Contribution from Coates Chemical Laboratories, Louisiana State University, Baton Rouge, Louisiana 70803

Absorption Spectra of K₃Na(SO₄)₂-Na₂CrO₄ and LiKSO₄-K₂CrO₄ Single Crystals¹

S. FELPS, S. I. FOSTER, and S. P. McGLYNN*

Received October 26, 1972

Absorption spectra of two mixed-crystal systems of chromate ion are reported. In one of these systems, $K_3Na(SO_4)_2 \sim Na_2CrO_4$, the $CrO_4^{2^-}$ ion occupies a site of C_{3U} symmetry whereas in the other, $LiKSO_4 - K_2CrO_4$, it occupies a C_3 site. Four absorption band systems are observed and are assigned, on the basis of polarization data, as follows: 4000 Å, ${}^{1}T_1 \leftarrow {}^{1}A_1$; 3600 Å, ${}^{1}T_2 \leftarrow {}^{1}A_1$; 2700 Å, ${}^{1}T_2 \leftarrow {}^{1}A_1$; 2400 Å, ${}^{1}T_1 \leftarrow {}^{1}A_1$.

Introduction

Many theoretical calculations have been carried out on the electronic structure of the T_d transition metal oxyanions.²⁻⁷ Most of the experimental work has dealt with permanganate⁸⁻¹⁵ with little information available for related systems.¹⁶⁻¹⁸ The present investigation is concerned with the electronic spectrum of the chromate ion at helium temperatures. The systems chosen were K₃Na(SO₄)₂-Na₂CrO₄ and LiKSO₄-K₂CrO₄ mixed crystals.

These crystal systems were chosen for the following reasons.

(i) The $\operatorname{CrO_4}^{2^-}$ ion occupies a position of C_{3v} symmetry in the $K_3\operatorname{Na}(\operatorname{SO_4})_2$ crystal and C_3 in the LiKSO₄ crystal.¹⁹ These symmetry reductions $(T_d \to C_{3v}$ for the potassiumsodium salt and $T_d \to C_3$ for the lithium-potassium salt) should produce state splittings and allowedness-forbiddeness characteristics which might permit unique identifications for the states of the hypothetical parent tetrahedral molecule ion.

(ii) Both mixed-crystal systems are hexagonal. Consequently, polarization studies parallel $(\vec{E} \parallel \vec{C})$ and perpendicular $(\vec{E} \perp \vec{C})$ to the crystal *c* axis should refer to A \leftarrow A and E \leftarrow A transitions, respectively.

(iii) Both crystals are easily grown in virtually any desired host-guest concentration ratio.

Experimental Section

All chemicals were reagent grade. The sodium and potassium sulfates were obtained from J. T. Baker. The lithium sulfate was obtained from Fisher and the potassium chromate from Allied Chemical

(1) This work was supported by a contract between the United States Atomic Energy Commission-Biology Branch and the Louisiana State University.

(2) (a) M. Wolfsberg and L. Helmholz, J. Chem. Phys., 20, 837 (1952); (b) R. E. Fenske and C. C. Sweeney, *Inorg. Chem.*, 3, 1105 (1964).

- (3) A. Viste and H. B. Gray, *Inorg. Chem.*, 3, 1113 (1964).
 (4) L. Oleari, G. DeMichelis, and L. DiSipio, *Mol. Phys.*, 10, 111
- (1966).
 (5) J. P. Dahl and C. J. Ballhausen, Advan. Quantum Chem., 4, 170 (1967).
 - (6) J. P. Dahl and H. Johansen, Theor. Chim. Acta, 11, 8 (1968).
 - (7) J. P. Dahl and H. Johansen, Theor. Chim. Acta, 11, 26 (1968).
 (8) J. Teltow, Z. Phys. Chem., Abt. B, 40, 397 (1938).
 - (8) J. Teltow, Z. Phys. Chem., Abt. B, 40, 397 (1938).
 (9) S. L. Holt and C. J. Ballhausen, Theor. Chim. Acta, 7, 313
- (1967).
- (10) P. Mullen, K. Schwochau, and C. K. Jorgensen, Chem. Phys. Lett., 3, 49 (1969).
- (11) P. Day, L. DiSipio, and L. Oleari, Chem. Phys. Lett., 5, 533 (1970).
- (12) L. W. Johnson and S. P. McGlynn, J. Chem. Phys., 55, 2985 (1971).
- (13) L. W. Johnson and S. P. McGlynn, Chem. Phys. Lett., 10, 595 (1971).
- (14) L. W. Johnson, E. Hughes, Jr., and S. P. McGlynn, J. Chem. Phys., 55, 4476 (1971).
- (15) J. C. Collingwood, P. Day, R. G. Denning, D. J. Robbins,
- L. DiSipio, and L. Oleari, Chem. Phys. Lett., 13, 567 (1972). (16) J. Teltow, Z. Phys. Chem., Abt. B, 43, 198 (1939).
- (17) J. C. Duinker and C. J. Ballhausen, Theor. Chim. Acta, 12, 325 (1968).
- (18) L. W. Johnson and S. P. McGlynn, Chem. Phys. Lett., 7, 618 (1970).
 - (19) M. E. Hilmy, Amer. Mineral., 38, 118 (1953).

