Contribution from Rocketdyne, a Division of North American Rockwell, Canoga Park, California 91 304

The Hexafluorochlorine(VII) Cation, ClF₆⁺. Synthesis and Vibrational Spectrum

KARL 0. CHRISTE

Received July 28, 19 72

The ClF₆⁺ cation was prepared in the form of its PtF₆⁻ salt from the reactions of PtF₆ with either FClO₂ or ClF₅. A displacement reaction between ClF₆+PtF₆- and FNO at -78° yielded only ClF₅ and F₂, indicating that ClF₇ cannot exist under the given reaction conditions. Attempts were unsuccessful to prepare ClF_6 +BF₄- by low-temperature glow discharge of a $CIF_s-F_2-BF_3$ mixture, to prepare CIF_s^+ salts from CIF_s , F_2 , and the Lewis acid SbF_s, AsF_s, or BF₃ at elevated temperatures and pressures, or to prepare ClF₄O+ salts either from ClF₃O and PtF₆ or from ClF₃O, F₂, and SbF₅. Iridium hexafluoride was found to be too weak an oxidizer to produce any heptavalent, chlorine-containing cations from FClO₂. Vibrational spectra were recorded for PtF₆- salts of ClF₆+, ClF₄+, ClF₂+, ClF₂O₂+, ClF₂O+, and ClO₂+ and for ClO₂+IrF₆-.
Modified valence force fields were computed for the ClF₆+, PtF₆-, and IrF₆

Introduction

Two preliminary notes on the synthesis of $CIF_6^+PtF_6^$ from $PtF₆$ and chlorine fluorides or oxyfluorides have recently been published, 1,2 and the identity of ClF₆⁺ was established beyond doubt by $^{19}{\rm F}$ nmr spectroscopy. 2,3 The Cl F_6^+ cation is of particular interest for two reasons: (1) except for the recently discovered $ClO₂F₂⁺$ cation,⁴ it is the only known heptavalent chlorine cation and *(2)* in addition to the NF_4 ⁺ salts,⁵⁻⁹ it is the only known example of the synthesis of a fluoro cation derived from hitherto unknown compounds (i.e., NF₅ and ClF₇, respectively). In this paper, we give a full account of the synthesis, vibrational spectrum, and force constants of the ClF_6^+ cation.

Experimental Section

manipulated in a well-passivated (with $CIF₃$) 304 stainless steel vacuum line equipped with Teflon FEP U traps and 316 stainless steel bellow-seal valves (Hoke, Inc., 425 IF4Y). Pressures were measured with a Heise Bourdon tube type gauge $(0-1500 \text{ mm} \pm 0.1\%)$. Because of the rapid hydrolytic interaction with moisture, all materials were handled outside of the vacuum system in the dry nitrogen atmosphere of a glove box. Apparatus and Materials. The materials used in this work were

The infrared spectra were recorded on Perkin-Elmer Models 337 and 457 spectrophotometers in the range 4000-250 cm⁻¹. The spectra of gases were obtained using 304 stainless steel cells of 5-cm path length fitted with AgCl windows. The spectra of solids were obtained by pressing two small single-crystal platelets of either AgCl or AgBr to a disk in a Wilks minipellet press. The powdered sample was placed between the platelets before starting the pressing operation.

The Raman spectra were recorded on either a Cary Model **82** or 83 spectrophotometer using the 4880- and 6471-A exciting lines, respectively. Glass melting point capillaries or clear thin-walled Kel-F tubes were used as sample containers in the transverse-viewingtransverse-excitation technique.

Mass spectra were recorded on a Quad 300 (Electronic Associates Inc.) quadrupole mass spectrometer using a passivated all stainless steel inlet system.

Platinum hexafluoride was either purchased (from Ozark Mahoning Co.) or freshly prepared by burning Pt wire in an F_2 atmos-

- **(1) F.** Q. Roberto, *Inorg. Nucl. Chem. Lett.,* **8, 737 (1972).**
- **(2)** K. 0. Christe, *Inorg. Nucl. Chem. Left.,* **8, 741 (1 972).**
- **(3)** K. 0. Christe, J. F. Hon, and D. Pilipovich, *Inorg. Chem..*
- **(4)** K. 0. Christe, *Inorg. Nucl. Chem. Lett.,* **8, 453 (1972). 12, 84 (1973).**
- **(5)** K. 0. Christe, J. P. Guertin, and *A.* E. Pavlath, *Inorg. Nucl. Chem. Lett.,* **2, 83 (1966).**
- *(6)* J. P. Guertin, K. 0. Christe, and *A.* E. Pavlath, *Inorg. Chem.,* **5, 1921 (1966).**
- **(7) K. O. Christe, J. P. Guertin, A. E. Pavlath, and W. Sawodny,** *Inorg. Chem.***, 6, 533** (1967). **(8) K. O. Christe and D. Pilipovich**, *Inorg. Chem.*, **10**, **2813**
- (1971)

(9) W. **E.** Tolberg. R. T. Rewick, R. S. Stringham, and M. *E.* Hill, *Inorg. Nucl. Chem. Lett.,* **2, 79 (1966);** *Inorg. Chem.,* **6, 11 56** (**196 7).**

phere at -196° , according to the method of Weinstock and his coworkers.¹⁰ Iridium hexafluoride was obtained from Ozark Mahoning Co. Prior to use, both Ir F_6 and Pt F_6 were purified by fractional condensation at -78° in a dynamic vacuum. Arsenic pentafluoride (Ozark Mahoning Co.) was purified by fractional condensation and SbF, (Ozark Mahoning Co.) by distillation. Chlorine pentafluoride (Rocketdyne) was stored over dry CsF to remove any ClF, and purified by fractional condensation through traps kept at -112 and -126° with the material retained at -126° being used. Fluorine (Rocketdyne) was passed over NaF to remove HF. Chloryl fluoride was prepared from KClO₃ and ClF₃,¹¹ ClF₃O by fluorination of CIONO₂,¹² and FNO from NO and \tilde{F}_2 at -196^o. The purity of the volatile starting materials was determined by measurements of their vapor pressures and infrared spectra.

The $FCIO₂-PtF₆ System. Platinum hexafluoride (17.0 mmol)$ and FClO₂ (46.1 mmol) were combined at -196° in a passivated (with ClF₃) 75-ml stainless steel cylinder. The mixture was allowed to warm up slowly to 25° and was kept at this temperature for 3 days. The cylinder was cooled to -196° and 3.75 mmol of material volatile at this temperature was removed and identified as F_2 by its vapor pressure and mass spectrum. The products volatile at 25' were separated by fractional condensation through traps kept at -78 , -126 , and -196° . The -126° fraction consisted of FClO₂ (28.7 mmol) and the -196° one of FClO₂ (0.3 mmol), ClF_s (0.1) mmol), and a small amount of FC10₃. The cylinder contained a stable canary yellow solid (6.618 g), which was identified by infrared spectroscopy as a mixture of $\text{ClO}_2^+\text{PtF}_6^-$ and $\text{ClO}_2\text{F}_2^+\text{PtF}_6^-$. Hence, PtF_6 (17.0 mmol) had reacted with FCIO_2 (17.1 mmol) in a 1:1 mole ratio yielding F_2 (3.75 mmol), ClO₂+Pt F_6 ⁻ (12.2 mmol = 4.594 g), and $CIO₂F₂⁺PtF₆⁻$ (4.8 mmol = 2.000 g) as the main products.

