### Tetrafluoroiodate(II1) Anion

in the hydroxyl bridge.<sup>9</sup> The bands at 520 and 1048 cm<sup>-1</sup>, respectively, have been assigned to these vibrations. The band at  $450 \text{ cm}^{-1}$  is in the region of the vanadium-oxygen single-bond stretch in vanadium complexes. $10$  The band at approximately  $1500 \text{ cm}^{-1}$  in vanadium(III) squarate trihydrate and all other trivalent metal squarate trihydrates is assigned to be a mixture of the C-C and C-0 stretch vibrations.<sup>2,8,11</sup> The spectrum contained a very broad band at approximately 3200  $cm^{-1}$  which was assigned to the O-H stretch in water and the hydroxyl radical where there is considerable hydrogen bonding.

The vanadium(III) ion is a d<sup>2</sup> configuration with a  ${}^{3}T_{1g}$  (F) ground state in an octahedral crystal field. The band in the electronic spectrum of V<sup>III</sup>(OH)(C<sub>4</sub>O<sub>4</sub>)·3H<sub>2</sub>O at 17,900 cm<sup>-1</sup> can be assigned to the d-d transition of <sup>3</sup>T<sub>2g</sub> (F)  $\leftarrow$  <sup>3</sup>T<sub>1g</sub> (F). The  ${}^{3}T_{2g}$  (F)  $\leftarrow {}^{3}T_{1g}$  (F) transition in a V(H<sub>2</sub>O)<sub>6</sub><sup>3+</sup> solution appears at 17,200 cm-' **.12** The band in the electronic spectrum at 26,000 cm<sup>-1</sup> can be assigned to the d-d transition of  ${}^{3}T_{1g}$  (F)  $\leftarrow {}^{3}T_{1g}$  (F). This band in a  $V(H_{2}O)_{6}$ <sup>3+</sup> solution ap-

*Inorg. Chem., 6,* **1586 (1967). (9)** J. **R. Ferraro, R. Driver,** W. **R. Walker, and** W. **Wozniak,** 

**tion Compounds," Wiley, New York, N. Y., 1963, p 121. (10)** K. **Nakamoto, "Infrared Spectra** of **Inorganic and Coordina-** 

**(1 1)** S. **Cohen, J. R. Lacher, and J. D. Park,** *J. Amer. Chem. SOC.,* **81, 3480 (1959).** 

**(12) B. N. Figgis, "Introduction to Ligand Fields," Interscience, New York, N. Y., 1966, p 218.** 

pears at  $25,000 \text{ cm}^{-1}$ .<sup>12</sup> By using these assignments for d-d transitions, it was possible to estimate the crystal field splitting parameter  $10Dq = 18,900$  cm<sup>-1</sup> and the Racah parameter  $B = 611$  cm<sup>-1</sup>. These values compare favorably to the values of  $10Dq = 18,600 \text{ cm}^{-1}$  and  $B = 665 \text{ cm}^{-1}$  for V-<br>(H<sub>2</sub>O)<sub>6</sub><sup>3+ 12</sup> and suggest that the vanadium ion could be in a slightly distorted octahedral field.

In conclusion, it appears that the data reported here best fit the dimeric structure first proposed by  $Niu<sup>8</sup>$  for the iron-(111) squarate complex. The infrared spectrum appears to contain bands characteristic of hydroxyl bridges. The infrared spectrum also contains those bands associated with uncoordinated oxygen atoms on the squarate anion. The electronic spectra suggest that the vanadium atoms are in a slightly distorted octahedral field. All of these data agree well with the dimeric structure.

Kegistry **No.** Vanadium(II1) squarate trihydrate dimer, 35918-74-2.

Acknowledgments. The authors wish to acknowledge the assistance of Dr. K. G. Mayhan, Dr. *G.* J. Long, Dr. J. D. Bucci, and Mrs. Barbara Parmalee with various aspects of this work. National Science Foundation Grant No. GY6625 made possible the purchase of components for the magnetic susceptibility balance.

