Platinum(II) Chloride-Aluminum Chloride Complex

contained dried CsF and about 7 ml of diglyme. After heating the bomb at 80° for 4 days, the volatile portion was fractionated (-98°) and then further purified by gas chromatography by using an 8-ft column packed with 20% Kel-F oil on Chromosorb P. The pentafluoroethylsulfuryl fluoride¹⁶ (30%) was further characterized by ¹⁹F nmr spectra (Table I) and by its infrared spectrum which has bands at 1476 (vs), 1336 (m), 1255 (vs), 1240 (sh, vs), 1208 (m), 1152 (s), 999 (m), 817 (s), 754 (w), 644 (sh, w), and 610 (sh, w) cm⁻¹. Its experimental molecular weight was 203 (202).

Preparation of C_2F_5SCI . A mixture of $(C_2F_5S)_2$ (4.75 mmol) and Cl₂ (6.0 mmol) was heated at 90-100° for 6 hr in a Pyrex vessel. Separation of the mixture by fractional condensation gave unreacted disulfide (-78°) , C_2F_sSCI (-108°) , and a mixture of CI_2 and C_2F_sSCI at -196° . The infrared spectrum consists of bands at 1330 (m), 1230 (vs), 1168 (m), 1122 (s), 980 (s), 965 (sh), 753 (m), and 550 (w) cm⁻¹

Reaction of C_2F_5SC1 and $(CF_3S(O)O)_2Zn$. Approximately 1 mmol of C_2F_5SCl was condensed onto $(CF_3S(O)O)_2Zn$ in a Pyrex vessel and the volatile products were monitored every 6 hr over a 36-hr period. The major products identified were CF_3Cl , $(C_2F_5S)_2$, $C_2F_5SCF_3$,¹⁰ and some unreacted C_2F_5SCI . No $CF_3SO_2SC_2F_5$ was detected during this period.

Preparation of CF₃SO₂SC₂F₅ and C₂F₅SO₂SCF₃. A mixture of 5 mmol each of CF₃S(O)Cl and $C_2F_5S(O)Cl$ was condensed at -183°

(16) T. Gramstad and R. N. Haszeldine, J. Chem. Soc., 2640 (1957).

into a 500-ml Pyrex flask equipped with a Teflon stopcock and then warmed to 25°. Over a period of 1.5 hr approximately 3.5 ml of mercury was added with shaking. The mixture was fractionated through traps cooled to -63, -78, and -196° . Further purification of the materials retained in the traps at -63 and -78° was accomplished with gas chromatography using an 8-ft column packed with Kel-F No. 3 oil on Chromosorb P. This resulted in the isolation of 0.4 mmol of a mixture of the thiosulfonates. Additional attempts to separate the mixture by gas chromatography were unsuccessful and attempts to reproduce or alter this reaction resulted in no isolation of the two products.

Registry No. HNF₂·KF, 13841-05-9; SOF₂, 7783-42-8; FS(O)NF₂, 39937-04-7; CF₃S(O)F, 812-12-4; CF₃SO₂SCF₃, 358-15-6; C₂F₅S(O)F, 20621-31-2; HC1, 7647-01-0; C₂F₅S-(O)C1, 39937-08-1; C_2F_4 , 116-14-3; SO_2F_2 , 2699-79-8; C₂F₅SO₂F, 354-87-0; (C₂F₅S)₂, 679-77-6; Cl₂, 7782-50-5; C₂F₅SCl, 39937-11-6; [CF₃S(O)O]₂Zn, 39971-65-8; CF₃S-(O)Cl, 20621-29-8; CF₃SO₂SC₂F₅, 39937-13-8; C₂F₅SO₂-SCF₃, 39937-14-9; Hg, 7439-97-6; C₂F₅SO₂SC₂F₅, 39937-15-0.

Acknowledgment. Fluorine research at the University of Idaho is supported by the National Science Foundation and the Office of Naval Research.