Platinum hexafluoride (2.04 mmol) and FClO₂ (3.08 mmol) were combined at -196° in a passivated sapphire reaction tube (Varian, Model CS-4250-3). The reactor was rapidly warmed from -196 to -78° and kept at -78° for 48 hr. At the end of this time period, the brown $Pt\bar{F}_6$ color had completely disappeared and a canary yellow solid had formed. The reactor was cooled to -196° and noncondensable material (0.33 mmol of $O₂$) was removed. The product volatile at 25° consisted of $FCIO₂$ (1.03 mmol). The yellow, solid residue weighed 800 mg and was shown by infrared, Raman, and ¹⁹F nmr spectroscopy to be a mixture of $\text{ClF}_6^{\bullet+} \text{PtF}_6^-$ and $\text{ClO}_2^{\bullet+} \text{PtF}_6^-$ (weight calculated for a mixture of 1.70 mmol of ClO_2 ⁺PtF₆⁻ and 0.34 mmol of $CIF_6^+PtF_6^- = 796$ mg). Hence, PtF_6 (2.04 mmol) had reacted with FClO₂ (2.05 mmol) in a 1:1 mole ratio producing O_2 (0.33 mmol) and a 1:5 mole ratio mixture of ClF_6^+ Pt Fr_6^- and ClO_2^+ -Pt $\rm{F_6}$.

ClF_s (3.90 mmol) were combined at -196° in a passivated sapphire reactor. The mixture was kept at 25" for 24 hr. Since the brown PtF_6 color was still very intense, the tube was exposed to unfiltered uv radiation from a Hanovia Model 616A high-pressure quartz mercury vapor arc. After 24 hr of uv irradiation, the dark brown PtF_6 color The CIF_s-PtF_s System. Platinum hexafluoride (2.70 mmol) and

(10) *8.* Weinstock, H. H. Claassen, and J. G. Malm, *J. Amer. Chem. Soc.,* **79, 5832 (1957); B.** Weinstock, J. G. Malm, and E. E. Weaver, *ibid.,* **83, 4310 (1961).**

Acta, **20, 1763 (1964). (11)** D. F. Smith, G. M. Begun, and **W.** H. Fletcher, *Specfrochirn.*

and K. 0. Christe, *Inorg. Chem.,* **11, 2189 (1972). (12)** D. Pilipovich, C. **B.** Lindahl, C. J. Schack, R. D. Wilson, had disappeared and a yellow to brown solid had formed. The product was kept for 12 hr at -20° without irradiation and its color changed to yellow-orange. The reactor was cooled to -196° and noncondensables $(2.58 \text{ mmol of F}_2)$ were removed. The reactor was warmed up to **25"** and the volatile products were separated by fractional condensation. They consisted of ClF, **(1.08** mmol) and ClF, **(0.12** mmol). The yellow solid residue weighed **1.096** g (weight calculated for a mixture of 0.84 mmol of $CIF₆⁺PtF₆⁻$ and 1.86 mmol of CIF₂⁺PtF₆⁻ is 1.097 g). The identity of this solid as CIF₂⁺PtF₆⁻ and CIF₆⁺PtF₆⁻ was verified by ¹⁹F nmr, infrared, and Raman spectroscopy. Hence, PtF, **(2.70** mmol) had reacted with ClF, **(2.70** mmol) pro-ducing ClF,+PtF,- **(0.84** mmol), ClF,+PtF,- **(1.86** mmol), and F, **(2.46** mmol). In addition, some **of** the ClF, **(0.12** mmol), which had been used in excess, had decomposed to CIF_3 and F_2 .

In a second experiment, $Pt\vec{F}_6$ (5.26 mmol) and ClF_s (8.02 mmol) were combined at **-196"** in a sapphire reactor. The mixture was exposed at ambient temperature to uv radiation from a Hanovia Model **616A** high-pressure Hg arc using a Pyrex-water filter. After **14** days of irradiation, the PtF, color had disappeared and a yellow to orange solid had formed. The volatile products consisted of $F₂$ **(0.23** mmol), ClF, **(3.23** mmol), and a trace of ClF,. The solid residue weighed **2.245** g and was, according to its infrared spectrum, a mixture of CIF_6 +Pt F_6 ⁻ and CIF_4 +Pt F_6 ⁻. It appears that owing to the long reaction time and uv irradiation, some PtF, **(0.46** mmol as indicated by the F_2 evolution and by the weight of the solid reaction product) had reacted with the container walls. Hence, PtF_6 **(4.80** mmol) had reacted with ClF, **(4.79** mmol) producing $CIF_4^+PtF_6^-(2.40 \text{ mmol})$ and $CIF_6^+PtF_6^-(2.40 \text{ mmol})$. The observed weight of the solid product **(2.245** g) agreed well with that calculated **(2.252 g)** for the above reactions.

 $mixture (0.390 g)$ of $CIF_6+PtF_6- (0.30 mmol)$ and $CIF_2+PtF_6- (0.66$ mmol) in a passivated Teflon-FEP ampoule, FNO **(6.75** mmol) was added at -196° . The contents of the ampoule were kept at -78° for 12 hr. The ampoule was cooled to -196° and F₂ (0.28 mmol) was removed. The products volatile at ambient temperature were separated by fractional condensation and consisted of FNO **(5.76** mmol), ClF, **(0.64** mmol), and ClF, **(0.27** mmol). The yellow, solid residue weighed **0.329** g (calculated weight for **0.96** mmol of NO⁺PtF₆⁻ is 0.326 g) and was identified by its infrared spectrum as $NOTF₄$ Displacement Reaction between FNO and CIF_6 +Pt F_6 . To a

 (1.87 mmol) and ClF₃O (4.71 mmol) were combined at -196° in a sapphire reaction tube. When the mixture was allowed to warm to **25',** a rapid reaction with gas evolution occurred and the characteristic PtF_s color disappeared within a few minutes. The mixture was kept at **25"** for several hours and was then cooled to **-196'.** Fluorine **(0.78** mmol) was removed at **-196'** and ClF,O **(2.05** mmol), ClF, **(0.14** mmol), and FClO, **(0.48** mmol) were removed at **25".** The canary yellow residue weighed **0.749** g (weight calculated for **1.87** mmol of $\text{ClF}_2\text{O}^+\text{PtF}_6$ ⁻ is 0.746 g) and was identified as $\text{ClF}_2\text{O}^+\text{PtF}_6$ ⁻ by its infrared, Raman, and ¹⁹F nmr spectrum. Reaction between ClF₃O and PtF₆. Platinum hexafluoride

were allowed to interact at **-45'** for **12** hr. The volatile products consisted of F, **(1.60** mmol), ClF,O **(3.35** mmol), FClO, **(0.07** mmol), and a small amount of CIF_s and PtF_s . The yellow solid residue weighed **0.837** g (weight calculated for **2.12** mmol of ClF,O+PtF, is **0.845** g). The infrared spectrum of the solid showed it to be mainly $CIF_2O^+PtF_6^-$ but also revealed the presence of smaller amounts of $CIO₂F₂⁺$ and $ClF₆⁺$ salts. In another experiment, PtF, **(2.12** mmol) and ClF,O **(5.51** mmol)