**Contribution from Rocketdyne, a Division** of **North American Rockwell Corporation, Canoga Park, California 91 304, and the Lehrstuhl fuer Anorganische Chemie, Universitat, Dortmund, Germany** 

# The Tetrafluoroiodate(III) Anion, IF<sub>4</sub>

#### **KARL 0. CHRISTE\* and DIETER NAUMANN**

*Received May* **22,** *19* **72** 

The salts CsIF<sub>4</sub> and Cs<sub>3</sub>IF<sub>6</sub> were prepared and characterized by infrared and Raman spectroscopy. The vibrational spec**tra observed for IF4- are consistent with a square-planar structure of symmetry** *D4h.* **The Raman spectrum previously**  reported for IF<sub>4</sub><sup>-</sup> and interpreted in terms of a nonplanar structure of symmetry  $C_{2v}$  can be attributed to IF<sub>6</sub><sup>-</sup>. Force constants were computed for  $IF_{4}^-$  and are compared to those of  $BrF_{4}^-$ ,  $CIF_{4}^-$ , and  $XeF_{4}^-$ .

### Introduction

The existence of salts containing the  $IF_4^-$  anion was first reported' in 1960 by Hargreaves and Peacock. When studying the reaction between CsI and  $IF_5$ , they obtained depending upon the reaction conditions different products. At elevated temperature the solid product was reported<sup>1</sup> to be  $CSIF_6$  whereas at ambient temperature it was believed to be CsIF4. In 1961, Asprey, Margrave, and Silverthorn reported<sup>2</sup> the syntheses of IF<sub>4</sub><sup>-</sup> salts by direct fluorination of iodides. In 1969, Shamir and Yaroslavsky published<sup>3</sup> the Raman spectrum of "CsIF4" prepared by the method' of Hargreaves. They observed nine bands and concluded<sup>3</sup> that  $IF_4^-$  is not square planar (I) but possesses structure II. These results were quite unexpected since the related ClF<sub>4</sub><sup>-</sup> and  $BrF_4^-$  anions and the isoelectronic  $KeF_4$  molecule are all square planar.<sup>4-7</sup> Recently, Christe pointed out<sup>8</sup> that

**(3)** J. **Shamir and I. Yaroslavsky,** *Isr. J. Chem., 7,* **495 (1969).** 



the Raman spectrum, attributed<sup>3</sup> by Shamir and Yaroslawsky to  $IF_4^-$ , closely resembles that of  $IF_6^-$ . Hence, it appeared interesting to study the vibrational spectrum of a sample of CsIF<sub>4</sub> which had been prepared from IF<sub>3</sub> and CsF by the method' of Schmeisser, *et al.* 

**(4)** K. *0.* **Christe and W. Sawodny,** *Z. Anorg. Allg. Chem.,* 

- **357, 125 (1968); 374, 306 (1970). (5) A. J. Edwards and G. R. Jones,** *J. Chem. SOC. A,* **1936**
- ( **196 9). (6) K.** *0.* **Christe and C. J. Schack,** *Inorg. Chem.,* **9, 1852**  ( **1 970).**
- **(7) J. G. Malm, H. Selig, J. Jortner, and S. A. Rice,** *Chem.*
- *Rev.,* **65, 199 (1965).** 
	-

(8) K. O. Christe, *Inorg. Chem.*, 11, 1215 (1972).<br>(9) M. Schmeisser, W. Ludovici, D. Naumann, P. Sartori, and E. Scharf, *Chem. Ber.*, 101, 4214 (1968).

**<sup>\*</sup>Address correspondence to this author at Rocketdyne. (1)** G. **B. Hargreaves and R. D. Peacock,** *J. Chem.* **SOC., 2373 (1960).** 

**<sup>(2)</sup> L. B. Asprey, J. L. Margrave, and M. E. Silverthorn,** *J. Amer. Chem. SOC.,* **83, 2955 (1961).** 

Table I. Vibrational Spectrum of CsIF<sub>4</sub> and Its Assignment Compared to Those of Isoelectronic XeF<sub>4</sub>, BrF<sub>4</sub><sup>-</sup>, and ClF<sub>4</sub><sup>-</sup> and Those of the Approximately Square-Planar Part of IF,