Contribution from Ames Laboratory-USAEC and the Department of Chemistry, Iowa State University, Ames, Iowa 50010

Spectrophotometric Study of the Platinum(II) Chloride-Aluminum Chloride Vapor Complex

G. N. PAPATHEODOROU¹

Received February 1, 1973

The reaction of solid cluster platinum(II) chloride (Pt₆Cl₁₂) with gaseous aluminum chloride to form a purple gaseous complex has been studied spectrophotometrically. Thermodynamic considerations suggest the stoichiometry for the reaction: $^{1}/_{6}$ Pt_sCl₁₂(s) + Al₂Cl_s(g) \rightarrow PtAl₂Cl_s(g) ($\Delta H^{R} = 7.8 \text{ kcal/mol}, \Delta S^{R} = 6.4 \text{ eu}$). The visible electronic absorption spectrum of the gaseous complex was compared with the spectrum of Pt(II) centers in liquid LiCl and interpreted in terms of a square-planar PtCl₄ group sharing edges with two tetrachloroaluminates.

(m

Introduction

It has been shown²⁻⁶ that gaseous aluminum chloride reacts with many MClk metal chlorides to form gaseous complexes with the general formula $(MCl_k)_m(Al_2Cl_6)_n$. In most cases studied m = 1 while the value of n varies between $\frac{1}{2}$ and 2.

Among the different metal chlorides investigated by vapor pressure equilibrium measurements were some alkali and alkaline earth chlorides (M = Na, K, Mg, Ca)^{2,3} and some chlorides of 3d metal cations (M = Mn(II), Fe(II), Co(II), Ni(II), Zn(II)).³ The chlorides of Nd(III),^{4a} U(III), U(V),^{4b} and $Pd(II)^5$ have been studied spectrophotometrically.

In the present report the existence of a purple vapor complex of platinum chloride with aluminum chloride has been

A. V. Bovoseloca, Dokl. Akad. Nauk SSSR, 154, 649 (1964).

(4) (a) H. A. Oye and D. M. Gruen, J. Amer. Chem. Soc., 91,

2229 (1969); (b) D. M. Gruen and R. L. McBeth, *Inorg. Chem.*, 8, 2625 (1969). (5) G. N. Papatheodorou, J. Phys. Chem., 77, 472 (1973).

(6) K. Lascelles and H. Schafer, Z. Anorg. Allg. Chem., 383, 249 (1971).

established. Furthermore, the equilibrium

$$/6)\operatorname{Pt}_{6}\operatorname{Cl}_{12}(s) + n\operatorname{Al}_{2}\operatorname{Cl}_{6}(g) \to (\operatorname{Pt}\operatorname{Cl}_{2})_{m}(\operatorname{Al}_{2}\operatorname{Cl}_{6})_{n}(g)$$

(1)

has been studied by measuring spectrophotometrically the partial pressures of the gaseous complex(es) over the "cluster" platinum chloride (Pt₆Cl₁₂). The thermodynamic quantities of the above equilibrium and the electronic absorption spectrum of the gaseous complex are discussed in terms of the stoichiometry and possible structure of the gaseous molecule.

Experimental Section

Chemicals and Equipment. High-purity anhydrous aluminum chloride was prepared from Baker Analytical reagent AlCl₃ by slow sublimation in silica tubes under vacuum. The sublimation was repeated six times.

The platinum(II) chloride was prepared as previously described.7ª Large quantities of the cluster platinum chloride Pt₆Cl₁₂ were prepared by recrystallization of PtCl₂ from its dilute solutions in liquid Al₂Cl₆.^{7b} The spectrophotometric measurements were performed on a Cary Model 14 spectrophotometer equipped with a high-temperature cell compartment⁸ (15-cm maximum path length). The quartz cells were the uv-type cylindrical cells, purchased from Pyrocell. The

(7) (a) G. N. Papatheodorou and G. P. Smith, J. Inorg. Nucl. Chem., 35, 799 (1973); (b) G. N. Papatheodorou, unpublished work. (8) R. A. Lynde and J. D. Corbett, Inorg. Chem., 10, 1746 (1971).

⁽¹⁾ Ames Laboratory USAEC postdoctoral fellow, 1970-1971. (a) Laboratory Control postdoctoral individual of Driver Present address: The James Franck Institute, University of Chicago, Chicago, Ill. 60637.
(2) (a) E. W. Dewing, Nature (London), 214, 483 (1967); (b) Met. Trans., 1, 2169 (1970).
(3) K. N. Semenenko, T. N. Naumova, L. N. Gorokhov, and A. W. Dewing Driver Laboratory Neurophysics (2004).