and Dye Corp. The sodium:potassium ratio chosen²⁰ in preparing the $K_3Na(SO_4)_2$ was 1.58. The lithium:potassium ratio chosen²⁰ in preparing the LiKSO₄ was 2.07. The crystals were grown from aqueous solutions. The chromate concentration in the sodium-potassium salt was 0.20 mol % and in the lithium-potassium salt was 3.5 mol %.

Spectroscopic measurements were made using a Cary 14 spectrophotometer in conjunction with both immersion and contact liquidhelium dewars. No appreciable differences were noted in the spectra obtained using either type of dewar. However, although the crystal⁻ temperature was found to be higher (*i.e.*, $\sim 15^{\circ}$ K) in the contact dewar, the inherent resolution was actually better because only two layers of quartz (instead of eight) intruded on the light path and allowed the use of smaller slit widths.

The nominal spectral bandwidths, based on slit width and instrumental dispersion factors, were as follows: 30 cm^{-1} at 25,000 cm⁻¹; 50 cm^{-1} at 30,000 cm⁻¹; 70 cm^{-1} at 35,000 cm⁻¹; 90 cm^{-1} at 40,000 cm⁻¹; 150 cm^{-1} at 45,000 cm⁻¹. The band maxima of sharp peaks were locatable with an uncertainty not larger than ±15 cm⁻¹.

Results

The absorption spectra obtained are shown in Figures 1 and 2. We describe here three absorption regions in detail (~ 3600, 2700, 2400 Å) and one other (~4000 Å) very briefly. In all cases, the LiKSO₄-K₂CrO₄ crystal cracked during the cooling from 77 to 4.2° K. This cracking, presumably caused by a phase change, greatly increased light-scattering effects. Therefore, all observations on LiKSO₄-K₂CrO₄ were restricted to 77°K.

Absorption Band Centered at 4000 Å. The vibrational analysis of the unpolarized spectrum is given in Table I. This lowest energy band has an apparent origin in the region of $21,500 \text{ cm}^{-1}$. It exhibits four weak but distinct vibrational peaks spaced by 807 cm⁻¹. The ~800-cm⁻¹ vibrational interval common to this and all other resolved bands is the totally symmetric breathing frequency v_1 (a_1) of the various excited states. The totally symmetric vibration has an average frequency of 847 cm⁻¹ in the ¹A₁ ground state.²¹

As is evident from Figure 2, this weak absorption band appears more intense in the \bot -polarization spectrum for the C_{3v} system whereas it appears equally intense in both the \bot - and \parallel -polarization spectra of the C_3 system. Assuming these observations to reflect site effects, this lowest energy band must be assigned as an electric dipole forbidden ${}^{1}T_{1} \leftarrow {}^{1}A_{1}$ transition of the parent tetrahedral ion. This assignment accords with the solidly based designation of the analogous "far-red" bands of permanganate ion.^{14,15}

Absorption Band Centered at 3600 Å. The absorption spectra are shown in Figures 1 and 2. This absorption band appears comparably intense in both polarization directions regardless of whether the $\text{CrO}_4^{2^-}$ ion occupies a substitutional site of either C_{3v} or C_3 symmetry. In both cases, the spectra obtained in the \parallel - and \perp -polarization directions clearly represent electric dipole allowed transitions. The only electronic

(20) W. F. Linke, Ed., "Solubilities of Inorganic and Metal Organic Compounds," K-Z, Vol. II, 4th ed, American Chemical Society, Washington, D. C., 1965.

(21) A. Muller and B. Krebs, Mol. Phys., 12, 517 (1967).