Reaction between FCIO, **and** IrF,. Chloryl fluoride **(2.57** mmol) and IrF₆ (1.96 mmol) were combined at -196° in a sapphire reactor. The mixture was kept at -78° for 48 hr and then cooled to -196° . All products were condensed at this temperature. At **25",** almost all of the starting materials were recovered unchanged except for **0.011** g of a yellowish solid which was identified by its infrared spectrum as ClO_2 ⁺IrF₆⁻. The unreacted starting materials were condensed back into the reactor and kept at **25"** for **11** days. After this period, the product still showed the original brown color but had partially solidified. The mixture was cooled to **-196"** at which temperature **0.03** mmol of noncondensable material was removed. The material volatile at **25"** consisted of IrF, **(1.12** mmol), FC10, **(1.88** mmol), and ClF, **(0.21** mmol). The yellow crystalline solid weighed **0.147** g **(0.39** mmol) and was identified by infrared and

Raman spectroscopy as ClO₂⁺IrF₆⁻.
Attempted Syntheses of CIF₆⁺SbF₆⁻, CIF₆⁺AsF₆⁻, CIF₆⁺BF₄⁻, and $CIF_4O^+SbF_6$. When mixtures of CIF_5 , F_2 , and AsF₅ in different mole ratios were heated in Monel cylinders for **5-10** days at **125- 145"** under autogenous pressures of **500-1000** psi, only unreacted starting materials were recovered in addition to very small amounts

of metal AsF,- salts. Heating the mixture to **160"** resulted in partial breakdown of CIF_5 to CIF_3 and F_2 .

Heating a BF_3 , F_2 , and CIF_5 mixture (mole ratio 1:2.7:2) for 8 days to **95'** under an autogenous pressure of **450** psi did not result in the formation of a solid product.

Mixtures of ClF,, F,, and SbF, (mole ratio **1:5:3)** were heated for **3-40** days in Monel cylinders at **140-225"** under autogenous pressures of \sim 1000 psi. At 140[°] and 3 days' reaction time, no F_2 consumption was observed. At **160'** and **25** days' reaction time, **6.5%** of the F, used was consumed due to attack on the cylinder. The solid product was a mixture of CIF_2^+ , CIF_4^+ , Ni^{2+} , and Cu^{2+} salts of SbF_6 ⁻ $xSbF_5$. Controlled vacuum pyrolysis of this solid resulted in the evolution of ClF_s at lower and of ClF₃ at higher temperatures. The composition of the solid residues of this stepwise pyrolysis was monitored by infrared and Raman spectroscopy. It was shown that the more stable component having strong absorptions in the infrared and Raman spectra at **825** and 836 cm⁻¹ generated only ClF₃ when heated in the presence of CsF.
When the reaction between ClF₅, F₂, and SbF₅ was carried out at 225°, CIF_{2} ⁺SbF₆⁻ was formed with \bar{F}_{2} evolution.

Glow discharge of a BF_3 , F_2 , and CIF_5 mixture (mole ratio **1:1.42:1)** at **-78'** in a Pyrex apparatus at pressures ranging from 20 to 50 mm produced only CIF_{2} ⁺BF₄⁻ and no CIF_{6} ⁺ salt.

Heating a mixture of CIF_3O , F_2 , and SbF_5 (mole ratio 1:10:5) in a Monel cylinder to **135'** for **6** days under an autogenous pressure of 600 psi produced exclusively CIF₂O+SbF₆-xSbF₆.

Results and Discussion

type XF_{y-1}^+ are generally prepared through fluorine abstraction from the parent compound XF_y by means of a strong Lewis acid. This was first demonstrated in 1949 by Woolf and Emeleus¹³ for $BrF₃$ **Synthesis of ClF₆⁺ Salts.** Complex fluoro cations of the

$$
BrF_3 + SbF_5 \rightarrow BrF_2^*SbF_6^-
$$
 (1)

The synthesis of a fluoro cation from a lower fluoride, according to

$$
XF + F^+ \rightarrow XF_1^+ \tag{2}
$$

is preempted by the fact that fluorine is the most electronegative element. Hence, F^+ should be extremely difficult if not impossible to prepare by chemical means. The first and only known synthesis of a fluoro cation derived from a nonexisting parent compound was achieved^{5,9} in 1966, according to

$$
NF_3 + F_2 + AsF_5 \rightarrow NF_4^+ AsF_6^-
$$
 (3)

This synthesis involved either glow discharge' or elevated temperature and pressure.⁹ Since tetrahedral and octahedral species exhibit outstanding stability, as demonstrated by CF_4 and SF_6 , the successful synthesis of NF_4 ⁺ suggested the feasibility of synthesizing $C1F_6^+$ salts.

The application of glow discharge to the synthesis of CIF_6^+ salts is limited to the $CIF_5-F_2-BF_3$ system. Stronger Lewis acids, such as AsF_5 , form adducts with ClF₅,¹⁴ thus preventing the use of the low-temperature glow-discharge technique. In the case of BF_3 , we did not successfully prepare CIF_6 ⁺BF₄⁻, owing to rapid breakdown of CIF_5 to $CIF₃$ and $F₂$, followed by removal of the $CIF₃$ from the gas phase by complex formation with BF_3 .¹⁵ The possible utility of the second technique, involving elevated temperature and pressure, for the synthesis of ClF_6^+ salts was also examined with BF_3 , As F_5 , or Sb F_5 as Lewis acids. At lower temperatures, no fluorination of CIFs occurred, whereas at higher temperatures, breakdown of ClF₅ to ClF₃ and F₂ was observed. Since ClF_2^+ salts are thermally more stable than the corresponding CIF_4^* salts, CIF_3 was continuously removed from the CIF₅ \neq CIF₃ + F₂ equilibrium by complexing until essentially all the CIF_s was converted to CIF_2^+ and F_2 .

(13) A. A. Woolf and H. J. Emeleus, *J. Chem. SOC.,* **2865.(1949). (14) K. 0.** Christe **and** D. Pilipovich, *Inorg. Chem., 8,* **391 (1969). (15) H.** Selig **and J. Shamir,** *Inorg. Chem., 3,* **294 (1964).**

Since the techniques which had successfully been used for the synthesis of NF₄⁺ salts did not result in ClF₆⁺, other fluorinating agents were investigated. Of particular interest were the third transition series hexafluorides which exhibit an astonishing oxidizing power.¹⁶ It was found¹⁷ that PtF₆ and FClO₂, when combined at -196° and allowed to warm up slowly to *25",* interacted according to

$$
2FCIO2 + 2PtF6 \rightarrow CIO2F2+PtF6- + CIO2+PtF6-
$$
 (4)

The yield of $CIO₂F₂⁺$ was not 50% as expected from the above equation, but generally about *25%* owing to the competing reaction

$$
2FCIO_2 + 2PtF_6 \to 2ClO_2^+PtF_6^- + F_2
$$
 (5)

