen, J. Amer. Chem. Soc., 70, 2147 (1948).

⁽²⁴⁾ F. H. Ellinger and W. H. Zachariasen, J. Phys. Chem., 58, 405 (1954).

to that $observed^{27}$ for $ClO_2^+AsF_6^-$. The latter has a tetragonal unit cell with a = 10.39 and c = 8.03 Å. The unit cell of $ClF_2O + PtF_6$ might be derived from the $ClO_2+A_sF_6$ cell by assuming orthorhombic distortion due to the lower symmetry of the ClF_2O^+ cation. Further evidence for the formulation of the solid as ClF₂O+-

(27) K. O. Christe, C. J. Schack, D. Pilipovich, and W. Sawodny, Inorg. Chem., 8, 2489 (1969).

 PtF_{6}^{-} can be deduced from the fact that the X-ray powder diffraction patterns of ClF_2O+AsF_6-4 and ClF_2O+PtF_6 are almost identical.

Acknowledgment.—We are pleased to acknowledge support for this work by the Office of Naval Research. Power Branch. We are indebted to R. B. Cook of Carv Instruments for recording the Raman spectrum.

CONTRIBUTION FROM ROCKETDYNE, A DIVISION OF NORTH AMERICAN ROCKWELL CORPORATION. CANOGA PARK, CALIFORNIA 91304

Chlorine Trifluoride Oxide. V. Complex Formation with Lewis Acids and Bases

BY KARL O. CHRISTE,* CARL J. SCHACK, AND DONALD PILIPOVICH

Received September 8, 1971

Chlorine trifluoride oxide, ClF₈O, exhibits amphoteric character. With the strong Lewis bases CsF, RbF, and KF it forms the stable, white, crystalline adducts, CsF·ClF₈O, RbF·ClF₈O, and KF·ClF₃O, respectively. With the weaker base FNO it neither forms a complex nor chemically interacts at temperatures as low as -95° . With the Lewis acids SbF₅, AsF₅, and BF₃ it forms white, crystalline 1:1 adducts, whereas with SiF_4 it forms a 2:1 adduct. The thermal stability of these adducts decreases in the order: $ClF_3O \cdot SbF_5 > ClF_3O \cdot AsF_5 > ClF_3O \cdot BF_3 > (ClF_3O)_2 \cdot SiF_4$. The dissociation pressure-temperature relation has been measured and thermodynamic data are calculated for the process $(ClF_3O)_2 \cdot SiF_4(s) \rightleftharpoons 2ClF_3O(g)$ + $SiF_4(g)$. The tendencies of adduct formation are compared for ClF_3O , ClF_5 , ClO_2F , ClF_3 , and ClF and are correlated with the structural stability of the halogen fluorides and their corresponding ions.

Introduction

Halogen fluorides and oxyfluorides generally exhibit amphoteric character.¹ Consequently, we considered that CIF₃O might also form complexes with strong Lewis acids and bases. In this paper we report on the syntheses and some of the properties of a number of adducts derived from CIF₃O.

Experimental Section

Materials and Apparatus.-Experimental techniques used in these studies were essentially the same as those described elsewhere.²⁻⁶ The preparation and purification of ClF₃O and FNO are described elswhere.^{2,7} The alkali metal fluorides were fused in a platinum crucible and powdered in a drybox prior to use. Arsenic pentafluoride (from Ozark Mahoning Co.), BF3, and SiF4 (both from the Matheson Co.) were purified by fractional condensation. Antimony pentafluoride (from Ozark Mahoning Co.) was purified by vacuum distillation at ambient temperature. The purity of the volatile starting materials was determined by measurements of their vapor pressures and infrared spectra.

Preparation of Alkali Metal Fluoride-ClF₃O Adducts.-Dry CsF (66.0 mmol) was placed into a 90-ml prepassivated Monel cylinder, and purified ClF₃O (106.4 mmol) was added at -196° . The cylinder was kept at ambient temperature for 30 days. Unreacted ClF3O (40.5 mmol) was removed in vacuo and identified by its infrared spectrum. The cylinder was opened in the glove box and contained 17.1 g of a stable, white, crystalline solid (weight calculated for $Cs^+ClF_4O^-$, 17.18 g). Therefore, CsF (66.0 mmol) had reacted with ClF₃O (65.9 mmol) in a mole ratio of 1:0.998 producing the complex Cs+ClF4O-

Similarly, RbF (92.0 mmol), when combined with ClF₃O (93.5 mmol) at -196° and shaken at ambient temperature for 2 days,

Christe, Inorg. Chem., 11, 2189 (1972).