Table I.	Determination	of Molar	Absorptivit	tν
T TOTO IN	Determination	or motorar	resorptivit	• _

$P_{o} = 3.21 \Rightarrow$ $n_{Pt} = 1.54$ $V = 2$ $h =$	E-1 < 10 ⁻³ <i>T</i> , atm × 10 ⁻⁵ , mol 8.5 cm ³ 10 cm	$P_{o} = 3.122$ $n_{Pt} = 0.969$ V = 2 h =	E-2E-3a $P_0 = 3.12 \times 10^{-3} T$, atm $P_0 = 5.28 \times 10^{-3}$ $\mathbf{p_t} = 0.969 \times 10^{-5}$, mol $n_{\mathbf{p_t}} = 1.415 \times 10^{-3}$ $V = 29.0 \text{ cm}^3$ $V = 26.8 \text{ cm}$ $h = 10 \text{ cm}$ $h = 10 \text{ cm}$		 3a 10⁻³ T, atm × 10⁻⁵, mol 6.8 cm³ 10 cm 	atm mol Average absorptivity			
<i>T</i> , K	emax	<i>Т</i> , К	ϵ_{\max}	Т, К	emax	<i>T</i> , K	λ _{max} , ^b Å	ϵ_{\max}	
		500	113.7	500	112.1	500	368.0	112	
550	113.0	550	116.6	550	115.5	550	369.5	115	
600	117.0	600	119.6	600	117.4	600	371.2	118	
650	121.8	650	123.2	650	122.1	650	372.5	122	

^a The data for experiment E-3 are given in Figure 1. ^b The values of ν_{max} (the frequency at which the maximum absorptivity occurs) were found to be the same for all three experiments.

anhydrous materials were handled under vacuum, in tight containers or in a drybox.

Method. In a typical experiment, amounts of $AlCl_3$ or Pt_6Cl_{12} , preweighed on a microbalance, were transferred into a dry and degassed quartz cell with a known volume and path length (5 or 10 cm). The cell was then sealed under vacuum and heated for 8–12 hr at 600 K. Finally it was transferred into the furnace of the spectrophotometer. In most cases the spectra were recorded at four different temperatures (500, 550, 600, 650 K). The amounts of $AlCl_3$ were adjusted so that all $AlCl_3$ in the cell was in the vapor phase at temperatures between 500 and 600 K. The pressure of the Al_2Cl_6 gas was estimated from the ideal gas equation of state and from the literature data for the dissociation of Al_2Cl_6 .⁴

Determination of Molar Absorptivity. Three experiments were designed in order to determine the molar absorptivity $\epsilon(\lambda)$ of the gaseous platinum complexes. The 10-cm cells were filled with small known amounts of Pt_6Cl_{12} (~3.0 mg) to ensure that all the solid was in the gaseous phase. The absorbance, $A(\lambda)$, of the complexes as a function of λ was then recorded between 4 to 33 kK. The characteristics of each experiment are shown in Table I. The molar absorptivity was then evaluated from the equation $\epsilon(\lambda) = A(\lambda)(V/n_{Pt})h$, where V and h are the volume and path length of the cell, respectively, and n_{Pt} is the number of moles of PtCl₂ placed in the cell. Only a strong absorption band close to 27 kK (3700 Å) and a weak band close to 19 kK (5200 Å) were observed in the range of 4-33 kK. The data at four different temperatures are shown in Figure 1.

Solid Pt_6Cl_{12} in Equilibrium with Al_2Cl_6 Gas. In a series of experiments we have determined the nature of the solid phase(s) of PtCl₂ in equilibrium with Al₂Cl₆ gas and we have excluded the formation of the PtCl₂-Al₂Cl₆ solid complex compound. These experiments were performed in sealed and evacuated fused-silica tubes containing small quantities of Pt₆Cl₁₂ and AlCl₃. The silica tubes were placed in furnaces and kept at different temperatures (500, 550, 600, 650 K) for a period of 2-5 days. At these temperatures all the AlCl₃ was in the gaseous phase and reacted with the (excess) Pt_6Cl_{12} according to eq 1. After cooling and solidifying the $Al_2Cl_6(g)$ away from the solid phase(s), the silica tube was opened in a drybox and the solid phases were identified by X-ray powder diffraction patterns. It was found that in the temperature range 500-650 K, the only solid phase present was the Pt₆Cl₁₂⁹ solid. Furthermore, in the same experiments we observed that the Pt₆Cl₁₂ solid could be transported from a hotter to a cooler zone of the silica tube forming small single crystals in a dendrite arrangement. This last observation indicated that the decomposition of the $PtCl_2-Al_2Cl_6$ gaseous complex yields the Pt₆Cl₁₂ solid.