Figure 1. Absorption spectra of a single crystal of $K_3Na_2(SO_4)_2$ - Na_2CrO_4 containing 0.2 mol % chromate salt at 4.2°K and of a single crystal of LiKSO₄- K_2CrO_4 containing 3.5 mol % chromate salt at 77°K. The outermost optical density scale refers to LiKSO₄- K_2CrO_4 and the innermost to $K_3Na(SO_4)_2$ - Na_2CrO_4 .

Figure 2. Polarized absorption spectra of the same two crystal systems studied in Figure 1. Absorption of light polarized parallel to the c axis is denoted by a dashed line; that polarized perpendicular to the c axis by a solid line. The band systems which are denoted in the text by names such as 4000-Å system, 3600-Å system, etc. are identified by the same names in this figure. Band systems in the 2700- and 2400-Å systems are labeled numerically for easy text reference.

Table I. Vibrational Structure in the Unpolarized 4000-Å Absorption Band of $K_3Na(SO_4)_2$ - Na_2CrO_4

 $\overline{\nu}$, cm ⁻¹	$\Delta \overline{\nu}, \mathrm{cm}^{-1}$	$\overline{\nu}$, cm ⁻¹	$\Delta \overline{\nu}, \mathrm{cm}$	1 ⁻¹
 23,145 23,954	809	24,756 25,565	80)6)7

excitation of the CrO_4^{2-} ion consistent with the above results is ${}^{1}T_2 \leftarrow {}^{1}A_1$.

Vibrational analyses of the 3600-Å band system are given in Tables II and III. The analysis of the LiKSO₄-K₂CrO₄ crystal is particularly simple. As shown in Table III, it consists of progressions in the a_1 breathing mode built on a 26,205-cm⁻¹ origin in the || polarization and a 25,760-cm⁻¹ origin in the \perp polarization. The weak vibrational substructure present in both spectra appears interpretable as a slight contamination of one polarization direction by the other. The crystal field splitting of the ¹A(||) and ¹E(\perp) states is 555 cm⁻¹.

The 3600-Å band of the $K_3Na(SO_4)_2-Na_2CrO_4$ crystal exhibits what appears to be five independent origins, two of which appear in || polarization and three in \perp polarization. An analysis of this system is given in Table II. The nature of the observed splitting within any given polarization direction is unknown to us. It may be of phonon or molecular vibrational nature, but the splittings appear too large for consisten-

Table II. Vibrational Structure in the 3600-A Absorption Band of $K_3Na(SO_4)_2$ -Na $_2CrO_4$

System	Polarizn	$\overline{\nu}$, cm ⁻¹	$\Delta \overline{\nu}$, cm ⁻¹	Mode
I	Parallel	25,950	0	0,0
		26,660	710	ν_1
		27,360	705	$2\nu_1$
		28.080	710	$3\nu_{1}$
			Av 708	ŕ
II	Parallel	26,350	0	0,0
		27,130	780	ν_1
		27,890	770	$2\nu_1$
		28,680	777	$3\nu_1$
		29,430	770	4ν ,
		30,210	772	5ν
		31,000	775	$6\nu_1$
		,	Av 774	Ľ
I'	Perpendicular	25.975	0	0.0
	1	26.762	787	ν,
		27,545	785	2ν
		28.342	789	3v
		29,090	779	4ν .
		29,880	781	5v.
		,	Av 784	
11'	Perpendicular	26.185	0	0.0
		26,955	770	ν.
		27,740	778	$\frac{2}{2}\nu$.
		28,530	782	312
		29,260	769	$\frac{4}{4}$
		30,105	784	$\frac{4\nu_1}{5\nu}$
		30,205	783	6ν
		50,000	Av 778	$0\nu_1$
TTT'	Pernendicular	26 375	AN 770	0.0
111	rerpendicular	20,373	765	0,0
		27,140	/05	ν_1

Table III. Vibrational Structure of the 3600-Å Absorption Band of $LiKSO_4-K_2CrO_4$

