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mined the structures of a number of complexes with 
coordinated nitric oxide..' On the basis of their X-ray 
data and infrared stretching frequencies they7c have 
proposed the following criteria: NO+ complexes have 
v(NO) in the range 1600-1845 cm-l and for NO- com- 
plexes u(N0) is in the range 1525-1720 cm-l. There- 
fore, i t  is inadequate to use v(N0) solely to determine 
the mode of coordination in the region 1600-1720 cm-l. 
We may conclude, however, that NO is coordinated as 
NO+ in our nitrosyl complexes. 

Reactions of tetracyanoethylene and fumaronitrile 
with IrX(CO)(P(CbHb)3)2 (X = C1, Br, I) have been 
studied 'extensively. A number of new compounds 
have been isolated and characterized in these and sim- 
ilar reactions. 

TCNE will add to [ I ~ C ~ ( N O ) ( P ( C ~ H L ) ~ ) ~ ] +  to give 
[IrCl(NO) (P(C6Hb)&TCNE]C104. There is a change 
in the bonding of NO to iridium upon coordiation as 
evidenced by the change in u ( K 0 )  from 1902 to 1595 
cm-l. It seems plausible that this structure would be 
similar to the bent coordinated NO as determined 
crystallographically in [IrCl (CO) (NO) (P (C6H5)3)2 ]BFd6 
and that NO is coordinated as NO- here. However, 
such proposals must be vindicated by crystallographic 
study. 

The addition of the weaker Lewis acid fumaronitrile 
to [IrCl(NO) (P(C,Hj)&]+ produced no reaction, in 
contrast to [IrCl(CO) (P(C6&)3)2] which forms a stable 
compound. This decrease in chemical reactivity is 
consistent with previous reports on this complex.2e 
The decrease in apparent chemical reactivity is prob- 
ably due to the positive charge on the complex and the 
resultant decrease in electron density on the metal. 
For example, this complex shows no tendency to com- 
bine with OzjZc whereas the uncharged complex RuC1- 
(NO) (P(C&)3)2 forms an irreversible adduct with O Z . ~  
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Although there has been some dispute concerning the 
detailed path by which the acid-catalyzed redox de- 
composition of C O ( C Z O ~ ) ~ ~ -  is initiated,* there has been 
general agreement up to now that the overall mech- 
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occurs in steps, will be fully presented in a separate communication. 

anism involves production of a free radical (C204- or 
COZ-) which reattacks the substrate to form additional 
C O ~ + . ~ - ~  In simplest terms this process may be repre- 
sented 

(1 1 
ki 

C0(CzOa)a3- ----f c02+ f CzO4- + 2 c ~ 0 4 ~ -  
kz czo4- + c O ( c ~ 0 4 ) 3 ~ -  e o 2 +  + 2c02 f 3czo4*- (2) 

where Co(C~04)3~- may be taken here to include pro- 
tonated and ring-opened forms, C Z O ~ ~ -  includes HC2O4- 
and H2C204, and ( 2 2 0 4 -  includes its protonated form 
(or CO2- and C02H). The basis for this free radical 
mechanism appears to have arisen largely by analogy 
to the photochemical decomp~s i t ion~~~  and to other 
oxalate reactions'O in which free radicals have been im- 
plicated. Some additional support has been offered by 
the observation that the thermal decomposition leads 
to other processes which are accepted as involving free 
radicals, such as vinyl polymeri~ation.~ 

Recently Hin-Fat and Higginson" have advanced 
the hypothesis that the thermal decomposition does not 
involve free radicals a t  all. The key observation, cited 
by these authors for both C O ( C ~ O ~ ) ~ ~ -  and c O ( c z 0 4 ) 2 -  

(H20)2-, is a deviation from first-order behavior as 
seen by curvature in plots of log (A,  - A,) vs.  time 
(where A = absorbance). The fact that wholly linear 
plots could be obtained by addition of a term inverse in 
complex concentration, together with the effect of 
changes in reaction conditions on the magnitude of this 
term, led these authorsll to favor a mechanism in- 
volving a concerted three-center redox reaction be- 
tween the substrate and a ring-opened species. 

At appropriate relative concentrations of the reactive 
species, with 0 2  as an added scavenger, reactions 3 and 
4 can predominate over (a), where 2k4 = 1 X l o 9  M-' 

CzOa- -k 02 ----f 2C02 $. 02- (3 ) 

2CzOa- d 2c02 + cz04'- (4 1 
sec-l l2  and (3 )  is assumed to be very efficient by 
analogy to the COz--O2 reaction.I3 In highly acidic 
solution, the 0 2 -  radical will exist in its HzOz+ form14 
which does not appear to be effective in reducing simple 
Co(II1) complexes.1b Thus, the formation of Co2+ in 
the presence of 02 from secondary radical reactions is of 
negligible contribution.I6 Here, in the slow thermal 
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reaction where the steady-state concentration of the 
C204- radical would be very low, (4) is of no concern. 
However, i t  is easy to see that i f  the radical mechanism 
i s  valid, then the rate of Co(C~04)3~- decomposition in 
deoxygenated solutions would be twice as fast as in the 
presence of 0 2  as long as kz[Co(C~04)3~-] << k3[021. 

Where the reverse conditions hold, the presence of 0 2  

should have no effect on the rate. The solubility of 0 2  

in an 02-saturated solution a t  1 atm and 25" is approxi- 
mately 1.3 X M .  

