the data for the M(III) states show considerably more scatter than that for M(IV) systems. The slopes of the χ_{opt} vs. q plots are 0.313 (9.4 kK) and 0.165 unit (4.95 kK) which, as for the two 3d oxidation states,⁵ are consistent with their interpretation³⁴ as (E - A) (see Figure 2). We have moreover previously drawn attention^{5,6} to the

(34) C. K. Jorgensen, Mol. Phys., 6, 43 (1963).

strong correlation which exists between optical electronegativity and the nephelauxetic ratio, and the theoretical basis for this.¹⁴ A similar trend also occurs in the 4d series, as shown in Figure 3, and the data are thus consistent with the earlier results and the interpretation suggested.^{5,6,14}

Registry No. KRuF₆, 40902-32-7; K₂RuF₆, 40902-49-6; K₃RuF₆, 40902-50-9; Cs₂RhF₆, 16962-25-7.

> Contribution from the Department of Chemistry, University of Idaho, Moscow, Idaho 83843

Raman Spectra of Fluoro Fluorosulfuryl Peroxide and Trifluoromethyl Fluorosulfuryl Peroxide

HENRY A. CARTER, ROBERT L. KIRCHMEIER, and JEAN'NE M. SHREEVE*1

Received November 20, 1972

The liquid-phase Raman spectra of FOOSO₂F and CF₃OOSO₂F are reported in the region 2000-0 cm⁻¹. The infrared spectra are also reinvestigated in the region 2000-400 cm⁻¹ for the gaseous compounds. Vibrational analyses are made for both molecules based on a description of the normal modes of vibration by the characteristic group vibrations. The O-O stretching vibrations are observed at 890 and 863 cm⁻¹ for FOOSO₂F and CF₃OOSO₂F, respectively.

Introduction

The thorough study of the vibrational spectrum of CF_3OOCF_3 by Durig and Wertz^{2a} has shown that Raman spectroscopy is a powerful tool in elucidating the O-O stretching frequency and thus the identification of the peroxy linkage in peroxides. While the O-O stretching vibration often gives rise to a weak absorption band in the infrared spectrum, it is usually the most intense band and is highly polarized in the Raman spectrum.

Relatively few inorganic peroxides are known and many of these have not been characterized spectroscopically. While hydrogen peroxide has been examined in detail, extensive vibrational spectral studies are limited to the symmetrical fluorinated peroxides CF₃OOCF₃,^{2 a} FSO₂OOSO₂F,^{2 b} and FOOF.³ The O-O stretching frequency has been identified by Fox, et al.,⁴ in a number of fluorinated peroxides, by Christe in a vibrational study of dimethyl peroxides,⁵ by Aubke and coworkers in a study of the vibrational spectra of bis(fluorosulfuryl) peroxide,^{2b} and by us in a vibrational study of bis(pentafluorosulfur) peroxide and fluorosulfuryl pentafluorosulfur peroxide.⁶ Virtually no spectroscopic or structural information is available for the mixed, nonsymmetrical derivatives of these peroxides.

This study reports the Raman spectra of the unsymmetrical fluorinated peroxides FOOSO₂F and CF₃OOSO₂F. Only brief reports of their gaseous infrared spectra in the sodium chloride region have appeared.^{7,8} A comparison of the two

(2) (a) J. R. Durig and D. W. Wertz, J. Mol. Spectrosc., 25, 467 (1968). (b) A. M. Qureshi, L. E. Levchuk, and F. Aubke, Can. J. Chem., 49, 2544 (1971).

- (4) A. J. Melveger, L. R. Anderson, C. T. Ratcliffe, and W. B. Fox, Appl. Spectrosc., 26, 381 (1972).
 - (5) K. O. Christe, Spectrochim. Acta, Part A, 27, 463 (1971). (6) H. A. Carter and J. M. Shreeve, Spectrochim. Acta, in press.