At temperatures above 700 K, the black-red Pt_6Cl_{12} crystals in the presence or absence of $Al_2Cl_6(g)$ started forming a yellowish powder which was either another $PtCl_2$ form or different oxidation state of platinum chloride. This new solid, however, was not observed by visual means and/or by X-ray diffraction at temperatures below 650 K where all of the equilibrium experiments were performed.

Partial Pressure(s) of the Gaseous Complex(es). The optical cells were filled with excess quantities of Pt_6Cl_{12} . The pressure of the gaseous complex(es) over the solid Pt_6Cl_{12} was determined from the relation $P_c = (A_{max}/\epsilon_{max})RT$, where A_{max} is the measured absorbance¹⁰ at V_{max} of the high-intensity band and ϵ_{max} is the average absorptivity of the complex(es) as given in Table I. Measurements of P_c as a function of time showed that equilibrium was reached in a period of 3-4 hr. In general, the cells were equilibrated for 5 hr

(9) K. Brodersen, G. Thiele, and H. G. Schnering, Z. Anorg. Allg. Chem., 337, 120 (1965).

Figure 1. Absorption spectra of the platinum chloride-aluminum chloride vapor complex as a function of temperature.

before making the spectral measurements at that temperature. Eleven separate experiments with different pressures P' of $Al_2Cl_6(g)$ were performed, yielding the values of A_{max} , P_c , and P' given in Table II.

The main source of error lies in the determination of the absorbance and is associated with the uncertainties in the background of the spectra and the values of ϵ_{max} . The overall uncertainty in the determination of P_c in this experiment is estimated to be less than $\pm 3\%$.

Discussion

Thermodynamic Treatment of the Data. A comparison of experiment E-3 with experiments E-1 and E-2 (Table I) indicates that, within experimental error, the absorptivity ϵ is independent of the Al₂Cl₆ gas pressure. This implies either that one gaseous species is present or that two or more species with equal "atomic absorptivities" are present. Thus in a mixture of *l* gaseous complexes (PtCl₂)_m(Al₂Cl₆)_n ($m = m_1$, m_2, \ldots, m_l ; $n = n_1, n_2, \ldots, n_l$), the molar absorptivity ϵ_i of the *i*th complex is related to the molar absorptivity

$$\epsilon_i = m\epsilon$$

and the K_i equilibrium constant according to reaction 1 is

$$K_i = P_i / [P']^{n_i}$$

with P_i being the partial pressure of the *i*th complex.

Figure 2 shows that the vapor pressure of the gaseous complexes $(P_c = \Sigma_j lm_j P_j)$ is proportional to the pressure of Al₂Cl₆. This indicates⁵ that each gaseous species was formed with *one* Al₂Cl₆ molecule per mole. The equilibrium constants K_i of these complexes are expected to vary with temperature according to the second law (*i.e.*, ln K_i varies linearly with 1/T). However, Figure 3 shows that ln K ln (P_c/P') varies also linearly with 1/T. Since $K = \Sigma_i m_i K_i$

(10) In the temperature of the measurements 500-650 K, the vapor pressure of Pt_6Cl_{12} is very low (less than ~10⁻¹⁰ atm) [A. Landsberg and J. L. Shaller, J. Less-Common Metals, 23, 195 (1971)] and $Pt_6Cl_{12}(g)$ or $Pt_3Cl_6(g)$ does not contribute to the absorption of light. Preliminary experiments^{7b} have also shown that in the absence of Al_2Cl_6 and at temperatures below 900 K, no gaseous platinum chlorides can be detected spectrophotometrically. Therefore the measured optical densities in the presence of Al_2Cl_6 are due only to Pt gaseous complexes.