In some of the experiments, small amounts of $CIF₆⁺PtF₆⁻$ (see below) or $CIF₅$ and $FCIO₃$ were observed, depending on the exact reaction conditions. The formation of some $FC1O₃$ is not surprising since it is known that $FC1O₂$ readily interacts with nascent oxygen to yield $FCIO₃$.^{18,19}

Attempts to suppress the competing reaction (eq *5)* by changing the reaction conditions (rapid warm-up from -196 to -78° and completion of the reaction at -78°) resulted on one occasion in an entirely different course for the reaction

$$
6FCIO2 + 6PtF6 \rightarrow 5ClO2+PtF6- + ClF6+PtF6- + O2
$$
 (6)

The observed material balance was in excellent agreement with eq 6 and the identity of CIF_6^+ was unequivocally established by 19 F nmr spectroscopy.³ Further modification of the reaction conditions (rapid warm-up of the $FCIO₂ - PtF₆$ mixture from -196 to either -78 or 25° and completion of the reaction at *25")* did not produce detectable amounts of either $CIO₂F₂⁺$ or $ClF₆⁺PtF₆⁻$, but only $ClO₂⁺PtF₆⁻$ and CIF_5 , F_2 , and O_2 . This indicates that the nature of the reaction products is more influenced by the warm-up rate of the starting materials from -196 to about -78° than by the final reaction temperature. Slow warm-up favors the formation of $ClO_2F_2^+$, whereas rapid warm-up yields ClF_6^+ or ClF₅ and F₂. The above results for the FClO₂-PtF₆ system indicated that CIF_5 might be an important intermediate in the formation of CIF_6^+ . In order to prove the correctness of this assumption and in order possibly to increase the yield of CIF_6^+ , which according to eq 6 can be at best one-sixth based on PtF₆, we have studied also the ClF₅-PtF₆ system. For the latter system, Roberto reported' the formation of a CIF_6^+ salt. Owing to the slow reaction rates in the ClF₅-Pt F_6 system, we have used uv radiation. Two reactions were the reaction was complete in several hours, according to

carried out at 25°. When unfiltered uv radiation was used,
the reaction was complete in several hours, according to

$$
2CIF_s + 2PtF_6 \frac{\text{unfiltered}}{\text{uv}} CIF_2^+PtF_6^- + CIF_6^+PtF_6^- + F_2
$$
 (7)

and

$$
2\text{CIF}_{\text{s}} + 2\text{PtF}_{\text{6}} \rightarrow 2\text{CIF}_{2}^{+}\text{PtF}_{\text{6}}^{-} + 3\text{F}_{2}
$$
\n
$$
\tag{8}
$$

The relative contributions from (7) and (8) were *62* and 38%, respectively. In addition, some of the CIF_5 , which had been used in excess, was recovered in the form of $CIF₃$ and $F₂$.

Using a Pyrex-water filter, a reaction time of *2* weeks was required with the products being

$$
2\text{CIF}_{\text{s}} + 2\text{PtF}_{\text{6}} \xrightarrow{\text{Pyrex filter}} \text{CIF}_{\text{4}}{}^+\text{PtF}_{\text{6}}{}^-\text{ + }\text{ClF}_{\text{6}}{}^+\text{PtF}_{\text{6}}{}^-\tag{9}
$$

(17) K. 0. Christe, *Inorg. Nucl. Chem. Lett., 8,* 451 (1972). (18) R. Bougon, M. Carles, and **J.** Aubert, *C. R. Acad. Sci., Ser.*

Since unfiltered uv light can decompose ClF₅ into ClF₃ + F_2 ²⁰ and since ClF₂⁺ salts are more stable than ClF₄⁺ salts,¹⁴ the displacement of C1F4+ by ClF3, observed for *(7),* is not surprising. The identity of the $CIF₆⁺$ salt obtained from the $FCIO₂-PtF₆$ system with that from the $CIF₅-PtF₆$ system was established by infrared, Raman, and ¹⁹F nmr spectroscopy. The unusual nature of these reactions and products ask for a possible rationalization. In spite of the complexity of the $FC1O₂-PtF₆$ system, the following assumptions appear plausible.

take place according to (a) An initial electron transfer from $FCIO₂$ to $PtF₆$ may

$$
FCIO_2 + PtF_6 \rightarrow FCIO_2 \cdot \text{#PtF}_6 \tag{10}
$$

stabilize by generating an active fluorine radical, according to (b) The resulting $FCIO_2$ ⁺ radical cation could either

$$
\text{FCIO}_2 \cdot {}^{\ast} \text{PtF}_6 \rightarrow \text{ClO}_2 {}^{\ast} \text{PtF}_6 \bar{ }^{\ast} + F \cdot
$$
 (11)

or act itself as the active fluorinating agent, depending upon the relative lifetimes of these two radicals.²¹

(c) In both cases (F. or ClO_2F^{+}), the radical might react either with PtF_6 with F_2 evolution

$$
F^{\prime} + PtF_{6} \rightarrow F_{2} + PtF_{5}
$$
 (12)

followed by

$$
PtF_s + FCIO_2 \rightarrow ClO_2^+PtF_6^-
$$
 (13)

or with FCIOz

$$
FCIO_2 + F \rightarrow F_2ClO_2 \tag{14}
$$

(d) The resulting F_2ClO_2 radical could readily stabilize by transfer of an electron to PtF_6

$$
F_2ClO_2 \cdot + PtF_6 \rightarrow ClO_2F_2 + PtF_6 \tag{15}
$$

This sequence would account for the formation of $ClO₂F₂⁺$ and for the competitive F_2 evolution reaction. Similarly, the formation of CIF_6^+ from CIF_5 and PtF_6 might involve an intermediate CIF_s ⁺ radical cation and suggests a search for radical cations in these systems. The formation of $CIF₆⁺$ from FClO₂ might involve either an intermediate ClF₅ molecule or the direct fluorination of $CIO₂F₂⁺$ to $ClF₆⁺$. A definitive answer to these interesting questions concerning the most important intermediates is beyond the scope of the present study.

Properties of CIF_6^+ **Salts.** The $CIF_6^+PtF_6^-$ salts are canary yellow solids. They were stored at *25'* in Teflon-FEP containers for several months without noticeable decomposition and formed stable HF solutions. They are very powerful oxidizers and react explosively with organic materials or water. Contrary to a previous statement,¹ no evidence was found during our investigation that the $CIF₆⁺$ salts themselves can be explosive.

The Question **of** the Existence **of ClF7.** A displacement reaction between $CIF_6^+PtF_6^-$ and FNO was carried out under conditions similar to those which had successfully been used for the synthesis of ClF₃O₂ from ClO₂F₂⁺PtF₆⁻ and $FNO.⁴$ Since $CIF₆⁺PtF₆⁻$ can be considered as a Lewis acid adduct between CIF_7 and PtF_5 , the products from the

(20) A. **E.** Axworthy, private communication.

⁽¹⁶⁾ N. Bartlett, *Angew. Chem., Int. Ed. Engl., I,* **433** (1968).

C, 265, 179 (1967).

⁽¹⁹⁾ K. 0. Christe, *Inorg. Chem.,* 11, 1220 (1972).

