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coordination Number of Molybdenum(V1) 
in Monomeric Molybdic Acid 

AIC503430 

Sir: 
When it was definitely established by direct spectropho- 

tometric determination that the two successive ionization 
constants of monomeric molybdic acid are very nearly equal,] 
the suggestion1.2 that this was due to an increase in the co- 
ordination of Mo(V1) from four to six in the first step of the 

Table I.  Thermodynamic Quantities for 
Protonation Reactions 3 and 4 

Mediuma Proton- AH, kJ AS, J 
(temp range) ation mol-‘ mol-’ K” log K (25OC)  

1.OMNaC1 First 22.5 * 0.9 143  f 3 3.47 c 0.07 
(15-35°C) Second -46.5 * 1.4 -85 * 4 3.74 i 0.07 

0.1 MNaCl  First 20 i. 5 140 f 17 3.74 c 0.07 
(10-40°C) Second -49 i: 8 -92 t 25 3.77 t 0.07 

I^___- - 

a Enthalpy and entropy values for 1 M NaCl were computed 
from 990 individual absorption measurements and those for 0.1 M 
NaCl from only 280. 

protonation of the molybdate ion according to the equilibria 
MOO,*- + Hf + 2H,O + MoO(OH); (1) 

MoO(OII),- + H+ =+ Mo(OII), (2) 

was tentatively rationalized] in terms of an abnormally low 
protonation constant for reaction 1 due to a considerable 
decrease in entropy accompanying the immobilization of two 
molecules of water in this step. The above formulation has 
been accepted by several authors3-6 in discussions of Mo(V1) 
equilibria in acidified molybdate solutions. 

However, in a r e n t  dilatometric study of isopolymolybdate 
equilibria,’ preliminary computer analysis of the volume 
changes accompanying the acidification of molybdate in terms 
of published stability constants8 indicated a considerable 
negative volume change for the second protonation. This result 
cast doubt on the above formulation since a strong decrease 
in apparent molar volume is held to be associated with an 
increase in the coordination of the central atom by the addition 
of water molecules.9Jo It was therefore decided to extend our 
previous spectrophotometric investigation of the protonation 
of molybdate at high dilution in order to test by more direct 
evidence whether the following alternative formulation of the 
successive protonation reactions was not perhaps more ac- 
ceptable 

K 
~ 0 0 , ~ -  + H+ d HMOO; 

HMoO, + H+ + 2H,O 3 Mo(OH), 

(3) 

(4) 

In this formulation the first protonation constant would be 
regarded as “normal” while the second would be abnormally 
high. This would require a high negative enthalpy change for 
reaction 4 to more than outweigh the expected negative entropy 
change associated with the increase in coordination of the 
central atom. 

The thermodynamic quantities given in Table I were 
computed from uv absorption values for 5 X 10-5 M Mo(V1) 
solutions measured at ten different wavelengths in the range 
215-235 nm as a function of both pII and temperature 
(10-40°C) assuming molar absorptivities, AH, and AS to be 
constant over this temperature range. These results strongly 
support formulations 3 and 4, with the expansion of the co- 
ordination sphere of Mo(VI) occurring during the second 
protonation step rather than during the first, in accordance 
with predictions based on Coulomb interaction calculations 
by Chojnacki.11 

The relatively small value of AH and the considerable 
positive value of ils for the first protonation are compatible 
with corresponding values for similar protonations without 
change in coordination number 

K 

AH, k J  AS, J 
mol-’ mol-’ K-’ Ref 

HP0,’- + H’ + H,PO; -5 .O 130 1 3  
HAsOe2- + H’ t H,AsO,- -3.2 119 1 4  

whereas the thermodynamic constants for the second pro- 

Cr0,2- + Ht + HCrO; 5.4 142 12 



Correspondence 

tonation appear reasonable only if the considerable negative 
enthalpy and entropy change is associated with the expansion 
of coordination number. For an analogous expansion of 
coordination number in the reaction 
10, + 2H,O H,IO; 

the valued5 AH = -62 kJ mol-1 and AS = -236 J mol-1 K-1 
have been reported. 

