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the proof of theorem I in EPIR-I, eq A3 can be derived 
from eq A6. 

As in EPIR-I, eq A7 is of interest. 

F(W; 1, 1, , . ., 1; 1, 1, . . . ,  1) = 

C. Theorem 11. Theorem.-B1, Bz, H, B,  and W 
are defined as in theorem I. If Dw is the number of 
equivalency classes (double cosets Wh2W) generated 
in H when hr, hjeH are considered equivalent if hi = 
wk.hj.whfor some w k )  whew, then 

where sums over the generalized cyclic types (dl, dz, 
. . . , dn1; el> e2, . . . , e,J of operations in W and 

h d l d 2 .  . . d , , , e , e z .  . . e,,2 is the number of operations in W of gen- 
eralized cyclic type (dl, dl ,  . . . , dnl ;  el, e2, . . . , e , J .  

Proof.-This proof is not presented in detail since 
its course parallels the proof of theorem I1 in EPIR-I. 

The group Ww acting on elements in H is defined as 
in EPIR-I. Then Burnside’s Lemma implies 

where x(wi, wk) is the number of hi in H which satisfy 
eq A10 

M W d  = W l  (A10) 

Arguments used in EPIR-I show that eq A l l  will 
hold if w2 and wt are of the same cyclic type (dl, dz, 
. . . , dn,;  el, e2, . . . , e n J .  If w2 and wk are not of the 

same cyclic type, x(wt, w,) = 0. 
A1 1 are combined as in EPIR-I to yield eq A8. 

Equations A9 and 
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Polya’s theorem is restated in a manner which may lead to greater ease of isomer enumeration and aid in the formulation o f  
individual isomers. Several examples are treated. 

A restatement of Polya’s theorem in terms of in- 
variance to covering operations may lead to a greater 
ease of isomer enumeration and aid in the formulation 
of the structure of individual isomers. The restate- 
ment’ is as follows: the total number of (theoretically 
possible) stereoisomers of a molecule will be the number 
of distinguishable configurations of the molecule in a 
fixed coordinate system which are invariant under each 
operation of the rotational group (including the identity 
operation) divided by the total number of operations of 
the rotational group of the parent geometry. If the 
full covering group is used (;.e., improper rotations are 
included) the result is the number of geometric isomers. 

The distinguishable configurations invariant under 
the identity operation are simply the set of all dis- 
tinguishable configurations, ;.e., the number of permu- 
tations of the ligands taken one a t  a time. The num- 
ber of these depends only on the number of ligands of 
each type to be added and may be calculated from 

n!  
na !nb !n, ! . . . P l n  = 

(1) Although this restatement is essentially contained in one of Polya’s 
original papers (Ac ta  Mat. ( U p p s a l a ) ,  68, 145 (1937))  the implications and 
simplifications have been overlooked in the recent literature concerned with 
isomers. A partial summary in English of this paper of Polya appears in a 
chapter by Uhlenbeck and Ford in “Studies in Statistical Mechanics,” Val. 
I ,  J. DeBoer and G. E.  Uhlenbeck, Ed., Interscience, New York, N. Y. 
(North-Holland Publishing Co., Amsterdam), 1962. 

where n is the total number of ligands, n, is the number 
of A groups, If only 
one ligand of each type is present (n, = nb = n, = . . . 
1) then PIn = n!  and the total isomers possible will be 
n ! /h  where h is the order of the rotational group. This 
leads to the well-known (at least for the first few mem- 
bers) results shown in Table I. 

the number of B groups, etc. 
- - 

TABLE I 
MAXIMUM NUMBER OF STEREOISOMERS FOR A 

GIVEN PARENT GEOMETRY” 

Geometry and 
Coordin no rotational group No of isomers 

4 Tetrahedron T 4!/12 = 2 
Sq plane D4 

Boat DZ 

4!/8 = 3 
4!/4 = 6 
4!/4 = 6 

5 Trigonal bipyr D3 5!/6 = 20 
5!/4 = 30 

sq PYr c4 

sq PYr c4 
Pentagon Cg 5!/10 = 12 
Octahedron 0 6!/24 = 30 

12 Icosahedron I 12!/60 = 7,983,360 
Q Maximum achieved only when all ligands are different; planar 

geometries yield optically inactive isomers, and others give n/2 
enantiomorphic pairs. 