(7) G. Franz and F. Neumayr, Inorg. Chem., 3, 921 (1964). (8) C. I. Merrill and G. H. Cady, J. Amer. Chem. Soc., 82, 6005

(1960).

related molecules has provided a basis for detailed vibrational analyses.

Experimental Section

Fluoro fluorosulfuryl peroxide was prepared by the reaction of OF_2 and SO_3 (Allied Chemical Co.)⁷ and purified by trap-to-trap distillation. Trifluoromethyl fluorosulfuryl peroxide was prepared by the reaction of CsOCF₃ and S₂O₆F₂.⁹ S₂O₆F₂ was synthesized by catalytic fluorination of SO₃,¹⁰ while CsOCF₃ was prepared by the reaction of CsF and COF₂ in the presence of acetonitrile.¹¹ Fractionation of the products yielded large amounts of CF₃OOSO₂F, contaminated with unreacted $S_2O_6F_2$. The purification of CF_3OOSO_2F was accomplished by the addition of elemental iodine, which converted the $S_2O_6F_2$ to the nonvolatile $I(OSO_2F)_3$, followed by trap-to-trap distillation.

Infrared spectra were recorded on a Perkin-Elmer 457 grating spectrometer using a 10-cm gas cell fitted with potassium bromide cell windows (Harshaw Chemicals).

The Raman spectra were measured with a Jarrell Ash 25-300 Raman spectrometer using a Spectra-Physics 250 helium-neon laser for excitation at 6328 A. The scattered radiation was detected at right angles to the incident beam (transverse viewing axial excitation) by means of a thermoelectrically cooled S-20 photomultiplier tube and photon counting system. Both $FOOSO_2F$ (bp 0°) and CF_3 : $OOSO_2F$ (bp 12°) were contained as liquids in 5-mm o.d. "optically flat" Pyrex cells at room temperature.

The spectrometer was calibrated from helium-neon plasma emission lines, and the accuracy is estimated to be $\pm 1 \text{ cm}^{-1}$. Depolarization measurements were made by turning the direction of the electric vector of the incident light through 90° by means of a 45° rotation of a half-wave plate. Intensity values were obtained by measuring the area under the peaks.

Results

The Raman spectra of $FOOSO_2F$ and CF_3OOSO_2F as obtained under instrumental conditions of low sensitivity are shown in Figure 1. The observed frequencies, relative intensities, and depolarization ratios are tabulated in Tables I and II for $FOOSO_2F$ and CF_3OOSO_2F , respectively. The gas-phase infrared spectra are given for the region 2000-400 cm^{-1} and were found to be in excellent agreement with the

⁽¹⁾ Alfred P. Sloan Foundation Fellow, 1970-1972.

⁽³⁾ K. R. Loos, C. T. Goetschel, and V. A. Campanile, Chem.

⁽⁹⁾ J. K. Ruff and R. F. Merritt, Inorg. Chem., 7, 1219 (1968).

⁽¹⁰⁾ J. M. Shreeve and G. H. Cady, Inorg. Syn., 7, 124 (1963). (11) M. E. Redwood and C. J. Willis, Can. J. Chem., 43, 1893

^{(1965).}

Table L	Raman and	Infrared S	nectra	of FOOSO	Fa
I ADIC I.	Kaman anu	millareu o	pecua	01100302	, t :