⁽²¹⁾ When the reaction between $FCIO₂$ and $PtF₆$ was carried out at low temperature in an inert solvent such as BrF_s or $FClO₃$, no detectable amounts of $ClO₂F₂⁺$ were formed with the only products being $ClO₂⁺FtF₆⁻$ and $F₂$. One migh have a comparable lifetime in either excess FC10₂ or the solvents $FCIO₃$ or $BrF₅$, whereas a $FCIO₂$ ⁺ radical could stabilize itself by rapid intermolecular exchange with $FCIO₂$ only. Therefore, the lack of $CIO_2F_2^+$ formation in FCIO₃ or BFF_5 solution strongly suggests that the FCIO₂⁺⁺ cation is the active fluorination agent.

Figure **1.** Infrared spectra of the solid products obtained from the following reactions: trace a, displacement reaction between FNO and a mixture of CIF₂⁺PtF₆⁻ and CIF₆⁺PtF₆⁻; traces b and c, CIF₅
FClO₂ + PtF₆ at 25 and -78[°], respectively; traces d and e, CIF₅ and PtF, using unfiltered and filtered uv radiation, respectively; trace f, $FCIO_2 + IrF_6$ at 25°. All spectra were recorded as pressed AgBr disks, except for trace c for which a AgCl disk was used.

FNO displacement reaction allow some conclusions concerning the stability of the hypothetical compound $CIF₇$. The following results were obtained for the displacement reaction

$$
CIF_6^+PHF_6^- + FNO \frac{-78^{\circ}}{-2} NO^+PHF_6^- + CIF_5 + F_2
$$
 (16)

This indicates that CIF_7 under the given reaction conditions $(-78°)$ cannot exist.

Iridium Hexafluoride Reactions. Replacement of PtF₆ by Ir F_6 in the FClO₂ reaction did not result in an oxidative fluorination of $Cl(+V)$ to $Cl(+V)$. At 25° and long reaction times, only $CIO_2^{\dagger}IrF_6^-$ and ClF_5 were formed in moderate yields. This demonstrates that $IrF₆$ is a weaker fluorinating oxidizer than PtF_6 as has previously been demonstrated by Bartlett. **l6**

Attempted Synthesis of ClF₄O⁺ Salts. The successful the possible synthesis of the intermediate CIF₄O⁺ cation from ClF₃O and PtF₆. At 25° , the main reaction was syntheses^{1,2,4} of the ClO₂F₂⁺ and the ClF₆⁺ cation suggested

$$
2CIF3O + 2PtF6 \xrightarrow{25^{\circ}} 2CIF2O+PtF6- + F2
$$
 (17)

In addition, small amounts of FClO₂ and ClF₅ were observed among the volatile reaction products. When the reaction temperature was lowered to **-45',** the main products were again ClF₂O⁺PtF₆⁻ and F₂. However, small amounts of $ClO₂F₂⁺$ and $ClF₆⁺PtF₆⁻$ had also formed. No evidence for the presence of any $CIF₄O⁺$ could be obtained. This sug-

Figure **2.** Raman spectra of some of the solid products shown in Figure **1** using the same notations. All spectra were recorded for dry powders in glass melting point capillaries, using the **6471-A** exciting line on a Cary Model 82.

gests that tetrahedral CIF_2O_2 ⁺ and octahedral CIF_6 ⁺ are more favorable products than the pseudo trigonal-bipyramidal ClF₄O⁺. The formation of small amounts of ClO₂F₂⁺ and $CIF₆⁺$ (or FClO₂ and ClF₅) might be due either to the decomposition of an unstable intermediate, such as ClF_4O^+ , into $CIO₂F₂⁺$ and $ClF₆⁺$, or at least partially to the formation of some $FCIO₂$ from the difficult to handle $CIF₃O¹²$ Attempts to synthesize $CIF_4O^+SbF_6^-$ from $CIF_3O-F_2-SbF_5$ at elevated temperature and pressure produced exclusively $CIF₂O⁺SbF₆⁻·xSbF₅^{21a}$

Vibrational Spectra. The infrared and Raman spectra of the solid reaction products are shown by Figures 1 and *2,* respectively. The spectrum of $CIF₂O⁺PtF₆⁻$ was identical with that previously reported²² and, hence, is not depicted.

(21a) Note Added in Proof. The ClF₃O-PtF₆ reaction was also studied at low temperature in either $FCIO₃$ or $BF₅$ solution. Furthermore the interaction between $Cs⁺ClF₄O⁻$ and $\tilde{P}tF₆$ was investigated either in the absence of a solvent or in FCIO, solution. In all cases the solid reaction product was $CIF₂O⁺PtF₆$.

Inorg. Chem., 11, 2201 **(1972).** (22) C. J. Schack, C. B. Lindahl, D. Pilipovich, and **K.** 0. Christe,

Table I. Vibrational Spectra^a of Several PtF₆⁻ Salts and of ClO₂⁺IrF₆⁻ and Their Assignment

a Raman intensities are uncorrected.

Attempts to record the Raman spectrum of the $\text{CIF}_{4}^{\bullet} \text{PtF}_{6}^{\bullet-}$ $CIF₆⁺PtF₆⁻ mixture were unsuccessful owing to rapid sample$ decomposition by the laser beam. From a large number of experiments, those spectra and products were selected which showed the least amounts of by-products. Depending upon the exact reaction conditions, however, the products sometimes were more complex mixtures of $CIO₂⁺, CIO₂F₂⁺, and$ $CIF₆⁺$ or of $CIF₂⁺, CIF₄⁺,$ and $CIF₆⁺$. The observed frequencies are listed in Table I.

will be discussed first. The simplest spectrum is that of $NO⁺PtF₆$. Our observed spectrum is in good agreement with that previously reported^{16,23,24} for this compound. In addition to the reported bands, we have observed an infrared band at 268 cm^{-1} . The crystal structure of $O_2^+PtF_6^-$ (which is isomorphous with NO⁺PtF₆⁻¹⁶) has been determined.²⁵ It was shown that PtF_6 is approximately octahedral;²⁵ however, its site symmetry²⁶ is lower than *oh.* This site symmetry lowering can cause splitting of most of the bands and violations of the selection rules expected for symmetry O_h . Since the crystal structures and, hence, the actual site symmetries of PtF_6^- in the other chlorine fluoride salts are unknown and since the observed splittings are relatively small, the assignments for $PtF_6^$ in Table I were made based on the group symmetry O_h . In addition to the previously assigned bands,^{16,23,24} the antisymmetric deformation, v_4 (F_{1u}), and the normally inactive v_6 (F_{2u}) mode were observed at about 265 and 180 cm^{-1} , respectively. The spectrum observed for Ir F_6 is in good agreement with that of PtF_6 . In addition to the previously reported²³ bands, the ν_4 and ν_6 modes were also observed for IrF_6^- . Since most products contain the PtF_6^- anion, its spectrum