Polarizn	$\overline{\nu}$, cm ⁻¹	$\Delta \overline{\nu}, \mathrm{cm}^{-1}$	Mode
Parallel	26,205	0	0,0
	26,983	778	ν_1
	27,755	775	$2\nu_1$
	28,490	762	$3\nu_1$
		Av 772	
Perpendicular	25,760	0	0,0
	26,546	786	ν_1
	27,345	792	$2\nu_1$
	28,129	790	$3v_1$
	28,927	791	$4\nu_1$
	29,700	788	$5\nu_1$
	30,469	784	$6\nu_1$
	31,328	795	$7\nu_1$
		Av 789	-

cy with the former and too small for consistency with the latter of these interpretations. We are loath, in view of the perfection of the crystal systems chosen for viewing, to attribute these intense multiple origins to crystalline imperfectionsyet, we must note the ability of $K_3Na(SO_4)_2$ to form solid solutions,¹⁹ presumably randomized, with Na₂SO₄ and the possibility that sulfates and chromates of these types may do likewise. In other words, even though the multiple origins might be associable with $CrO_4^{2^-}$ defect sites of symmetry lower than C_3 or $C_{3\nu}$, we prefer either a mixed phonon vibrational point of view or a polarization "leakage" such as we believe is observed in LiKSO₄-K₂CrO₄. In any event, the spectrum is dominated by progressions in the a_1 breathing mode and, if we choose the most intense progressions in the || and \perp polarizations (*i.e.*, the II and II' progressions of Table II) as representative of the true C_{3u} site splitting, we find a 165-cm^{± 1} separation of the ¹A(||) and ¹E(1) states.

Absorption Bands Centered at 2700 and 2400 Å. From the polarized spectra obtained for the $K_3Na(SO_4)_2$ -Na₂CrO₄ crystal, the 2700-Å absorption band is seen to exhibit a weak vibrational structure in both polarizations. The parallel component is of slightly greater intensity and lies at higher energies. The site splitting estimated from 0,0 band positions is ~90 cm⁻¹. A vibrational analysis of this transition is given in Table IV. The dominant feature in both polarizations is a vibrational progression in the totally symmetric breathing mode. The totally symmetric vibration has an average frequency of 797 cm⁻¹ in the || component and 778 cm⁻¹ in the \perp component. The only assignment of the 2700-Å band consistent with the experimental observations is a ¹T₂ \leftarrow ¹A₁ transition of the tetrahedral ion which splits into ¹A₁ \leftarrow ¹A₁ (parallel) and ¹E \leftarrow ¹A₁ (perpendicular) components in the C_{3v} site occupied in the K₃Na(SO₄)₂ matrix.

The average vibrational interval between the fifth and seventh peaks in the \perp spectrum is 942 cm⁻¹. The seventh peak, therefore, is the origin (or pseudo-origin) of a second vibrational progression in the totally symmetric breathing mode with an average value of 767 cm^{-1} . A vibrational analysis of this \perp component of the 2400-Å band is given in Table V. The existence of two absorption bands centered at 2700 and 2400 Å is, therefore, clearly indicated. The 2400-Å absorption band has a rather low intensity in the || spectrum and exhibits no vibrational structure. The assignment of the 2400-Å band which is most consistent with the experimental observations (i.e., low intensity and no structure in the || polarization and considerable intensity and emergence of structure in the \perp polarization) is a ${}^{1}T_{1} \leftarrow {}^{1}A_{1}$ transition of the tetrahedral ion which splits into an allowed ${}^{1}E \leftarrow {}^{1}A_{1}$ (perpendicular) component and a forbidden ${}^{1}A_{2} \leftarrow {}^{1}A_{1}$ component in the C_{3v} site occupied in the K₃Na(SO₄)₂ matrix.

From the polarized spectra obtained for the LiKSO₄-K₂CrO₄ crystal, the 2700-Å absorption band is seen to appear in both polarizations. A weak vibrational structuring is evident only in the less intense || spectrum. A vibrational analysis of this component is given in Table VI. The spectrum is dominated by a progression in the totally symmetric $\nu_1(a_1)$ mode.

A ${}^{1}T_{2} \leftarrow {}^{1}A_{1}$ transition of the tetrahedral ion will split into ${}^{1}A \leftarrow {}^{1}A$ (parallel) and ${}^{1}E \leftarrow {}^{1}A$ (perpendicular) components in the C_{3} site occupied in the LiKSO₄ matrix. This datum together with that for the sodium-potassium salt clearly substantiates the ${}^{1}T_{2} \leftarrow {}^{1}A_{1}$ assignment of the 2700-Å band for the parent tetrahedral ion.