11, 2201 (1972). (6) D. Pilipovich, R. D. Wilson, and H. F. Bauer, U. S. Patent, to be issued, 1972.

(7) K. O. Christe, Inorg. Chem., 11, 1220 (1972).

reacted with ClF₃O (67.15 mmol) producing the complex Rb+- $ClF_4O^- \cdot 0.28RbF.$

Pure ClF₃O (purity 99+%) was loaded into a 316 stainless steel cylinder containing a large excess of dry KF. After the contents of the cylinder was kept at ambient temperature for 30 days, practically all of the CIF₃O had complexed with KF.

The FNO-CIF₃O System.---Nitrosyl fluoride (25.6 mmol) and ClF₃O (12.8 mmol) were combined at -196° in a Teflon FEP U trap. The mixture was allowed to warm to -79° and was kept at this temperature for 24 hr. It remained at all times a water-clear liquid and no sign of solid formation could be observed. The vapor pressure above the liquid was about 115 mm. The contents of the trap was cooled to -95° , and FNO (25.5 mmol) was removed by vacuum distillation. The residue (12.7 mmol) was shown by its infrared spectrum to be essentially pure ClF3O. Hence, ClF3O and FNO do not form a stable complex at -95° .

Preparation of CIF₃O · Lewis Acid Adducts.-Boron trifluoride (4.00 mmol) and ClF₃O (3.22 mmol) were combined at -196° in a Teflon FEP container. The mixture was allowed to warm up slowly to ambient temperature and was kept at this temperature for 12 hr. Unreacted BF3 (0.74 mmol) was removed in vacuo at 20° and identified by its infrared spectrum. The white, crystalline residue had no detectable dissociation pressure at 20°. Therefore, ClF₃O (3.22 mmol) had reacted with BF₃ (3.26 mmol) in a mole ratio of 1:1.01, producing the complex CIF₃O·BF₃.

Similarly, AsF5 (16.4 mmol) and ClF3O (13.2 mmol) were combined at -196° . After keeping the mixture at 20° for 2 hr, unreacted AsF₅ (2.8 mmol) was removed in vacuo at 20°. Therefore, ClF₈O (13.2 mmol) had reacted with AsF₅ (13.6 mmol) in a mole ratio of 1:1.03 producing the white, crystalline, stable complex, ClF₃O·AsF₅.

Silicon tetrafluoride (3.79 mmol) was combined with CIF₃O (5.02 mmol) at -196° . When the mixture was allowed to warm up to about -80° , complex formation occurred. Unreacted SiF₄ (1.21 mmol) was removed in vacuo at -64° and identified by its infrared spectrum. Therefore, ClF₃O (5.02 mmol) had reacted with SiF_4 (2.58 mmol) in a mole ratio of 2:1.03, producing the white, crystalline complex $(ClF_3O)_2 \cdot SiF_4$.

Antimony pentafluoride (104 mmol) and ClF₃O (20.9 mmol) were combined in a 150-ml prepassivated Monel cylinder at -196° . The contents of the cylinder was kept in an electrically heated oven at 135° for 6 days under autogenous pressure. Unreacted SbF5 was removed by vacuum distillation at 130°.

⁽¹⁾ L. Stein in "Halogen Chemistry," Vol. 1, V. Gutmann, Ed., Academic Press, New York, N. Y., 1967, Chapter 3.
(2) D. Pilipovich, C. B. Lindahl, C. J. Schack, R. D. Wilson, and K. O.

⁽³⁾ D. Pilipovich, H. H. Rogers, and R. D. Wilson, *ibid.*, **11**, 2192 (1972).

 ⁽⁴⁾ K. O. Christe and E. C. Curtis, *ibid.*, **11**, 2196 (1972).
 (5) C. J. Schack, C. B. Lindahl, D. Pilipovich, and K. O. Christe, *ibid.*,