_				1		· 2
	Raman (liquid)			Infrared	(gas)	
Frequen- Rel in-			Frequen- Inten-		-	
	cy, cm ⁻¹	tensity	ρ	cy, cm ⁻¹	sity	Assignment
	1550	1				0,
	1496	6	0.67	1500	S	SO_2 stretch, ν_1
	1269	42	0.06			SO_2F_2
	1250	100	0.04	1252	s	SO_2 stretch, v_2
				895	w, sh	510 + 392
	890	59	0.08	885	w, sh	O-O stretch, ν_3
	880 sh	37	0.12			SO ₂ F ₂
	855 sh	31				SO ₂ F ₂
	850	51	0.10	855	S	S-F stretch, ν_4
	782	44	0.09	780	w-m	S-O stretch, ν_5
	738	36	0.05			O-F stretch, ν_6
	720	27	0.10	720	S	SO_2 rock, ν_{γ}
	595	4		590	w-m	SO_2 bend, ν_8
	548	19	0.56	545	w-m	SO_2 rock, ν_9
	510	12	0.66	510	w-m	SF wag, ν_{10}
	478	13	0.34			SF wag, ν_{11}
	470	8	0.32∮			
	392	36	0.42			SO_2F torsion, ν_{12}
	324	27	0.33			
	308	66	0.30 \$			SOO bend, v_{13}
	253	19	0.30 l			FOO bend, ν_{14}
	242 sh	10	0.32 \$			
	125	30	0.62			FO-O torsion, v_{1s}

^a sh = shoulder, w = weak, m = medium, s = strong, br = broad, $\rho = depolarization ratio.$

previous reports for the sodium chloride region.^{7,8} Assignments of the observed frequencies to the normal vibrational modes are also presented in Tables I and II.

Vibrational Assignments. The molecular structures of FOOSO₂F and CF₃OOSO₂F are unknown, and their reaction chemistry is relatively unexplored. Nevertheless, both peroxides are likely to have nonplanar configurations similar to hydrogen peroxide with the SO_2F and the F or CF_3 groups adjacent to the peroxy linkage in staggered positions. This has been the case for the symmetrical peroxides FOOF,¹² CF₃OOCF₃,^{2a} and FSO₂OOSO₂F.^{2b} Thus, both FOOSO₂F and CF₃OOSO₂F will possess no symmetry elements and belong to the point group C_1 . For this case, all normal modes of vibration are both infrared and Raman active, and all lines are polarized in the Raman effect. This is observed.

The normal modes of vibration are approximated for each molecule by the characteristic group vibrations. The molecules are discussed separately for convenience.

1. $FOOSO_2F$. The 15 vibrational modes of $FOOSO_2F$ can be roughly described as nine SO₂F vibrations; O-F, O-O, and S-O stretching vibrations; SOO and FOO deformations, and a torsional oscillation about the FO-O bond.

Characteristic of covalent sulfuryl compounds¹³ are the bands at 1496 and 1250 cm⁻¹, which are assigned to the SO₂ asymmetric and symmetric stretches. Other bands are seen also in this region at 1269 and 1550 cm^{-1} . These are due to SO_2F_2 and O_2 , respectively, which arise from the partial decomposition of FOOSO₂F according to

 $FOOSO_2F \rightarrow SO_2F_2 + O_2$

The presence of molecular oxygen in the sample is seen more clearly in Figure 2. Since FOOSO₂F has been reported to be thermally stable to 50° ,¹⁴ the decomposition of FOOSO₂F must be produced by interaction of the sample with the laser beam. Two shoulder bands at 880 and 855 cm⁻¹ are also attributed to SO_2F_2 .

(12) R. H. Jackson, J. Chem. Soc., 4585 (1962).
(13) E. A. Robinson, Can. J. Chem., 39, 247 (1961).
(14) R. Gatti, E. H. Staricco, J. E. Sicre, and H. J. Schumacher, Angew. Chem., Int. Ed. Engl., 2, 149 (1963).

Figure 1. The Raman spectra of FOOSO₂F and CF₃OOSO₂F (1600-0 cm⁻¹): spectral slit width, 5 cm⁻¹; time constant, 0.5 sec; scan speed, 50 cm⁻¹/min; photon counting range, 5×10^3 cps (FOOSO₂F) and 2×10^3 cps (CF₃OOSO₂F).

Figure 2. The Raman spectra of FOOSO, F in the region 1600-1400 cm⁻¹: spectral slit width, 7 cm⁻¹; time constant, 0.5 sec; scan speed, 50 cm⁻¹/min; photon counting range, 1×10^3 cps.