 $CIF₂O⁺₂^{22,31,32}$ and $CIF₄⁺₃₃$ have been reported elsewhere. The assignments given in Table I are in excellent agreement with those previously given for these ions and, hence, require no further discussion. Assignments for ClF_6^+ , whose identity and octahedral structure have been established beyond doubt by 19 F nmr spectroscopy,³ were made on the basis of the following arguments. For octahedral CIF_6^+ , we would expect ideally six normal modes of vibration which are classified as $A_{1g} + E_g + 2 F_{1u} + F_{2g} + F_{2u}$. Of these, only the two F_{1u} modes will be infrared active, while only the A_{1g} , E_{g} , and F_{2g} modes will be Raman active, assuming no other solid-state effects such as site symmetry lowering or slight distortion of the octahedron. Three different salts containing CIF_6 ⁺Pt F_6 ⁻ have been studied. In addition to CIF_6^+ , they contain the CIO_2^+ or the CIF_2^+ or the CIF_4^+ The vibrational spectra of $CIO_2^{+,27}$ ClF₂O₂^{+4,28} ClF₂^{+29,30}

(23) F. 0. Sladky, P. A. Bulliner, and N. Bartlett, *J. Chem. SOC. A,* **2179 (1969).**

(24) N. Bartlett, S. P. Beaton, and N. K. Jha, *Chem. Commun.,* **168 (1968).**

- **(25) J. A. Ibers and W. C. Hamilton,** *J. Chem. Phys.,* **44, 1748** (**196 6).**
	- **(26) R. S. Halford,** *J. Chem. Phys.,* **14, 8 (1946).**

(27) K. 0. Christe, C. J. **Schack,** D. **Pilipovich, and** W. **Sawodny,** *Inorg. Chem.,* **8, 2489 (1969).**

(28) K. 0. Christe and R. **D. Wilson,** *Inorg. Chem.,* **12,1356 (1973).**

(29) K. 0. Christe and W. Sawodny, *Inorg. Chem.,* **6, 313** (**1967).**

(30) R. J. **Gillespie and M. J. Morton,** *Inorg. Chem.,* **9, 616** (**1970).**

(31) K. 0. Christe, E. C. **Curtis, and C.** J. **Schack,** *Inorg. Chem.,* **11, 2212 (1972).**

(32) R. Bougon, J. **Isabey, and P. Plurien,** *C. R. Acad. Sci., Ser. C,* **273, 415 (1971).**

(33) K. 0. Christe, E. C. Curtis, D. **Pilipovich, C.** J. **Schack, and** W. **Sawodny, Paper B4 presented at the 6th International Symposium** on **Fluorine Chemistry, Durham, England, July 197 1; K. 0. Christe and** W. **Sawodny, to be submitted for publication.**

Table 11. Fundamental Vibrations of ClF,+ Compared to Those of **Isoelectronic SF,**

CIF^{-1}	SF _a	Assignment in point group Ok
679	769.4	v_1 (A _{1g})
630	639.5	v_2 (Eg)
890	947.9	v_3 (F ₁₁)
582	614.5	v_4 (F ₁₁)
513	522	v_{5} (F _{2g})

a Data from ref 35 and 36.

cation. All three salts show a strong infrared absorption at 890 cm^{-1} . The frequency of this band is higher than that of any known ClF fundamental vibration and is assigned to the antisymmetric stretching vibration, v_3 (F_{1u}) of $CIF₆⁺$. This assignment is supported by the following observation. In all three salts, the 890-cm^{-1} band shows a pronounced shoulder at 877 cm^{-1} . The observed frequency difference of about 13 cm^{-1} is in good agreement with the 35 Cl- 37 Cl isotopic shift value of 12.5 cm⁻¹ computed for octahedral CIF_6^+ , assuming 100% characteristic modes. Of the remaining unassigned bands, the second highest frequency belongs to a relatively intense Raman line at 679 cm^{-1} . Clearly, this line must be due to the totally symmetric stretching mode, v_1 (A_{1g}). The Raman spectrum of ClF_2^+ , $\text{ClF}_6^-\text{PtF}_6^-$ (trace d, Figure 2) shows a band at 513 cm⁻¹. It has the same frequency as the ClO₂⁺ deformation mode but cannot be due to CIO_2^+ since there is no evidence for its more intense v_1 (A₁) mode at about 1050 cm^{-1} . The 513-cm⁻¹ band might be assigned to either v_2 (E_g) or v_5 (F_{2g}) of ClF₆⁺.

of $CIO_2^*,^{27}$ $ClF_2O_2^*,^{31}$ $ClF_2O_2^*,^{47}$,²⁸ $ClF_5,^{34}$ and ClF_4^* ,³³ closely resemble those of isoelectronic SO_2 , SF_2O , SF_2O_2 , SF_5^- , and SF_4 , respectively. A similar relationship might be expected for the isoelectronic pair CIF_6^+ -SF₆ (see Table **11).** Comparison with the vibrational spectrum of SF₆^{35,36} suggests that the 513-cm⁻¹ band is due to ν_5 (F_{2g}). This is further supported by the absence of another band below *⁵*13 cm-' , which might be assigned to this mode and by the observed combination bands in the infrared spectrum. Generally, octahedral species exhibit two relatively intense combination bands in the infrared spectrum due to v_1 + v_3 and $v_2 + v_3$. For ClF₆⁺, two bands were observed at about 1560 and 1515 cm^{-1} , respectively. The 1560 cm^{-1} band represents $v_1 + v_3$ (computed frequency 1569 cm⁻¹). Assuming the 1515-cm⁻¹ band to be due to $v_2 + v_3$, a value of 625 cm⁻¹ can be assigned to v_2 . Inspection of trace d of Figure 2 reveals a shoulder at 630 cm^{-1} , which is assigned to v_2 (E_g) of ClF₆⁺. Since there is no indication in the infrared spectrum for a combination band at about 1400 cm^{-1} $(890 + 513 = 1403 \text{ cm}^{-1})$, the 513-cm⁻¹ Raman band is assigned to ν_5 (F_{2g}). It has previously been shown that the vibrational spectra

An alternate, although less probable, assignment is possible for v_2 (E_g) of ClF₆⁺. Trace d of Figure 2 exhibits two bands at 582 and 576 cm⁻¹, respectively. We prefer, however, to attribute both of them to v_2 (E_g) of PtF₆⁻ since the v_5 (F_{2g}) $PtF₆$ - bands also show additional splitting and since again no evidence for the corresponding $v_2 + v_3$ combination band can be found in the infrared spectrum at about 1470 cm^{-1} . Thus all the expected active modes have been assigned for $CIF₆⁺$ except for the antisymmetric deformation, ν_4 (F_{1u}).

(34) K. 0. Christe, E. C. Curtis, C. J. **Schack, and D. Pilipovich,** *Inorg. Chem.,* **11, 1679 (1972).**

⁽³⁵⁾ H. Brunet and M. Perez, *J. Mol. Specirosc.,* **29, 472 (1969). (36) C.** W. **Gullikson,** J. R. **Nielsen, and A. T. Stair,** Jr., *J. Mol. Spectrosc.,* **1, 151 (1957).**

This mode should be infrared active and, by comparison with SF_6 , occur in the range 550-610 cm⁻¹. A frequency of 582 cm⁻¹ is tentatively assigned to ν_4 on the basis of traces c, d, and e of Figure 1 and by comparison with the infrared spectrum of $CIF₂O⁺PtF₆⁻²²$.