6 

In  order for a configuration to be invariant under a 
C, operation, any ligands which do not fall on the C, 
axis must be in sets of n similar ligands. Groups falling 
on the C, axis belong to “sets of one.” Each C, opera- 
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Configura- 
tion no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

TABLE I1 
TRANSFORMATIONS OF THE CONFIGURATIONS OF MenAtBC UNDER THE cz, OPERATIONS 

l * 2  1 + 1  
1-2 3 - 3  2 - 2  

E set Ca 3 * 4  a84 4 4 4  a12 3 - 4  

1 2 3 4  1 2 3 4  1 2 3 4  1 2 3 4  
B C A A  4 C B A A  4 C B A A  1 B C A A  
B A C A  6 A B A C  5 A B C A  3 B A A C  
B A A C  5 A B C A  0 A B A C  2 B A C A  
C B A A  1 B C A A  1 B C A A  4 C B A A  
A B C A  3 B A A C  2 B A C A  6 A B A C  
A B A C  2 B A C A  3 B A A C  5 A B C A  
C A B A  11 A C A B  8 A C B A  10 C A A B  
A C B A  10 C A A B  7 C A B A  11 A C A B  
A A B C  12 A A C B  9 A A B C  12 A A C B  
C A A B  8 A C B A  11 A C A B  7 C A B A  
A C A B  7 C A B A  10 C A A B  8 A C B A  
A A C B  9 A A B C  12 A A C B  9 A A B C  

Position of ligand - 

tion will thus have associated with it a permutation 
function of the form P," or PlkP," where nm + k = 
total number of ligands. Here P," is the number of 
permutations of ligands distributed into m sets of n 
similar ligands and may be calculated from 

m! 
n,, !nb, !no,, ! . . . P," = 

where na, is the number of sets of A,, ab, is the number 
of sets of B,, and n,, + nb, + . . . = m. The Plk may 
be evaluated in a fashion identical with that for PIn, i.e. 

k! 
n, !nb !ne ! . . . Plk = 

where n, + n b  + . . . = k. 
I n  evaluating PlkP," in cases where PI" and P," are 

not independent (as with P12Pt2 for A4B2), all possi- 
bilities must be evaluated and summed (1 + 2 in the 
case cited). 

The permutation functions P," are identical in form 
with the f n m  functions which appear in Polya's cycle 
iridexG2 The f," functions were to be evaluated by 
the expansion of (A" + Bn + C" + . . .)". Product 
functions were to be evaluated by the expansion 
of (A + B + C + )$(An + B" + C" + . . .)". The 
value of a particular value of P1ICPnm is the coefficient 
of the appropriate A"ByCz. . . term in the expansion 
where x ,  y, and z are the stoichiometrio subscripts of 

It is ob- 
vious that particular P," permutation functions are 
identical with the corresponding coefficients of the 
polynomial expansion and that inspection of the fly," 
expansion allows rapid identification of "all possibil- 
ities,' of PLkPnm to be evaluated. 

Some Examples.-Some simple examples will be con- 
sidered first to illustrate the method with verifiable 
solutions. 

Consider the problem: How many isomers are pos- 
sible for MenAnBC where en is a bidentate chelate 
group, M is the central metal, and the geometry is taken 
as octahedral? 

Chelates are not yet well handled by Polya's method 
so the Men unit is considered as the "parent" and the 
point group is thus C2,. 

of the compound of interest. 

(2) These have been tabulated for a variety of geometries far both the 
rotational group and the full covering group by B. A. Kennedy, D. A. 
McQuarrie, and C. H. Brubaker, Jr.,Inoug. Chem., 3,265 (1964). 