Five bands in the region, $900-700 \text{ cm}^{-1}$, are observed at 890, 850, 782, 738, and 720 cm^{-1} . The assignment of the first three bands is relatively easy. The strongest band in this region at 890 cm⁻¹, but which occurs in the infrared as a weak band, is assigned to the O-O stretch. Bands at 850 and 782 cm⁻¹ are assigned to the S-F and S-O stretches, respectively, and are similar to those observed for $FOSO_2F$.^{2b} The assignment of the two remaining bands at 738 and 720 cm⁻¹ to the O-F stretch and one of the SO₂ rocks, respectively, is tentative. While the O-F stretching vibration is normally observed at much higher frequencies, e.g., 880 cm⁻¹ in FOSO₂F,^{2b} it has been assigned to a strong band at 755 cm⁻¹ in the infrared spectrum of FOOCF₃.¹⁵ The assignment of one of the SO_2 rocks at 720 cm⁻¹ also receives some justification from the reported vibrational analysis of $S_2 \tilde{O}_5 F_2$,¹⁶ where a band seen in both the infrared and Raman at 733 cm^{-1} is assigned to an SO₂ rock. For the case of S₂O₅F₂, the observation of an SO₂ rock at relatively high frequencies results from the coupling of the two SO_2F groups. It seems reasonable that the vibrations of FOOSO₂F are also coupled.

⁽¹⁵⁾ D. D. Des Marteau, Inorg. Chem., 11, 193 (1972). (16) R. J. Gillespie and E. A. Robinson, Can. J. Chem., 39, 2179 (1961).

Table II.	Raman and	Infrared Spectra	of CF	300SO	₂ F ^α
-----------	-----------	------------------	-------	-------	-----------------------------

Raman	(liquid)		Infrared (gas)		
Frequen- cy, cm ⁻¹	Rel in- tensity	ρ	Frequen- cy, cm ⁻¹	Inten- sity	Assignment
1930	5				COF,
1494	7	0.65	1490	\$	SO_2 stretch, ν_1
1385	1				
1300	1		1300	8	CF ₃ stretch, ν_2
1262	22	0.08	1260 sh		$SO_{2}F_{2} + CF_{3}$ stretch, $b \nu_{3}$
1250	67	0.11	1250 br	8	SO ₂ stretch, ν_A
1190	1		1190	\$	CF_3 stretch, ν_s
1002	4				
929	34	0.48	928	m	CO stretch, ν_{6}
885	19	0.07			SO ₂ F,
863	100	0.09			O-O stretch, ν_{τ}
848	62	0.04	853	8	SF stretch, ν_8
800	30	0.09	803	m-s	SO stretch, ν_{s}
690 sh	11	0.12			SO ₂ rock, ν_{10}
680	16	0.13	680	m	CF ₃ deformation, ν_{11}
625 sh	2				CF ₃ deformation, ν_{12}
605	4	0.29	602	w-m	SO_2 bend, ν_{13}
562	10	0.71	565	w-m	CF_3 deformation, ν_{14}
532	15	0.65	532	w-m	SO_2 rock, v_{15}
518	11	0.60	518	w-m	SF wag, ν_{16}
428	6	0.05		а. С	$CF_3 rock, \nu_{17}$
390	8	0.56			SO_2F torsion, ν_{18}
365	8	0.33			SF wag, ν_{19}
322	52	0.40			SOO bend, ν_{20}
285	7	0.29			CF_{3} rock, ν_{21}
268	11	0.25 \$			
226	25	0.29			O-O torsion, ν_{22}
210	29	0.29			COO bend, ν_{23}
190	7	0.40 }			Impurity?
180 sh	3	0.33			
Not observed					CF_3 torsion, ν_{24}

^a sh = shoulder, w = weak, m = medium, s = strong, br = broad, ρ = depolarization ratio. ^b SO₂F₂ impurity in the Raman only; CF₃ stretch in both ir and Raman.