CC 11 XY	DIID	0.11	101	0	C 1
Table II.	Partial Pressures	of the	Platinum	Gaseous	Comple

Expt no. and	$10^{2}P_{c}$,					
characteristics	<i>T</i> , K	A_{\max}^{a}	atm	P', atm	10° <i>K</i>	
E-4	550	0.29	1.14	0.598	1.94	
$V = 27.8 \text{ cm}^3$	600	0.54	2.25	0.652	3.57	
h = 10 cm	650	0.85	3.75	0.690	5.74	
$P_0 = 1.09 \times 10^{-5} T$, atm						
E-5	500	0.565	2.07	2.26	0.92	
$V = 27.3 \text{ cm}^3$	550	1.140	4.47	2.48	1.84	
h = 10 cm	600	2.05	8.55	2.70	3.14	
$P_0 = 4.52 \times 10^{-3} T$, atm						
E-6	500	0.290	1.06	1.16	0.92	
$V = 27.9 \text{ cm}^3$	550	0.625	2.45	1.28	1.94	
h = 10 cm	600	1.090	4.55	1.39	3.39	
$P_0 = 2.33 \times 10^{-3} T$, atm						
E-7	600	1.35	5.63	1.57	3.70	
$V = 27.35 \text{ cm}^3$						
h = 10 cm						
$P_0 = 2.63 \times 10^{-5} T$, atm						
E-8	500	0.115	0.42	0.43	0.98	
V = 28.6	550	0.225	0.88	0.47	1.91	
h = 10 cm	600	0.425	1.77	0.51	3.56	
$P_0 = 0.86 \times 10^{-3} T$, atm	650	0.720	3.17	0.54	6.25	
E-9	500	0.32	1.18	1.15	1.03	
$V = 29.0 \text{ cm}^3$	550	0.66	2.59	1.26	2.10	
h = 10 cm	600	1.20	5.00	1.38	3.76	
$P_0 = 2.30 \times 10^{-5} T$, atm	650	1.97	8.68	1.46	6.32	
E-10	500	0.38	1.39	1.49	0.94	
$V = 14.3 \text{ cm}^3$	550	0.79	3.10	1.64	1.92	
n = 5 cm $P = 2.98 \times 10^{-3} T \text{ atm}$	600	1.46	6.09	1.79	3.52	
$r_0 = 2.96 \times 10^{-1}$, atti	050	2.30	11.20	1.90	0.50	
E-11	500	0.48	1.76	1.99	0.90	
$V = 14.3 \text{ cm}^3$	550	1.12	4.39	2.19	2.04	
$P = 3.97 \times 10^{-3} T$ atm	650	2.11	0.00	2.57	5.80 6.02	
$1_0 = 5.57 \times 10^{-1}$, aun	000	5.20	14.40	2.3 4	0.04	
E-12	550	2.14	8.40	4.72	1.81	
$V = 14.2 \text{ cm}^2$	000	4.08	17.02	5.16	3.41	
$P_{2} = 8.61 \times 10^{-3} T_{2}$ atm						
- 10					• • • •	
E-13	550	1.44	5.65	2.79	2.06	
$r = 14.55 \text{ cm}^{-14.55}$	000	2.30	10.09	5.04	5.04	
$P_{o} = 5.07 \times 10^{-3} T_{o} a \text{tm}$						
E 14	500	0.07		2.00	0.00	
E-14 $V=14.7 \text{ cm}^3$	500	0.97	3.55	3.90	0.92	
h = 5 cm	600	2.20 4.12	0.0/	4.66	2.91	
$P_0 = 7.80 \times 10^{-3} T$, atm	650	6.60	29.09	5.00	6.35	
v ,				-		

^a Values for a 10-cm path length.

Figure 2. Plots of the pressure (P_c) of the gaseous complex(es) vs. the pressure (P') of gaseous aluminum chloride.

Figure 3. Plot of $R \ln K \nu s$. 1/T for reaction 2 with the value of $m_j = 1$.