CHART I 
d 

c2v E Ca via ail< 

J. 
PlZPZ' 

Permutation J J .  J 
functions P I 4  Pzi PlaP,' 

No. of invariant - 4!  O (21)(;) 2 

i' l!I!J. 2 

configurations under 
given operation 

12 

No. of stereoisomers = l/2[12 + 01 = 6 
No. of geometric isomers = '/4[12 + 0 + 2 + 21 = 4 
No. of dl pairs = 6 - 4 = 2 

To formulate these isomers we refurn to Polya's ex- 
pansion of the f i n  term, but in order not to lose infor- 
mation we multiply step by step, Le. 

f 1 4  = (AI  + B1 + C1)(A2 + B2 + C2) X 

(As + B3 + C3>(A4 + B4 + C4) 
and collect the A2BC terms as shown in Table I1 under 
the E set. The C2 operation causes the subscript 
changes 1 + 2, 2 + 1, 3 + 4, 4 + 3. The Cz operation 
on the E set produces a rearranged E set since no con- 
figurations are invariant under CZ. Since configuration 
1 -+ 4 under rotation, these two configurations arise 
from the same isomer and either may be used to rep- 
resent it. I n  this fashion the six stereoisomers may 
be readily identified as 1, 2 ,  3, 7, 8, and 9. The u1z 

operation leaves subscripts 1 and 2 unchanged but 
interchanges 3 and 4; 6 3 4  gives 3 +- 3, 4 + 4, 1 + 2 ,  
2 + 1. Optically inactive isomers are invariant under 
u (or in general under S, operations) ; the u operation 
on an optically active isomer will produce its enan- 
tiomer. Thus we identify configurations 1 and 9 as 
inactive and 2 and 3 and 7 and 8 as dl pairs. 

The application of Polya's method to isomer formu- 
lation may be seen to be essentially the process which 
chemists have been using intuitively all along, i.e., all 
possible configurations are considered and duplicates 
are eliminated by seeing which configurations may be 
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brought into coincidence through rotation. Polya’s 
method ensures that no possible configurations are 
overlooked and that all rotational operations of the 
parent group are considered. It is obvious that in 
formulating isomers one need not carry out the rota- 
tional transformations for all rotations if the number 
of unique formulations of isomers is found earlier. It 
is also obvious that only one transformation needs to be 
carried out to determine dl pairs and optically inactive 
isomers. 

Restriction of Coordination Sites.-A problem posed, 
and solved, by Kennedy, McQuarrie, and Brubaker will 
be used to illustrate the treatment of restricted co- 
ordination sites, i e . ,  how many isomers are possible for 
N ~ z C ~ Z ( O C ~ H ~ ) ~ ( C ~ H S N ) ~  if the basic geometry con- 
sists of two octahedrally coordinated Nb atoms bridged 
by C1 and/or OC2Hj a t  two sites and with one C6H5N 
attached to  each Nb atom? 

The restrictions are readily incorporated in Polya’s 
method by the manner of expansion of the cyclic index 
(or by the way the cyclic indices are formulated). 

bridge Nbl Nbz 

J . J . J .  
I16 + 192 + (96 + 144)]d2BeC2 

4 
448 

No. of stereoisomers = l/4[448 + 16 + 161 = 120 
a A = C1, B = OCZH~, and C = CjH5N. 

Note that for one pyridine molecule on each Nb 
atom an invariant configuration under a C2” operation 
cannot be written so thef12fi4 term is zero for this opera- 
tion. Mote appropriately, the CZ” operation yields an 
f i 2 f ~ 2 f ~ 2  term, the fz2’s to be evaluated for each Nb. 
The f iz  terms are to be interpreted as arising from the 
bridge positions, and in expansions of the polynomials, 
only A and B go into this term; or, alternatively, for 
the CZz and (22‘ operations if A is on the bridge there are 
4 !/3 ! ways to attach the two C’s to achieve invariance 
under the Cz; if B is on the bridge then the two A’s and 
two C’s may be attached in 4!/2! ways to achieve in- 
variance under the Cz operations. 

(3) See W. E. Bennett, Inovg. Chem., 8, 1325 (1969),for aFortranprogram 
for the octahedral case and a general discussion. 