| Obsd freq, $cm^{-1}$ (intens <sup>a</sup> ) |                       |                      |                       |                |         |                                                 |                       |                                                                                                 |                                            |                                                                      |                                                       |
|---------------------------------------------|-----------------------|----------------------|-----------------------|----------------|---------|-------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------|
| CsIF <sub>a</sub>                           |                       | CsBrF <sub>a</sub> b |                       | CsClF, c       |         | $XeF_d$                                         |                       | IF <sub>e</sub>                                                                                 |                                            | Assignment<br>in point                                               | Approx description                                    |
| lr.                                         | Raman                 | İг                   | Raman                 | 1r             | Raman   | Ir.                                             | Raman                 | 1r                                                                                              |                                            | Raman group $D_{ah}$                                                 | of vibration                                          |
| $271$ ms<br>448 vs                          | 522(10)               | 317 s<br>478 vs      | 523(10)               | 425s<br>590 vs | 505(10) | $291 \text{ ms}$<br>288(1)<br>417 (9)<br>586 vs | 543(10)               | 616 vs<br>318 <sub>m</sub><br>318 <sub>m</sub><br>276 w<br>$604 \text{ m}$<br>$640 \text{ vs.}$ | $v_1(A_{1g})$<br>$v_2$ (A <sub>211</sub> ) | $\nu_s(XF_4)$ in phase<br>$\delta_{\mathbf{s}}(XF_{4})$ out of plane |                                                       |
|                                             | $195(0+)$<br>455(7.2) |                      | 246(0.7)<br>449 (7.9) |                |         |                                                 | $235(0+)$<br>502(8.2) |                                                                                                 |                                            | $v_3$ (B <sub>1g</sub> )<br>$v_4$ (B <sub>2g</sub> )                 | $\delta_s(XF_a)$ in plane<br>$v_s(XF_4)$ out of phase |
|                                             |                       |                      |                       |                |         |                                                 |                       |                                                                                                 |                                            | $v_{6}$ (E <sub>u</sub> )                                            | $v_{\rm as}$ (XF <sub>4</sub> )                       |
|                                             |                       |                      | [183]f                |                |         |                                                 |                       |                                                                                                 | $200 \text{ vw}$                           | $\nu$ <sub>7</sub> (E <sub>u</sub> )                                 | $\delta_{as}(XF_a)$ in plane                          |

<sup>a</sup> Uncorrected Raman intensities. <sup>b</sup> Reference 6. <sup>c</sup> Reference 4. <sup>d</sup> Reference 11. <sup>e</sup> References 12, 13. <sup>f</sup> Frequency taken from the NO<sup>+</sup>BrF<sub>4</sub><sup>-</sup> spectrum.



Figure 1. Vibrational spectrum of CsIF<sub>4</sub>. Traces A, B, and C represent the Raman spectrum of the solid, the infrared spectrum of the solid, and the infrared spectrum of a CH,CN solution, respectively. D indicates the spectral slit width.

#### Experimental Section

The preparation and characterization of  $CsIF_4$  and  $Cs_3IF_6$  has previously been described.<sup>9,10</sup> Owing to their hygroscopic nature the compounds were handled outside of the vacuum line in the dry nitrogen atmosphere of a glove box.

Infrared spectra were recorded on a Perkin-Elmer Model 457 spectrophotometer. Spectra were obtained of dry powders as AgBr or AgCl pellets and of CH,CN solutions in a Wilks minicell between AgCl plates. Raman spectra were recorded on a Cary 83 spectrophotometer using the 4880-A exciting line of an Ar ion laser. Glass melting point capillaries were used as sample containers in the transverse viewing-transverse excitation technique.

Debye-Scherrer powder patterns were taken using a Philips Norelco instrument, Type No. 12046, with copper  $K\alpha$  radiation and a nickel filter. Samples were sealed in quartz capillaries of 0.5-mm 0.d.

### Results and Discussion

Vibrational Spectra. Figures 1 and 2 show the vibra.

*Chem. SOC.,* **85, 1927 (1963). (10)** M. Schmeisser, **P.** Sartori, and D. Naumann, *Chem. Ber.,*  **103, 590 (1970).** 



Figure **2.** Raman (trace A) and infrared (trace B) spectra of solid  $Cs<sub>3</sub>IF<sub>6</sub>$ .

tional spectra of  $CsIF_4$  and  $Cs_3IF_6$ . As can be seen, the spectra of CsIF<sub>4</sub> and Cs<sub>3</sub>IF<sub>6</sub> are quite distinct. This indicates that for  $Cs<sub>3</sub>IF<sub>6</sub>$  a formulation as  $CsIF<sub>4</sub>·2CsF$  is unlikely. The observed frequencies are listed in Table I. The X-ray powder diffraction patterns of CsIF<sub>4</sub> and Cs<sub>3</sub>IF<sub>6</sub> (Table 11) also differ strongly from each other and from those of the CsIF<sub>6</sub> and the CsF 31F<sub>5</sub> adducts<sup>8</sup> and consequently are very useful for distinguishing between the different adducts.