Table III.	Thermodynamic (Duantities for	Solid-Gas Reactions
14010 1111		2 au 111102 101	

	$\Delta H^{\mathbf{R}}, a$	$\Delta S^{R}, a$	
Reaction	kcal/mol	eu	
$^{1}/_{6}Pt_{6}Cl_{12}(s) + Al_{2}Cl_{6}(g) \rightarrow PtAl_{2}Cl_{6}(g)$	7.8 ± 0.13	6.4 ± 0.7	
$PdCl_{\sigma}(s) + Al_{\sigma}Cl_{\sigma}(\sigma) \rightarrow PdAl_{\sigma}Cl_{\sigma}(\sigma)$	72 + 0.16b	945 + 0.75b	

^a Determined from the relation $RT \ln K = T \Delta S - \Delta H$, assuming ΔS and ΔH are constants over the entire temperature range. ^b Reference 5.

at all temperatures, then the expected linearity for $\ln K_i$ on 1/T and the experimentally found relation in Figure 3 suggest that there is only one predominant complex species present.

With the values of n = 1 equilibrium 1 becomes

$$(m_j/6)Pt_6Cl_{12}(s) + Al_2Cl_6(g) \to Pt_{m_j}Al_2Cl_{2m_j+6}(g)$$
 (2)

 $K_i = P_c/m_i P'$ $(m_i = 1, 2, 3, ...)$

A deduction of the enthalpy and entropy of this equilibrium for the different values of m_j can be derived from Figure 3. The least-squares treatment of the data shown yields

$$R \ln K = 6.36 - 7.82(1/T)$$

Thus

$$\Delta H_j^\circ = 7.8 \pm 0.13 \text{ kcal/mol}$$

$$\Delta S_j^\circ = (6.4 \pm 0.7) + R \ln m_j \text{ en}$$

In the absence of information (e.g., mass spectrometric studies, measurements of the total pressure) we have no way to establish the value of m_j . However, since the gaseous²⁻⁶ and solid¹¹ complexes of the transition metal halides with Al₂Cl₆ presently known always contain one M²⁺ cation per mole of complex, we considered it reasonable to make the assumption that in the PtCl₂-Al₂Cl₆ system the predominant complex is also mononuclear ($m_j = 1$) and that equilibria leading to complexes with $m_j \ge 2$ occur only to a slight extent.

Using this assumption we have listed in Table III the thermodynamic quantities of eq 1 (m = 1, n = 1). These values are compared with the corresponding thermodynamic quantities of the PdCl₂-Al₂Cl₆ reaction.⁵ It appears that the stabilities of these complexes, containing different nd^8 cations, are very similar. This implies⁵ that the bonding and local coordination of the nd^8 cations in the gaseous phase are similar to those in the solid.

(11) (a) J. A. Ibers, Acta Crystallogr., 15, 967 (1962); (b) R. F. Belt and H. Scott, Inorg. Chem., 3, 1785 (1964); (c) J. Brynestad, S. von Winbush, H. L. Yakel, and G. P. Smith, Inorg. Nucl. Chem. Lett., 6, 889 (1970); (d) J. Brynestad, H. L. Yakel, and G. P. Smith, Inorg. Chem., 9, 686 (1970).

A comparison of the angles and distances of the $PtCl_4$ square in solid Pt_6Cl_{12} (or K_2PtCl_4)⁹ with those of the AlCl₄ tetrahedron in gaseous $Al_2Cl_6^{12}$ shows that changes of bond lengths and bond angles by less than 3% make the Cl-Cl edge of the AlCl₄ tetrahedron equal with the Cl-Cl side of the PtCl₄ square. Thus, as in the case of Pd(AlCl₄)₂,⁵ a possible model for the PtAl₂Cl₆ complex is

with an anticipated D_{2h} molecular symmetry (see also the following section). Using this model¹³ and the structural parameters for the Al₂Cl₆(g) dimer, we have calculated a statistical third-law translational and rotational entropy for reaction 1 (Table III)

 $\Delta S^{T,R} = 4.3 \text{ eu} \quad 600 < T < 700 K$

This value and the experimentally determined overall entropy suggest small vibrational contributions of ~ 2 eu.

Electronic Spectra. The only known platinum(II)-chloro complex is the square-planar diamagnetic $PtCl_4{}^{2-.14}$ As shown in Table IV, the near-ir and visible spectra of this complex (Pt²⁺ in aqueous HCl) are characterized by three absorption maxima. However, recent studies on the electronic absorption spectra of Pt(II) centers in liquid alkali chloride solvents^{7a} have shown that the spectrum of the PtCl₄²⁻ anion can be substantially modified by the influence of its next-nearest-neighbor alkali metal cations. Polarization of the coordinated chlorides by the outer shell of highly polarizing cations (*e.g.*, Li⁺) leads to a drawing together of the two spin-allowed, ${}^{1}A_{2g} \rightarrow {}^{1}A_{1g}$ and ${}^{1}E_{g} \rightarrow {}^{1}A_{1g}$, bands. The resulting absorption spectrum is then characterized by two (instead of three) absorption maxima.