This finding, that expansion of coordination number of 
Mo(V1) by the uptake of water molecules from the solution 
occurs only when the negative charge on the monomeric 
molybdate has been reduced to less than 1, is helpful in 
formulating a readily visualized interpretation of the obser- 
vation that the heptameric species Mo70246- appears to be the 
first predominant condensed species to appear on acidification 
of molybdates at moderate concentrations in aqueous media. 

2 H C r O ~ ~ - C r , 0 , 3 ~  + 2H,O 

(where AH = -19.7 kJ mol-1 and AS = -36.8 J mol-l K-1 16) 
the initial appearance of HMo04- should lead to the equi- 
librium 
2HMoO; --L MO,O,~-  + H,O 

However, since the second protonation constant for the mo- 
nomeric species is relatively large, the octahedral neutral 
species Mo(OH)6 simultaneously appears in concentrations 
less than that of HMo04- only by a factor K2[H+]. The 
decrease in enthalpy associated with the condensation of 
Mo(OH)6 with HMo04- with the elimination of water to a 
complex in which the neutral central octahedron is joined to 
the tetrahedral Mo04- group by a common corner should, by 
reason of coulombic effects, be much greater than that in the 
competing formation of the dimeric M02072-, even for the 
successive similar coordination of up to a maximum of six 
tetrahedral groups around the central octahedron. This places 
the reactions 
Mo(OH), + xHMoO; --L [MOO,(OH),_,(MOO,),]~~ + xH,O 

(where x can vary from 1 to a maximum of 6 )  in a strongly 
competitive position relative to the condensation of two 
HMo04- anions. In these condensation products, with one 
or more tetrahedral groups linked by a shared corner to the 
central neutral octahedral group, the peripheral tetrahedral 
groups retain their charge of 1- and are therefore not expected 
to expand to an octahedral form by addition of water molecules 
from the solution because of the large negative entropy in- 
volved. When, however, six tetrahedra have been accom- 
modated, and not before, all of these peripheral tetrahedra can, 
without the immobilization of any free water molecules and 
the attendant entropy decrease, expand to octahedra simply 
by folding at the common corners to share octahedral edges 

By analogy with the enthalpy-driven reaction 
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(one each with the central octahedron and two with neigh- 
boring ligands as in the Mo70246- structure found in solid 
paramolybdates) with the considerable decrease in enthalpy 
associated with the formation of additional M A  bonds. This 
negative enthalpy change, together with the abundance of 
HMo04- relative to Mo(OH)6 up to pH - 5 ,  can be expected 
to stabilize the heptameric M07024(+ sufficiently to account 
for the nonobservance of intermediate condensation 
products8,17J8 with the peripheral Mo(V1) atoms still tet- 
rahedrally coordinated and is in accord with the observed high 
negative enthalpy change19 for this condensation reaction. 

Registry No. Mo(OH)6, 13597-71-2; Mo, 7439-98-7. 
Supplementary Material Available. Equations used to compute the 

thermodynamic constants and Table 11, a listing of composite observed 
and calculated molar absorption coefficients a t  various -log [H+] 
values in 1.0 M NaCl at  15,25, and 35”C, will appear following these 
pages in the microfilm edition of this volume of the journal. Pho- 
tocopies of the supplementary material from this paper only or 
microfiche (105 X 148 mm, 24X reduction, negatives) containing all 
of the supplementary material for the papers in this issue may be 
obtained from the Business Office, Books and Journals Division, 
American Chemical Society, 1155 16th St., N.W., Washington, D.C. 
20036. Remit check or money order for $4.00 for photocopy or $2.50 
for microfiche, referring to code number AIC503430-12-75. 
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