is very different from that<sup>3</sup> previously reported. It is simpler (only three Raman bands) and strongly resembles those of square-planar  $XeF_4$ ,<sup>11</sup>  $BrF_4^{-6}$  and  $ClF_4^{-4}$  In addition to the three Raman bands two infrared bands were observed following the rule of mutual exclusion. These observations are entirely consistent with a centrosym-The vibrational spectrum observed in this study for  $CsIF_4$ 

**(1 1) H. H.** Claassen, C. L. Chernick, and **J.** G. Malm, *J. Amer.* 

Table II. X-Ray Powder Data for CsIF<sub>4</sub> and Cs<sub>3</sub>IF<sub>6</sub>

|            | CsIF <sub>a</sub> |              |           | Cs <sub>3</sub> IF <sub>6</sub> |           |       |           |  |  |
|------------|-------------------|--------------|-----------|---------------------------------|-----------|-------|-----------|--|--|
| $d, \land$ | Intens            | $d, \lambda$ | Intens    | d, A                            | Intens    | d, A  | Intens    |  |  |
| 4.41       | <b>VW</b>         | 1.854        | <b>VW</b> | 3.48                            | ms        | 1.801 | mw        |  |  |
| 4.16       | W                 | 1.814        | W         | 3.41                            | m         | 1.776 | vw        |  |  |
| 3.82       | m                 | 1.688        | W         | 3.35                            | W         | 1.759 | <b>VW</b> |  |  |
| 3.75       | vs                | 1.567        | <b>VW</b> | 3.27                            | VS        | 1.735 | VW        |  |  |
| 3.66       | <b>VW</b>         | 1.538        | s         | 3.03                            | mw        | 1.710 | m         |  |  |
| 3.57       | m                 | 1.509        | ms        | 2.96                            | mw        | 1.653 | W         |  |  |
| 3.41       | m                 | 1.478        | vs        | 2.87                            | w         | 1.607 | Ŵ         |  |  |
| 3.35       | ms                | 1.455        | W         | 2.65                            | W         | 1.555 | mw        |  |  |
| 3.27       | <b>VW</b>         | 1.432        | W         | 2.60                            | ms        | 1.496 | W         |  |  |
| 3.12       | <b>vw</b>         | 1.399        | mw        | 2.39                            | ms        | 1.460 | W         |  |  |
| 3.05       | mw                | 1.356        | m         | 2.32                            | <b>VW</b> | 1.416 | m         |  |  |
| 2.91       | W.                | 1.294        | ms        | 2.25                            | <b>VW</b> | 1.370 | W         |  |  |
| 2.56       | <b>VW</b>         | 1.257        | mw        | 2.20                            | <b>VW</b> | 1.336 | mw        |  |  |
| 2.51       | VW.               | 1.193        | mw        | 2.106                           | mw        | 1.310 | mw        |  |  |
| 2.38       | ms                | 1.138        | m         | 2.030                           | m         | 1.281 | <b>VW</b> |  |  |
| 2.27       | S                 | 1.127        | <b>VW</b> | 1.990                           | m         | 1.265 | w         |  |  |
| 2.23       | W                 | 1.112        | m         | 1.959                           | mw        | 1.223 | w         |  |  |
| 2.207      | W                 | 1.079        | m         | 1.892                           | W         | 1.153 | w         |  |  |
| 2.088      | W                 | 1.067        | m         |                                 |           |       |           |  |  |
| 2.013      | <b>VS</b>         | 1.009        | m         |                                 |           |       |           |  |  |
| 1.986      | w                 | 0.945        | m         |                                 |           |       |           |  |  |
| 1.947      | <b>VW</b>         | 0.879        | mw        |                                 |           |       |           |  |  |
| 1.901      | <b>VW</b>         | 0.867        | mw        |                                 |           |       |           |  |  |
| 1.881      | S                 |              |           |                                 |           |       |           |  |  |
|            |                   |              |           |                                 |           |       |           |  |  |

metric square-planar structure of symmetry  $D_{4h}$  (model I). They also indicate that the Raman spectrum previously assigned<sup>3</sup> to IF<sub>4</sub><sup>-</sup> was not due to IF<sub>4</sub><sup>-</sup> but to IF<sub>6</sub><sup>-</sup>.<sup>8</sup>