In Table IV we compare the band coordinates of the spectrum of the gaseous platinum aluminum chloride complex with those for $PtCl_4^{2-}$ in liquid LiCl at 923 K. The same two bands with the same relative intensities are clearly present in both the melt and the gaseous spectra.

There are two conspicuous differences between the two spectra (Figures 1 and 3 of ref 7a): (a) a substantial enhancement of intensity, a slight red shift, and some broadening in going from the gaseous complex spectrum to the molten solution spectrum; (b) the absence of the tail of the

(12) "JANAF Thermochemical Data," Dow Chemical Co., Midland, Mich.

(13) The bond angles and bond distances used were approximated, within 3%, from the corresponding distances in $PtCl_4^{9}$ and $AlCl_4^{12}$. See also proposed model in ref 5.

(14) (a) D. S. Martin, M. A. Tucker, and A. J. Kassman, *Inorg. Chem.*, 4, 1682 (1965); (b) *ibid.*, 5, 1298 (1966); (c) references cited in ref 14a and 14b.

Table IV. Coordinates of Absorption Bands for PtCl₄²⁻

	Temp, K	${}^{3}A_{2g} + {}^{3}E_{g} \leftarrow {}^{1}A_{1g}$	$^{1}A_{2g} \leftarrow ^{1}A_{1g}$	$^{1}E_{g} \leftarrow ^{1}A_{1g}$	
$PtCl_4^{2-}$ (in 2 <i>M</i> HCl) ^a	300	21.0c	25.4	30.3	
$PtCl_4^{2-}$ (in LiCl(l)) ^b	923	(13)¤ 18	(37) 26 (2((62) (.2 (.5)	
$PtAl_2Cl_8(g)$	650	18.8 (20)	26 (12	.6 21)	

^a Reference 14. ^b Reference 7a. ^c Wavenumber in kK (1 kK = 1000 cm^{-1}). ^d Molar absorptivity in parentheses.

charge-transfer band in the gaseous complex spectrum. The first effect (a) can be reasonably attributed to the temperature differences. In fact, from the temperature dependence of the melt spectrum we can extrapolate a spectrum at 650 K for the $PtCl_4^{2^-}$ in supercooled LiCl, with absorption maxima and intensities quite similar to those of the gaseous complex.

The second effect (b) can be possibly accounted for, as in the case of the $PdAl_2Cl_8^5$ gaseous complex, by the $Cl \rightarrow Pt$ charge-transfer hindrance, which is due to the strong polarization of the bridged Cl(Pt-Cl-Al) by the aluminum atom.

In view of the above considerations, we conclude that the platinum ions in the gaseous complex are in an approximate D_{4h} local geometry with energy states perturbed by the polarizing power of the aluminum ions. The band assignments of the spectrum are the same as in the spectrum of the Pt(II) in liquid LiCl and are given in Table IV.

The effect of temperature on the spectrum of the gaseous complex (Figure 1) is characteristic^{14b} for centrosymmetric complexes and is attributed to vibronic interactions which destroy the center of symmetry of the $PtCl_4^{2-}$ anion and become increasingly populated with increasing temperature. The association of the electronic absorption spectrum of the gaseous complex with the spectrum of $PtCl_4^{2-}$ in a close to square-planar coordination is in agreement with that proposed in the molecular model of the previous section. A close to D_{2h} molecular symmetry for the $Pt(AlCl_4)_2$ gas is compatible with the interpretation of the absorption spectrum and explains the similarities in the magnitude of the thermodynamic quantities of the reaction in Table III.

Registry No. Pt₆Cl₁₂, 12200-23-6; Al₂Cl₆, 13845-12-0; PtAl₂Cl₈, 40354-82-3.

Acknowledgment. The author wishes to thank Professor J. D. Corbett and the U. S. Atomic Energy Commission under whose auspices this work was performed. He is also grateful to Professor Corbett for helpful discussions and for comments on the manuscript.