Force Constants. A modified valence force field was computed for $CIF₆⁺$ in order to obtain a more quantitative understanding of its relative bond strength. Except for the F_{1u} block, all the symmetry force constants are unique. The F_{1u} block is underdetermined since only two frequency values are available for the determination of three force constants. A third frequency value for the F_{1u} block might be obtained from the 35° Cl- 37° Cl isotopic shifts which would allow the computation of a general valence force field. Unfortunately, the isotopic shift for ν_3 could not be determined with sufficient accuracy. Consequently, the usefulness of mathematical constraints, such as minimizing or maximizing the value of one of the symmetry force constants, was tested for isoelectronic SF_6 , for which a general valence force field has been reported.³⁷ It was found that the condition $F_{44} = \text{minimum}^{38}$ is the best approximation to the general valence force field. though it yields too high a value for F_{34} , due to appreciable coupling of the bonds.³⁹ It also results in a rather large negative value (-0.269 mdyn/A) for the stretch-stretch interaction constant, f_{rr} ', which is difficult to rationalize. Using the same condition for computing the force field of CIF_6^+ , a comparable negative value (-0.297 mdyn/A) was obtained for f_{rr} ['] of CIF₆⁺. Since for SF₆ the GVFF value of f_{rr} ['] is essentially zero, we prefer for CIF_6^+ the condition $f_{rr}' =$ 0. The resulting force field is listed in Table 111 and compared to the GVFF values of SF_6^{37} The force constant of greatest interest is the stretching force constant f_r . Its value is 4.7 mdyn/A with a conservative uncertainty estimate of ± 0.2 mdyn/A considering the uncertainties in the frequency of ν_4 (F_{lu}) and in the approximating method used for the force constant computation. This value is comparable to those of $CIF_2^+(4.74 \text{ mdyn/A}^{40})$ and of the equatorial Cl-F bonds in ClF_4^+ (4.59 mdyn/A³³) but significantly higher than those of the remaining known chlorine fluorides. The high value of f_r in Cl F_6^+ can be explained to some extent by the formal positive charge which generally increases the stretching force constant values. It also suggests strong covalent contributions to the bonding. The high f_r value is entirely consistent with the high stability observed for the ClF_6^+ salts and parallels the findings for the NF_4 ⁺ salts.⁶⁻⁹ In both cases, comparison with the isoelectronic molecules SF_6 and CF_4 , respectively, suggested unusual stability, although it proved difficult actually to synthesize these salts. In particular, it appears that the synthesis of $CIF₆⁺$ requires an unusually powerful oxidative fluorinating agent such as PtF_6 .

Since v_4 (F_{1u}) and v_6 (F_{2u}) have been observed for both PtF_6^- and IrF_6^- , a modified valence force field was also computed for these two anions assuming octahedral symmetry and F_{44} = minimum. For PtF₆⁻ and IrF₆⁻, this extremal condition is expected to give a force field close to that of a GVFF owing to the large mass of the central atoms and the resulting weak coupling. The frequencies used for the computation are listed in Table IV, together with the resulting force constants. The value of f_r of PtF₆⁻ (3.89

(38) W. Sawodny, *J. Mol. Spectrosc.,* 30, 56 (1969). (39) S. N. Thakur and **S.** N. Rai, *J. Mol. Struct.. 5, 320* (1970). (40) K. 0. Christe and C. J. Schack, *Znorg. Chem., 9,* ²²⁹⁶ $(1970).$

 α For comparison the GVFF values of $SF₆$ are also listed.

Table **IV.** Symmetry and Internal Force Constants (mdyn/A) of ${\rm PfF_6^-}$ and ${\rm IrF_6^-}$ Computed for a Modified Valence Force Field Assuming F_{44} = Minimum

	$PtF_{6}^- a$	IrF_6^- ^b	
F_{11}	4.613	5.025	
F_{22}	3.573	3.510	
F_{33}	3.870	3.861	
F_{34}	0.100	0.101	
F_{44}	0.308	0.307	
$F_{\mathfrak{s}\mathfrak{s}}$	0.161	0.172	
$F_{\rm 66}$	0.181	0.192	
	3.894	3.940	
	0.173	0.255	
յ _{ու} յու	0.024	0.079	
$f_{r\alpha}-f_{r\alpha}$	0.050	0.051	
$^{\prime}$ $J\alpha = J\alpha\alpha = J\alpha\alpha$ $^{+}/\alpha\alpha$	0.171	0.182	
,,, J αα $-J$ αα $-J_{\alpha\alpha}$ $J\alpha\alpha$	-0.010	-0.010	

a Frequencies used: v_1 642, v_2 565, v_3 640, v_4 270, v_5 240, v_6 180 cm-'. b Frequencies used: *u1* 670, *u2* 560, u3 640, *u,* 270, *us* 248, *u6* 185 cm-I.

Table V. Summary of Existing Binary Chlorine Fluorides (Nonexisting Species in Parentheses)

^QK. 0. Christe and W. Sawodny, *Inorg. Chem.,* 8, 212 (1969). b 0. Ruff, E. Ascher, J. Fischer, and F. Laass, *Z. Anorg. Allg. Chem.,* 176, 258 (1928). *C* K. 0. Christe and J. P. Guertin, *Inorg. Chem.,* **4,** 905 (1965). *d* **J.** W. Dale and D. **A.** MacLeod, private communication, 1950. **e** 0. Ruff and H. Krug, *Z. Anorg. Allg. Chem.,* 190, 270 (1930). *f* L. B. Asprey, J. L. Margrave, and M. E. Silverthorn, *J. Amer. Chem. SOC., 83,* 2955 (1961). *g* **K.** 0. Christe and D. Pilipovich, *Inorg. Chem.,* 8, 391 (1969). *h* W. Maya and H. F. Bauer, U. S. Patent 3,354,646 (1967). *i* F. *Q.* Roberto, *Inorg. Nucl. Chem. Lett., 8,* 737 (1972);K. 0. Christe, *ibid.,* 8, 741 $(1972).$

mdyn/Å) is intermediate between those of PtF_6 (4.46 mdyn/ A^{41}) and PtF₆²⁻(3.42 mdyn/ A^{41}) as expected on the basis of the increasing formal negative charge.

Summary. The successful synthesis of $CIF₆⁺$ and the evidence for the nonexistence of a stable $ClF₇$ molecule and CIF_6^- anion¹⁴ complete the series of possible binary chlorine fluoride molecules and ions. Table V summarizes the presently known species. The existence of ClF_6^+ suggests the possibility of preparing $CIF₅O$ and efforts to synthesize this new oxyfluoride will be continued.

Registry No. PtF₆, 13693-05-5; $FC1O₂$, 13637-83-7; ClF₅,

(4 1) H. Siebert, "Anwendungen der Schwingungsspektroskopie in der anorganischen Chemie," Springer-Verlag, Berlin, 1966, p 82.

⁽³⁷⁾ **A.** Ruoff, *J. Mol. Struct.,* 4, 332 (1969).