Assignments for the IF<sub>4</sub><sup>-</sup> anion in point group  $D_{4h}$  are given in Table **I** and were made based upon the following considerations. For IF<sub>4</sub><sup>-</sup> of symmetry  $D_{4h}$ , the seven normal modes are classified as  $A_{1g} + A_{2u} + B_{1g} + B_{2g} + B_{1u} +$  $2 E_{\rm u}$ . Of these, only the  $A_{1g}$ ,  $B_{1g}$ , and  $B_{2g}$  modes will be Raman active, whereas the  $A_{2u}$  and the two  $E_u$  modes will be infrared active. The  $B_{1u}$  mode is inactive in both the infrared and Raman spectra. Comparison with the modes belonging to the square-planar part of IF<sub>5</sub><sup>12,13</sup> (see Table I) shows that the  $E_u$  deformation vibration of IF<sub>4</sub><sup>-</sup> should occur below  $250 \text{ cm}^{-1}$ , the lower limit of our spectrometer. The assignment of the observed bands to the individual modes (see Table **I)** was done in complete analogy with  $XeF_4$ <sup>11</sup>,  $BrF_4^-$ , <sup>6</sup> and  $ClF_4^-$ <sup>4</sup> and, hence, needs no further discussion. Since the  $E_u$  stretching mode is very broad for all solid tetrafluorohalogenate(II1) salts, we have also recorded the infrared spectra of  $CsIF_4$  and  $CsBrF_4$  in  $CH<sub>3</sub>CN$  solution. For each salt a single sharp band centered at 448 and 478  $cm^{-1}$ , respectively, was observed. This permits the accurate determination of the band centers and also eliminates the possibility<sup>6</sup> of symmetry  $D_{2h}$ for which the doubly degenerate  $E_u$  mode of  $D_{4h}$  should split into its components. Several less intense bands were observed for CsIF<sub>4</sub> above 600 cm<sup>-1</sup>. These were of varying relative intensity and, hence, are attributed to impurities or hydrolysis products.

The vibrational spectrum of  $Cs<sub>3</sub>IF<sub>6</sub>$  shows bands at about 480, 405, 345, 255, and 225 cm<sup>-1</sup> in both the Raman and infrared spectra. Their number and activity rule out an octahedral structure for **IF63-** as one might also expect from the fact that  $IF_6^-$  is not octahedral.<sup>8</sup> Unfortunately, the observed spectrum does not allow a reliable determina. tion of the symmetry of  $IF<sub>6</sub><sup>3-</sup>$ . However, the pronounced difference in the vibrational spectra of IF<sub>4</sub><sup>-</sup> and IF<sub>6</sub><sup>3-</sup> should be useful for distinguishing the two ions.

(12) G. M. Begun, W. H. Fletcher, and D. F. Smith, *J. Chem. Phvs.,* **42,** 2236 (1965).

Tetrafluoroiodate(II1) Anion *Inorganic Chemistry, Vol. 12, No. 1, 19 73* **6 1** 



Table III. Symmetry and Internal Force Constants (mdyn/A) of CIF<sub>4</sub>, BrF<sub>4</sub>, Hr<sub>4</sub>, and XeF<sub>4</sub> Computed for Different Modified Valence Force Fields Using the Frequency Values of Table

<sup>(13)</sup> H. Selig and". Holzman, *Isr. J.* Chem., *7,* 417 (1969).

Force Constants. Table III shows the symmetry and some of the internal force constants of  $IF_4^-$ . For comparison the force constants obtained for  $XeF_4$  and  $BrF_4^-$  and  $ClF_4^-$  are also listed. Except for the  $E_u$  block all the symmetry force constants are unique. The  $E_u$  block is underdetermined since only two frequency values are available for the determination of three force constants. It has recently been shown<sup>14-16</sup> that in similar underdetermined systems consisting of one stretching and one deformation mode, mathematical constraints such as minimizing or maximizing the value of one of the symmetry force constants can be used to narrow down the range of the possible solutions. In particular, one might  $\exp\left( e^{14\pi/16} \right)$  that in strongly coupled systems the values of the general valence force field (GVFF) will fall within the range given by  $F_{67} = 0$  as the lower and by  $F_{77}$  = minimum as the upper limit. These ranges were computed for  $IF_4^-$ ,  $BrF_4^-$ ,  $ClF_4^-$ , and  $XeF_4$  and are listed in Table 111. It can be seen that for the very weakly coupled (heavy central atom) IF<sub>4</sub><sup>-</sup> and XeF<sub>4</sub> the resulting valence force constant range becomes so narrow that it might not include any more the GVFF values. The condition  $F_{67}$  =  $\frac{1}{2}$   $|F_{67}(\text{max}) - F_{67}(\text{min})|$  has been suggested<sup>17</sup> by Sawodny as a conservative empirical upper limit for weakly coupled systems and was used to determine the uncertainties in the valence force constants of  $BrF_4^-$ , IF<sub>4</sub><sup>-</sup>, and XeF4 listed in Table 111. These relatively small uncertainties suggest that the given values are good approximations of the GVFF.