TABLE I11 
ISOMERS O F  BizFsHs2- 

Highest proper  
rotation under 
which isomer 
is invariant Fluorine positions Map of fluorine positions 

c5 1 2 3 4 5 6  @ 
1 7  8 9 10 11 

A 1 2 3 4 6 7  c3 

Y 1 2 3 5 8 1 1  

1 2 3 9 10 12 

(hydrogen map 
s a m e  a s  

1 2 3 9 10 12) 
4 5 6 7 8 1 1  

c1 

1 2 3 6 8 1 0  

1 2 3 6 9 1 2  

1 2 4 1 1 5 7  p+ 

1 2  5 7 8 10 

(hydrogen map 
same  a s  i) 1 2 3 6 9 1 2 )  

4 11 5 7 8 10 

1 2 3 4 5 1 2  a 
43 2 3 4 5 6 7  

1 2 3 4 5 7 }  f d l p a i r  
1 2 3 4 5 9  

l o }  dl pair  
1 2  3 5 8 12 

} dl pa i r  1 2  3 5 10 12 

1 2 3 5 9 1 2  

The number of geometric isomers is obtained from 
the full symmetry group and Polya’s method. Three 
additional terms (Chart 111) appear due to the three 
reflection planes present, and the inversion center yields 
the last term. Thefi2 orfzl terms arise from the bridging 
position and hence are restricted to A and/or B. The 
(fly12) term represents the ligands in the mirror 
plane-to be invariant under uxy or uyz the C’s must 
be in the mirror plane. 
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Figure 

9 7 

11 

a 
1.-(a) View down 1-12 CS axis. 

5 

b 
(b) View down 1, 2, 3 C, axis. ( e )  View 

CHART I11 
Bridge Nbi Nbr 

1 1 . 1  

No. of geometrical isomers = 2160/120 = 18 
No. of stereoisomers = 1440/60 = 24 
No. of dl pairs = 6 

10 

3 

C 

down CZ through 1 , 2  and 9, 12 edges. 

Isomers of the Icosahedral Borate Anion.-The ap- 
plication of Polya's theorem to the determination of the 
number of isomers of B12F&2- is straightforward but 
the formulation of these isomers by the examination of 
the E set of configurations for duplicates under a rota- 
tion from each class of the covering group would re- 
quire a computer or a saint! Nevertheless, Polya's 
theorem provides sufficient aid that, with a little organi- 
zation, these? isomers may readily be deduced. 

B12FaH62- Isomers.-Haas5 has enumerated the 
isomers of all BloHlo-nX,2- and B12H12-nXn2- anions 
by Polya's method and formulated them by an undis- 
closed procedure. We examine here the B12H6Fc2- 
isomers and several more complex cases to  illustrate 
the use of Polya's method in isomer formulation. 
These isomers have not been renumbered to produce 
the lowest sum (as is correctly done in the work of Haas) 
since the symmetry is less readily visualized on re- 
numbering. 

The covering operations of the iocosahedron (the 
parent geometry of B I ~ F & ~ - ) ,  the related permutation 
functions, and the numerical evaluation of the con- 
figurations invariant under these operations, along 
with the number of isomers for B1&'&2-, are given in 
Chart IV. 

The permutation functions under the rotational oper- 
ations tell us (note this information was initially used 
to construct the permutation functions) that  under a 

1 .1 .1 J 

From the above the number of geometric isomers = 
1/8[480 + 32 + 16 + 161 = 70. Number of dl pairs 
= 120 - 70 = 50. 

These results are, of course, in agreement with those 
of Kennedy, et al., as well as those of Block and Ma- 
guire4 who have used a different approach. 

CS operation two unique positions fall on the CS axis 
(points 1 and 12 Figure 1) and two unique sets of five 
exist (2-6 and 7-11). There are four ways of filling 
these positions with six ligands for a given CS axis to  
produce configurations which are invariant under the 
Cg operation (Chart V). 

( 5 )  T. E. Haas, ibid. ,  3, 1053 (1964) [the use of a computer was not men- 
(4) B P. Block and K. D. Maguire, Inorg. Chem.,  6, 2107 (1967). tioned]. 
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CHART V 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  

(a) F F F F F F  
(b) F F F F F F  
(c) F F F F F  F 
(d ) F F F F F F  

Configurations (c) and (d) arise from the same iso- 
mers as (a) and (b) as a CZ operation about any Cz 
axis I to the chosen C5 axis carries (c) into (a) and 
(d) into (b). These isomers and a graphical repre- 
sentation are shown in Table 111. 

In similar fashion the P34 function arising from the 
C3 operation indicates that under a C3 operation four 
unique sets of three exist (see Figure l), and there are 
six configurations achieving invariance under a C3 
operation with six positions filled (Chart VI). 