For example, there is likely to be coupling between the O-F and O-O stretches.

Assignments for the remaining SO_2F vibrations are made by analogy to be reported spectra of related molecules containing the fluorosulfate group.^{2b,6,16-19} These are as follows: SO_2 bend at 595 cm⁻¹, SO_2 rock at 548 cm⁻¹, SF wags at 510 and 478 cm⁻¹, and SO_2F torsion at 392 cm⁻¹.

The SOO bend is assigned to the relatively strong band at 308 cm^{-1} in analogy with a similar assignment of the SOO bend at 307 cm^{-1} in $S_2O_6F_2$.² The FOO bending and the FO-O torsion vibrations are assigned to the bands at 253 and 125 cm⁻¹, respectively. These compare favorably to the assignments of the S-O-F deformation and the S-OF torsional modes in FOSO₂F.^{2b}

The assignment of the 15 normal modes of vibration for FOOSO₂F is summarized in Table I using the ν_n symbolism. The cause for the splittings of ν_{11} , ν_{13} , and ν_{14} is uncertain.

2. CF_3OOSO_2F . The Raman spectrum of CF_3OOSO_2F shows considerable similarity to the spectrum of $FOOSO_2F$. The 24 normal modes of vibration are best approximated in terms of the following group vibrations: nine SO_2F vibrations; nine CF_3 vibrations; C-O, O-O, and S-O stretching vibrations; COO and SOO deformations; and a torsional oscillation about the O-O bond.

Prior to the measurement of the Raman spectrum, the sample of CF_3OOSO_2F showed no bands in the infrared spectrum attributable to impurities. However, bands in the Raman appear at 1930 cm⁻¹ (COF₂) and at 1262 and 885

 cm^{-1} (SO₂F₂) as a result of the decomposition of CF₃OOSO₂F in the laser beam which proceeds in a manner analogous to FOOSO₂F

 $CF_3OOSO_2F \rightarrow COF_2 + SO_2F_2 + \frac{1}{2}O_2$

The CF₃ vibrations are most easily assigned since considerable information is available on vibrational spectra of molecules containing the CF₃ moiety.^{2a,20-22} The three CF₃ stretching vibrations seen as very weak bands in the Raman are assigned to strong bands in the infrared at 1300, 1260, and 1190 cm⁻¹. The three CF₃ deformations are observed at the frequencies 680, 625, and 562 cm⁻¹. The assignment of the two CF₃ rocking modes is less certain. A comparison with the vibrational spectra of CF₃OOCF₃^{2a} and CF₃OOOCF₃²⁰ suggests the assignment of the CF₃ rocking modes to a weak absorption band at 428 cm⁻¹ and a band split at 285 and 268 cm⁻¹. As no bands are seen below 180 cm⁻¹, an assignment for the CF₃ torsional mode, expected to occur at frequencies below 100 cm^{-1,2a} cannot be made.

The nine SO_2F vibrations in CF_3OOSO_2F , observed at frequencies very close to $FOOSO_2F$, are assigned as follows: SO_2 stretches at 1494 and 1250 cm⁻¹, SF stretch at 848 cm⁻¹, SO_2 rocks at 690 and 532 cm⁻¹, SO_2 bend at 605 cm⁻¹, SF wags at 518 and 365 cm⁻¹, and the SO_2F torsion at 390 cm⁻¹.

It now remains to assign the COOS skeletal vibrations. The CO and SO stretches are seen at 929 and 800 cm^{-1} , respectively. The strongest band in the Raman spectrum

⁽¹⁷⁾ H. A. Carter and F. Aubke, *Inorg. Chem.*, 10, 2296 (1971).
(18) H. A. Carter, S. P. L. Jones, and F. Aubke, *Inorg. Chem.*,
(2485 (1970).

⁽¹⁹⁾ H. A. Carter and F. Aubke, Inorg. Nucl. Chem. Lett., 5, 999 (1969).