Catalysis of the Bromate-Iodide Reaction

13637-63-3; FNO, 7789-25-5; ClF₃O, 30708-80-6; IrF₆, 7783-75-7; ClO₂*PtF₆", 38123-66-9; ClO₂F₂*PtF₆", 36609-
92-4; ClF₆*PtF₆", 36609-91-3; ClF₂*PtF₆", 38123-68-1; $CIF_4^+PtF_6^-$, 38123-69-2; NO⁺PtF₆⁻, 17250-51-0; CIF_2O^+Pt - F_6^- , 36544-28-2; ClO₂+IrF₆-, 38194-37-5; ClF₆+, 38217-33- $3; PtF_6^-, 38123-72-7; IrF_6^-, 22587-75-3.$

Acknowledgment. **I** am indebted to Dr. C. J. Schack and R. D. Wilson for their help in some of the experiments, to Drs. D. Pilipovich and E. C. Curtis for helpful discussions, and to R. Cook of Cary Instruments for recording the Raman spectra. Financial support of this work by the Office of Naval Research was greatly appreciated.

> Contribution from the Department of Chemistry, Oregon State University, Corvallis, Oregon 97331

Halide-Ion Catalysis of the Bromate-Iodide Reaction in Dimethyl Sulfoxide-Water Solvents. Solvent Enhancement of Nucleophilicity

JAMES H. KRUEGER* and THOMAS R. WEBB

Received January 8, 1973

The kinetics of the reaction $Br_3^- + 9I^- + 6H^+ \rightarrow Br^- + 3I_3^- + 3H_2O$ have been measured spectrophotometrically in dimethyl sulfoxide (DMSO)-water solvents. The reaction is catalyzed by added chloride, bromide, and thiocyanate ions, leading to the observed rate law d[I₃⁻]/dt = [BrO₃⁻][H⁺]² (k_I[I⁻] + k_{Nu}[Nu]). The mechanism proposed involves prior protonation of BrO₃⁻ followed by rate-determining attack by the nucleophilic anion on the $H_2BrO_3^*$ species. In 0.700-1.00 mole fraction of DMSO, the order of nucleophilic reactivity is $Cl^- > Br^- > I^-$ which represents an inversion in the order reported in water $I > Br > Cl$. The solvent influence is interpreted to suggest that nucleophilic substitution on $H_2BfO_3^+$ occurs at the harder bromine atom center, rather than at the softer, protonated-oxygen center.

The kinetics of the bromate-iodide reaction

$$
BrO_3^- + 9I^- + 6H^+ \rightarrow Br^- + 3I_3^- + 3H_2O
$$
 (1)

and the accompanying ionic strength effects, have been studied thoroughly in aqueous solution.¹⁻⁴ Although several bromine intermediates must arise in the course of this reaction, they are apparently much more reactive than is bromate, thus permitting attention to be focused on the rate-determining step. Edwards' has made a significant contribution to the understanding of this reaction that has resulted in the mechanistic sketch shown in eq 2-5. Intermediates similar

$$
BrO_3^- + 2H^+ \stackrel{\leftarrow}{\rightarrow} H_2BrO_3^+ \tag{2}
$$

 $I^- + H_2BrO_3^+ \rightarrow I-BrO_2 + H_2O$ (rate determining) (3)

 $I^+ + H_2BrO_3^+ \rightarrow HOI + HBrO_2$ (rate determining) (4)

$$
I - BrO2 + I- \rightarrow I2 + BrIII (fast)
$$
 (5)

to $I-BrO₂$, with a halogen-halogen bond or a pseudo halogenhalogen bond, have been postulated by others.⁵ However, other structures for the intermediate formed in the ratedetermining step are possible. In their paper concerning carboxylate catalysis of the bromate-iodide reaction, Barton and Wright³ have presented a thorough discussion of alternate structures for the transition state and intermediate involved in the rate-determining step.

The site of attack by iodide on the H_2BrO_3 ⁺ species is an unresolved question. Attack on either the bromine atom or

(1) (a) J. 0. Edwards, *Chem. Rev., 50,* **455 (1952); (b)** E.

Chaffee and J. 0. Edwards, *Progr. Inorg. Chem.,* **13, 205 (1970). (2)** A. Indelli, G. Nolan, **Jr.,** and E. *S.* Amis, *J. Amer. Chem.* **SOC., 82, 3233 (1960).**

(3) A. **F.** M. Barton and G. A. Wright, *J. Chem. SOC. A,* **1747 (1968).**

(4) F. Domka and B. Marciniec, *Rocz. Chem.,* 44, **1849 (1970);** *Chem. Abstr.,* **74, 80247 (1971).**

(5) (a) M. Anbar and *S.* Guttmann, *J. Amer. Chem. SOC.,* **83,** 4741 (1961); (b) H. Taube and H. Dodgen, *ibid.*, 71, 3330 (1949);
(c) D. E. C. King and M. W. Lister, *Can. J. Chem.*, 46, 279 (1968);
(d) R. C. Thompson, *Inorg. Chem.*, 8, 1891 (1969); (e) R. G. Kieffer
and G. Gordon,

on a protonated oxygen is consistent with the rate law. Of these two acid centers, bromine would be regarded as the harder center and partially positive oxygen as the softer acid center.^{6a} According to the HSAB principle,^{6b} hard-base nucleophiles would prefer to react at the bromine center and soft-base nucleophiles at the oxygen center. Chloride and bromide are also oxidized by bromate and the relative rates of reaction for the three halide bases, *in water*, are $I > Br$ ⁻ Cl⁻. It has been suggested that this order of nucleophilicity may indicate attack on the softer oxygen center since iodide is the preferred nucleophile.7

The goal of the present study was to examine the rate of the bromate-iodide reaction in dimethyl sulfoxide (DMSO) water solvents. In particular, since we had observed that this reaction is catalyzed by bromide and chloride ions,⁸ our objective was to determine the order of halide ion nucleophilicity in DMSO-water and, thereby, to obtain information that bears on the question of attack at bromine *us.* oxygen.

Experimental Section

mercial grade DMSO (Van Waters and Rogers) and redistilled water as described earlier.⁹ To minimize air oxidation of iodide, the pure solvents and the resulting mixtures were swept with prepurified nitrogen before use. B & A reagent grade potassium bromate, recrystallized from water and dried for 3 hr at 180° , was found to be 99.9% pure by iodometric analysis. B & **A** 60% reagent grade perchloric acid, diluted to 1 *M,* was used as the source of acid. Reagent grade potassium salts were used as received. Potassium perchlorate was used to maintain ionic strength at 0.121 *M.* Solvent **and** Reagents. All solutions were prepared from com-

0.500 mole fraction of DMSO. Spectrophotometric analysis indicated that 2.9 ± 0.1 mol of triiodide ion was produced per mole of bromate reacting. The amount of hydrogen ion consumed was deter- Stoichiometry. The stoichiometry of reaction 1 was verified in

(6) (a) J. 0. Edwards and R. G. Pearson, *J. Amer. Chem. SOC.,* **84, 16 (1962); (b)** R. G. Pearson and J. Songstad, *ibid.,* **89, 1827 (1967).**

(7) J. 0. Edwards in "Peroxide Reaction Mechanisms," J. 0. Edwards, Ed., **Wiley,** New York, N. Y., **1962,** p **102. (8)** Indelli, *et. al.,,* have also reported that the reaction in water

proceeds somewhat more rapidly in the presence of chloride ion. **(9) J.** H. Krueger and W. A. Johnson, *Inorg. Chem.,* **7, 679**

(1968).