CHART VI 

1 2  3 4 6 7 5 8 11 9 10 12 

(e) F F F F F F  
(f) F F F F F F  
(9)  F F F F F F  
(h 1 F F F F F F  
(i 1 F F F  F F F  
( j  1 F F F F F F  

Since a C2 operation about a C2 axis perpendicular to 
the C3 axis carries 1 2 3 into 9 10 12 and 4 6 7 into 5 8 11 
only (g) and (h) are invariant under this C2 operation, 
(j) going into (e) and (i) into (f) .  These four isomers 
arise from the set invariant under the C3 operation. 

The P26 function arising from the C2 operation gives 
rise to 20 configurations invariant under this Cz (see 
Figure 1). 

CHART VI1 

1 2  3 6 4 11 5 7 8 10 9 12 

(k) F F F F F F  
(1) F F F F F F  
(m) F F F F F F  
(n) F F F F F F  
(01 F F F F F F  
(P) F F F F  F F  
(41 F F F F  F F  
(r) F F F F F F  
(SI F F F F  F F  
(t) F F F F F F  
(u 1 F F F F F F  
(v 1 F F F F  F F  
(tv 1 F F F F  F F  
(x 1 F F  F F F F  
(Y 1 F F  F F  F F  
(z 1 F F  F F F F  
(aa) F F F F F F  
(bb ) F F F F  F F  
(cc)  F F  F F F F  
(dd 1 F F F F F F  

A CZ operation about the CZ axis through the 4, 5 and 
7, 11 edges brings about the transformations 

1, 2 9, 12 

3, 6 f--) 8, 10 

4, 11 c3 5,  7 

Hence, configurations (k) and (dd) arise from the same 
isomer as do (1) and (cc), (m) and (z), (n) and (t)) etc. 
Removal of the isomers already counted as invariant 
under C3 reduces the number of new isomers found here 
to eight of which four may readily be seen to  be optically 
inactive and the remainder to  consist of 2 dl pairs. 
These are listed along with their maps in Table 111. 

There remain six geometric isomers to be found which 
have no rotational axis beyond the CI axis. These may 
be found by moving one F position from among the 
isomers already found in such a fashion as to remove all 
rotational symmetry or simply to produce a new map- 
ping. The 1 2 3 4 5 6 isomer is thus the parent of the 
first four geometric isomers listed under C1 while the 
1 2 3 5 8 11 isomer is respectively parent and grand- 
parent of the remaining two. 

Isomers of BlzH6F5XZ-.-To find the isomers of 
Bl2H6F5X2--, we replace one F with X in each unique 
manner. The F6 set invariant under Cj yields two 
F5X isomers for each F6 isomer; those invariant under 
C3 alone also yield two F5X isomers for each Fg isomer, 
while those invariant under both a C3 and a C2 operation 
yield a single FjX isomer for each F6 isomer; those 
invariant under Cz alone yield three FsX isomers for each 
Fg isomer; and, finally, those listed as invariant under 
Cl only yield six F5X isomers for each Fg isomer. These 
isomers total 94 for B12H6F5X2- in agreement with the 
number calculated by Polya’s theorem for an icosa- 
hedral B12 framework. These may be written by 
inspection with the aid of maps such as in Table 111. 

Isomers of B12H6F6X22-.-PoIya’s theorem leads to 
the possibility of 12 geometrical and 14 stereoisomers 
for B12H,FjZ- and these have been formulated by 
Haas. To find the 278 isomers possible for B12H6F6X2z- 
we note that the only parent F6 grouping invariant 
under the Cj operation has a mapping of Oleaving a 
mapping of f& for the H, grouping. Substitution of 
two X groups in this C5, parent map leads to five 
isomers which may be written by inspection. The 
remaining 13 stereoisomers belong only to the C1 set 
and hence the two X groups may be distributed among 
the parent H7 positions in 7!/5!2!, or 21, ways. These 
may be written without difficulty, ie., for the 1, 2, 3, 4, 
6 B1zH7Fj2- parent 

CHART VI11 

6 7 8 9 10 11 12 

F F 
F F 
F F 
etc. 

For B12H6F4X22- we expect 246 isomers. Using the 
Fg mapping of Table I11 we find three under each 
parent C6 set, five under each C3 set, three under each 
D3 set (i.e., C3 set with I Cz), nine under each C2 set, 
and 15 under each C1 set. 