⁽²⁰⁾ R. P. Hirschmann, W. B. Fox, and L. R. Anderson, Spectrochim. Acta, Part A, 25, 811 (1969), and references cited therein.
(21) F. A. Miller and F. E. Kiviat, Spectrochim. Acta, Part A,

^{25, 1577 (1969),} and references cited therein.

⁽²²⁾ H. A. Carter, C. S. Wang, and J. M. Shreeve, Spectrochim. Acta, Part A, 29, 1479 (1973).

at 863 cm⁻¹ which is highly polarized ($\rho = 0.09$), but is unobserved in the infrared, is clearly the O-O stretching vibration. Thus, the O-O stretching frequency in CF₃OOSO₂F lies between that of CF₃OOCF₃ at 886 cm^{-1 2a} and FSO₂OOSO₂F at 801 cm⁻¹.^{2b} The characteristic absorption band due to the SOO bending vibration is seen at 322 cm⁻¹.

The assignment of the COO bending and O-O torsional modes is difficult due to the unexpected number of bands below 250 cm⁻¹. The two strongest bands at 226 and 210 cm⁻¹ are assigned to the torsion and COO bending modes, respectively. The weaker bands at 190 and 180 cm⁻¹ may be due to impurities, but no certain explanation can be suggested.

Discussion

Fluoro fluorosulfuryl peroxide, FOOSO₂F, is formally derived from the symmetrical peroxides FOOF and FSO₂OOSO₂F. The O-O bond is FSO₂OOSO₂F is rather easily cleaved to form fluorosulfate radicals,²³⁻²⁵ and the O-O stretching frequency is found at 801 cm⁻¹.^{2b} In contrast, the O-O bond in O₂F₂ is much stronger as a result of $[\pi^*-p] \sigma$ bonding²⁶ and the O-O stretching frequency is observed at 1306 cm⁻¹. The reactions of O₂F₂ undoubtedly involve the breaking of O-F bonds,²⁷⁻²⁹ as a result of the O-O bond energy being much greater than the OF bond energy ($\Delta H_{\text{diss}} = 103.5 \ vs. 18 \ \text{kcal/mol}$).³⁰

(23) J. M. Shreeve and G. H. Cady, J. Amer. Chem. Soc., 83, 4521 (1961).

- (24) F. B. Dudley and G. H. Cady, J. Amer. Chem. Soc., 85, 3375 (1963).
- (25) R. A. Stewart, S. Fujiwara, and F. Aubke. J. Chem. Phys., 48, 5524 (1968).
- (26) R. D. Spratley and G. C. Pimentel, J. Amer. Chem. Soc., 88, 2394 (1966).
- (27) I. J. Solomon, A. J. Kacmarck, J. N. Keith, and J. K. Raney, J. Amer. Chem. Soc., 90, 6557 (1968).
- (28) I. J. Solomon, A. J. Kacmarek, and J. K. Raney, *Inorg. Chem.*,
 7, 1221 (1968).
 (29) J. N. Keith, I. J. Solomon, I. Sheft, and H. H. Hyman,
- (29) J. N. Kenn, I. J. Solomon, I. Shert, and H. R. Hyman, Inorg. Chem., 7, 230 (1968).
- (30) T. J. Malone and H. A. McGee, Jr., J. Phys. Chem., 69, 4338 (1965).

The chemistry of $FOOSO_2F$ has not been well investigated. While esr studies show that FSO_2 and $\cdot OOF$ radicals are formed on photolysis of $FOOSO_2F$, ³¹ the mass spectrum indicates that the O-O bond, not the S-O bond, is more easily ruptured.^{2a} The chemistry of CF_3OOSO_2F remains to be elucidated.