The 2400-Å absorption band also appears in both polarizations as is evident from Figure 2. No vibrational structure is present in either polarization. The absorption intensity is slightly greater in the || spectrum (after subtraction of residual intensity from the 2700-Å absorption band) whereas the \bot component was more strongly absorbing in the case of the sodium-potassium salt. These data accord with ${}^{1}A \leftarrow {}^{1}A$ (parallel) and ${}^{1}E \leftarrow {}^{1}A$ (perpendicular) components of a split ${}^{1}T_{1} \leftarrow {}^{1}A_{1}$ transition of the parent tetrahedral ion and with prior studies on the permanganate ion.¹²

Comments

The most important content of this work is the demonstration that the 2700-2400-Å absorption region consists of two electronic transitions and that these, in order of increasing energy, are of probable ${}^{1}T_{2} \leftarrow {}^{1}A_{1}$ and ${}^{1}T_{1} \leftarrow {}^{1}A_{1}$ types.

Table IV. Vibrational Structure in the 2700-Å Absorption Band of $K_3 Na(SO_4)_2$ -Na₂CrO₄

Polarizn	$\overline{\nu}$, cm ⁻¹	$\Delta \overline{\nu},$	cm ⁻¹	Mode	
Parallel	34,875		0	0,0	
	35,682		807	ν_1	
	36,500		813	$2\nu_1$	
	37,306		810	$3v_1$	
	37,998		781	$4\nu_1$	
	38,747		775	$5v_1$	
	·	Av	797	-	
Perpendicular	34,785		Ő	0,0	
-	35,565		780	ν_1	
	36,340		778	$2\nu_1$	
	37,120		778	$3v_1$	
	37,885		775	4ν	
		Av	778		

Table V. Vibrational Structure of the 2400-Å Absorption Band of $K_3Na(SO_4)_2$ -Na₂CrO₄ (Perpendicular Polarization)

$\overline{\nu}$, cm ⁻¹ Δ	$\overline{\nu}$, cm ⁻	¹ Mode ^a	$\overline{\nu}$, cm ⁻¹	$\Delta \overline{\nu}, \mathrm{cm}^{-1}$	Mode ^a
39,768 40,530 41,300	0 762 766	$\frac{n\nu_1}{(n+1)\nu_1}$ $\frac{(n+2)\nu_1}{(n+2)\nu_1}$	42,068 42,850	767 771 Av 767	$(n+3)\nu_1 (n+4)\nu_1$

^a The zero-phonon line is occluded in this spectrum. Consequently, n may equal 1, 2, or 3.

Table VI. Vibrational Structure of the 2400-Å Absorption Band of $LiKSO_4-K_2CrO_4$ (Parallel Polarization)

_

$\overline{\nu}$, cm ⁻¹	$\Delta \overline{\nu}$, cm ⁻¹	Mode	$\overline{\nu}$, cm ⁻¹	$\Delta \overline{\nu}, \mathrm{cm}^{-1}$	Mode
34,674 35,436 36,193	0 762 760	$0,0$ ν_1 $2\nu_1$	36,941 37,764	756 773 Av 763	$3\nu_1 \\ 4\nu_1$

Thus, these two transitions apparently occur in a reversed energy order in CrO_4^{2-} relative to the corresponding transitions in MnO_4^{-} .

That the 3600-Å system is of ${}^{1}T_{2} \leftarrow {}^{1}A_{1}$ type is obvious simply on the basis of intensity considerations. The polarization results presented here agree on this. It is important to point out, however, that the structural details of this band system are not understood, as witness the dilemma of the five progressions of Table II. Similar difficulties have been encountered in the corresponding ${}^{1}T_{2} \leftarrow {}^{1}A_{1}$ transition of MnO₄⁻ ion.¹²⁻¹⁴ It seems clear that further work on this band system is in order.

The data presented here on the 4000-Å system of $\text{CrO}_4^{2^-}$ are, for a number of reasons, merely indicative. First, the resolution used may well have been inadequate to detect the very sharp low-intensity origin bands of this so-called Teltow absorption region²² and, second, the observed absorptivity may refer only to the diffuse part of the Teltow absorption region.²² Since this diffuseness is also present in the corresponding MnO_4^- Teltow band and is not understood,¹⁴ it is difficult to be assertive about the meaning of the results obtained in this present work for the 4000-Å $\text{CrO}_4^{2^-}$ band.

Registry No. K₃Na(SO₄)₂, 16349-83-0; Na₂CrO₄, 7775-11-3; LiKSO₄, 14520-76-4; K₂CrO₄, 7789-00-6.

(22) B. Butowiez, C. R. Acad. Sci., Ser. B, 267, 1234 (1968).