A weighed quantity of K ~ C O ( C Z O ~ ) ~ . ~ H ~ O  was dis- 
solved in a cold solution containing a stoichiometric 
amount of NaC104 and the resulting KC104 precipitate 
was removed. The filtrate was added to thermostated 
(25.0') aqueous HC104 and the solution diluted so that 
i t  was 1.08 M in acid. One-half of the solution was 
continuously purged with Cr2 +-scrubbed Nz and the 
other half was continuously bubbled with HzO-sat- 
urated 02. The solutions were kept in the dark and 
thermostated. Aliquots were removed periodically 
and the loss of complex was followed spectrophoto- 
metrically a t  243, 420, or 603 nm, the choice of wave- 
length dictated by the concentration of the complex. 
There was negligible evaporation of the solutions. The 
first-order rate constants were obtained from a plot of 
In [(Ao - Am)/@ - A m ) ]  vs. time. 

Table I shows the observed first-order rate constants 

TABLE I 
RATE CONSTANTS IN THE PRESENCE O F  Nz AND 0 2 "  

Obsd first-order rate 
constants, 105 sec-1 b 

[Co (C204) a s  - l a ,  M kN2 k o ,  k N , / k o z  
1.58 X 5.23 5.23 1.00 
1.02 x 10-3 5.47 4 . 3 5  1.26 
2.71 x 10-4 5.65 3 .68  1.53 
(1.17, 1 .09)  x 10-5 5.45c 3.2 lC 1.69 
(3.99-2.41) X lo-' [ 5 . 4 5 I d  2.93. 1.86 
Temperature 25.0"; 1.08 M HClOa. * Single determinations 

unless otherwise noted. Average of two determinations. 
dhverage of the five determinatlons at 10-2-10-5 M .  The 
kinetic plots a t  10-6 M showed curvature preventing a reliable 
determination of kNf in this case. This effect is presumably due 
to the presence of low concentrations of adventitious impurities. 
e Average of four direct determinations. The kinetic plots 
showed no curvature within 1.5 half-lives. 

in the presence of Nz and 0 2  as a function of the initial 
concentration of the complex. All plots were linear 
for a t  least 1.5 half-lives except in the case of [Co- 
(Cz04)3a-] < 3 X M in N2 where curvature was 
observed after 1 half-life. It is clear that k N , / k o ,  + 1 
as [ O Z ] / [ C O ( C Z O ~ ) ~ ~ - ] ~  + 0 and k ~ , / k o ,  + 2 as [Co- 
(C204)33-]O/[02] 0. Furthermore, k2/k3 - 10 as 
obtained from the integrated rate expression for steps 
1-3." Thus, our results are in full accord with the free 
radical mechanism. 

The curvature observed by Hin-Fat and Higginson," 
which led them to reject the free radical mechanism, 
appears to have a very simple explanation. These 
authors checked the possible influence of atmospheric 
0 2  and found none. Failure to see an effect is under- 

(17) Using the steady-state approximation for CiOa-, the integrated rate 
law for (1)-(3) is 

standable in light of our results, because in their com- 
plex concentration range, the differences in the initial 
rates of reaction in air and in Nz would be very small 
(<5%). There is no indication from their paper that 
solutions were deoxygenated on a regular basis, nor 
would there have seemed any need to do this. Conse- 
quently, under their conditions, (1) and ( 2 )  predom- 
inate during the initial stages of reaction, but as the ex- 
tent of reaction increases and [Co(C~04)3~--] decreases, 
(3) begins to contribute. Thus, the rate would fall off 
a t  high extents of reaction.18 A first-order plot of their 
data shows no change in the initial slope upon variation 
of [Co(C~04)3~-]0. However, the point where curva- 
ture begins advances to shorter extents of reaction as 
[CO(CZO&~--]O is decreased. This behavior is consis- 
tent with the interference of dissolved 0 2  via reaction 3. 
Our results thus appear to remove the experimental basis 
which led Hin-Fat and Higginson" to reject the free rad- 
ical mechanism. 

It must be pointed out that the concerted mechanism 
proposed by Hin-Fat and Higginson" leads to the same 
form of the rate law as (1)-(3) if it is assumed that the 
ring-opened species reacts with 0 2  and is maintained a t  
a steady-state concentration. For this mechanism to 
be in accord with our observations would require fur- 
ther that the ring-opened species react with the sub- 
strate and 0 2  a t  comparable rates. Maintenance of 
the ring-opened species a t  steady-state concentrations 
is inconsistent with other results we have obtained2s9 
and the idea that such a species would react as rapidly 
with 0 2  as required by our observed rates is simply not 
in accord with the properties of related Co(lI1) com- 
plexes. 

(18) We have verified this point a t  38' and lCo(CzO3s8-1 = 4 X 10-3 M 
where the first-order plat is linear for >90% of reaction when the solution 
is continuously purged with Nz, while curvature begins after 78% in non- 
deaerated solution and after 66% when 0 2  is bubbled through the solution 
continuously. 
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We wish to report a new synthesis of the title com- 
This ligand or the nickel pound, I (hereafter cyclam). 

L N  N A  
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I 

complex which is the precursor may be obtained by the 
template synthesis outlined in the scheme of eq 1-3. 
This ligand is a highly desirable one for a variety of 
physical studies which require a complex with a planar 
array of donors and minimal steric requirements for 