The O-O stretching frequencies for FOOSO₂F and CF_3OOSO_2F fall in the region 850-900 cm⁻¹ suggesting, coupling of the O-O stretch with other normal modes not withstanding, that the O-O bond energies are similar to that of hydrogen peroxide. While the O-O bonds are expected to be stronger than the O-O bond in FSO_2OOSO_2F , the O-O bond dissociation energies are probably much lower than that for O_2F_2 . These conclusions are in agreement with the ¹⁹F nmr chemical shifts reported for FOOSO₂F and O_2F_2 at -292 ppm^{7,27} and <-800 ppm,³² respectively (relative to CFCl₃). The abnormally low O-O stretching frequencies observed for SF_5OOSF_5 and SF_5OOSO_2F are attributed to extensive vibrational coupling rather than the existence of weak O-O bonds.⁶ Some O-O stretching frequencies as determined by Raman studies and given for comparison are: FOOF, 1306 cm⁻¹;³³ HOOH, 880 cm⁻¹;³⁴ DOOD, 880 cm⁻¹;³⁴ CF₃OOCF₃, 886 cm⁻¹;^{2a} CF₃OOSO₂F, 863 cm⁻¹; FOOSO₂F, 890 cm⁻¹; FSO₂OOSO₂F, 801 cm⁻¹;^{2b} SF_5OOSF_5 , 751 cm⁻¹; 6SF_5OOSO_2F , 740 cm⁻¹. 6

Acknowledgments. Fluorine research at the University of Idaho is supported by the Office of Naval Research and National Science Foundation. We are indebted to Professor Tom Loehr and the Oregon Graduate Center for the use of their Raman laser spectrometer.

Registry No. FOOSO₂F, 13997-94-9; CF₃OOSO₂F, 13990-10-8.

- (31) F. Neumayr and N. Vanderkooi, Jr., Inorg. Chem., 4, 1234 (1965).
- (32) I. J. Solomon, J. K. Raney, A. J. Kacmarek, R. G. Maguire, and G. A. Noble, J. Amer. Chem. Soc., 89, 2015 (1967).
 (33) D. J. Gardiner, N. J. Lawrence, and J. J. Turner, J. Chem.
- (33) D. J. Gardiner, N. J. Lawrence, and J. J. 1 urner, *J. Chem.* Soc. A, 400 (1971).
- (34) R. C. Taylor and P. C. Cross, J. Chem. Phys., 24, 41 (1956).

Contribution from the Department of Chemistry, University of Ottawa, Ottawa KlN 6N5, Canada

Synthesis and Characterization of Oxotetrafluorotellurate(IV) and Dioxodifluorotellurate(IV) Compounds

J. B. MILNE* and D. MOFFETT

Received December 28, 1972

The synthesis and characterization by X-ray powder photography and Raman and infrared spectroscopy of M_2 TeOF₄ and M_2 TeO₂F₂ compounds are described. The M_2 TeOF₄ compounds are shown to be isomorphous with M_2 SbF₅ compounds. The unit cells of M_2 TeOF₄ compounds are shown to be nearly the same as those of the comparable M_2 SbF₅ compounds indicating that the anion volumes are very similar. The vibrational spectra of the M_2 TeOF₄² compounds show evidence of oxygen bridging. The infrared and Raman spectra are shown to be consistent with a C_{4v} TeOF₄² ion and a C_{2v} TeO₂F₂² ion with oxygens in equatorial positions. Attempted preparations of M_2 TeF₆ and MTeO₂F compounds are described.

Introduction

Tellurium normally exhibits a higher coordination number than sulfur and selenium and this is reflected in the compounds of these elements in their highest oxidation state. The six valent oxy acids of S and Se are four-coordinate while that of Te is six-coordinate. The hexafluorides of S and Se show poor acceptor properties while TeF_6 forms adducts which may contain the TeF_7^- and $\text{TeF}_8^{-2^-}$ ions.¹ The stable oxyfluoro anions are SO₃F⁻, SeO₃F⁻,² and

(1) E. L. Muetterties, J. Amer. Chem. Soc., 79, 1004 (1957).
(2) A. J. Edwards, M. A. Mouty, and R. D. Peacock, J. Chem. Soc. A, 557 (1967).