For most of the square-planar species of Table 111, including  $IF_4^-$ ,  $\nu_7$  has not been observed. Consequently, force fields were also computed assuming minimum and maximum values covering the most likely range for *v7.*  The results shown in Table I11 demonstrate that the values of  $f_r, f_{rr}$ , and  $f_{rr'}$  are very little influenced by changing the value of  $\nu_7$ . Comparison of the uncertainty limits of IF<sub>4</sub><sup>-</sup> with those of  $BrF_4^-$  and  $ClF_4^-$  show that these increase, as expected, with increasing coupling, *i.e.*, decreasing mass of the central atom.

Analysis of the results given in Table I11 allows the following conclusions. (i) The series  $\text{ClF}_4^-$ ,  $\text{BrF}_4^-$ ,  $\text{IF}_4^-$  shows the expected smooth trends. Whereas, the value of the stretching force constant, *f,* remains almost constant, the deformation force constants markedly decrease with increasing size of the central atom. (ii) The relatively low values of  $f_r$  in all three ions indicate strong ionic contributions to the halogen-fluorine bonds. The values are about

- 
- 
- (14) W. Sawodny, *J. Mol. Spectrosc.*, 30, 56 (1969).<br>(15) M. Pfeiffer, *J. Mol. Spectrosc.*, 31, 181 (1969).<br>(16) S. N. Thakur and S. N. Rai, *J. Mol. Struct.*, 5, 320 (1970).
- (17) W. Sawodny, private communication.

half of those obtained for mainly covalent single bonds and may be interpreted in terms of semiionic three-center fourelectron  $p-\sigma$  bonds.<sup>4,6</sup> (iii) The value of the stretchstretch interaction constant,  $f_n$ , decreases from ClF<sub>4</sub><sup>-</sup> to IF<sub>4</sub><sup>-</sup>. It reflects decreasing repulsion between the right angular fluorine ligands with increasing radius of the central atom. (iv) The surprisingly large positive values of the collinear F-X-F stretch-stretch interaction constant,  $f_{rr}$ , can be explained by the following orbital-following model. Stretching of one X-F bond will tend to make the remaining XF<sub>3</sub> part to partially adopt the structure of the XF<sub>3</sub> molecule which is known to have one short equatorial and two long axial X-F bonds. Hence, the stretching of one X-F bond should cause a bond shortening of the collinear X-F bond as depicted by the mesomeric structures



The increase in the  $f_{rr'}$  value from ClF<sub>4</sub><sup>-</sup> to IF<sub>4</sub><sup>-</sup> can be explained by the increasing ease with which the two free valence electron pairs of the central halogen atom can follow the stretching of the X-F bond. The fact that XeF<sub>4</sub> has a considerably smaller  $f_{rr'}$  value than IF<sub>4</sub><sup>-</sup> might be due to the lower polarity of the  $X-F$  bond in  $XeF_4$  as is also indicated by its higher  $f_r$  value (3.02 mdyn/A).

In summary, the observed vibrational spectrum and force constant analysis strongly support a square-planar structure of symmetry  $D_{4h}$  for IF<sub>4</sub><sup>-</sup>. These results confirm the suggestion<sup>8</sup> that the previously reported<sup>3</sup> Raman spectrum was not due to  $IF_4^-$  but due to  $IF_6^-$ .

## **Registry No.** CsIF<sub>4</sub>, 36245-63-3; Cs<sub>3</sub>IF<sub>6</sub>, 28223-33-8.

Acknowledgment. We are indebted to Drs. E. C. Curtis, D. Philipovich, C. J. Schack, and R. D. Wilson of Rocketdyne and Professor M. Schmeisser of the Universitat Dortmund for helpful discussions, and to Dr. D. Lawson of the Jet Propulsion Laboratory for the use of the Raman spectrometer, and K. 0. C. thanks the Office of Naval Research, Power Branch, for financial support.