separation varies with spin state. This may be due to exchange striction. The measured dipole-dipole interaction is noticeably smaller than that predicted by a point-dipole calculation which suggests that the unpaired electrons are partially delocalized from the metal to the chloride ligands.

Acknowledgment. The authors wish to express their gratitude to Professor B. B. Garrett of Florida State University for the use of the Q-band spectrometer and helpful advice in obtaining the data. The authors also wish to acknowledge Tulane University, especially the Department of Chemistry, for the support of this work.

Registry No. CsCdCl₃, 13845-08-4; Mn, 7439-96-5; Mn₂Cl₉⁵⁻, 58396-13-7.

References and Notes

- (1) Presented in part at the 170th National Meeting of the American Chemical Society, Chicago, Ill., **Aug** 1975.
- (2) **S.** Siege1 and E. Gebert, *Acta Crystallogr.,* 17, 790 (1964).
- J. R. Chang, G. L. McPherson and J. L. Atwood, *Inorg. Chem.,* 14, 3079 $(1975).$
- G. L. McPherson and J. R. Chang, *J. Magn. Resonan.,* 14, 310 (1974). G. L. McPherson and J. R. Chang, *Inorg. Chem..* 12, 1196 (1973).
-
- *G. L. McPherson, L. J. Sindel, H. F. Quarles, and C. J. Doumit, <i>Inorg, Chem.,* 14, 1831 (1975).
- B. Bleaney and K. D. Bowers, *Proc. R. Soc. London, Ser. A,* 214,451 $(1952).$
-
- J. Owen, *J. Appl. Phys.,* 32, 213s (1961). J. Owen and E. **A.** Harris, "Electron Paramagnetic Resonance", **S.** Geschwind, Ed., Plenum, New York, **N.Y.,** 1972, pp 427-492. (9)
- (10) G. F. Kokoska and G. Gordon, *Transition Met. Chem.*, 5, 181-277 (1969).
- G. F. Kokoska and R. W. Duerst, *Coord. Chem. Reu.,* 5,209-244 (1970). E. **A.** Harris, *J. Phys.* C, 5, 338 (1972).
- T. Li, G. D. Stucky, and G. L. McPherson, *Acta Crystallogr., Sect. B,*
- 29, 1330 (1973). B. Morosin and E. J. Graeber, *Acta Crystallogr.,* 23, 766 (1967).
- J. F. Ackerman, G. **M.** Cole, and *S.* L. Holt, *Inorg. Chim. Acta,* **8,** 323 (1974), and references therein.
- R. Dingle. M. E. Lines. and **S.** L. Holt. *Phvs. Reu..* **187.** 643 (1969). M. T. Hutchings, G. Shirane, R. J. Birgeneau, and **S.** L: Hole *Phyi. Reu. E, 5,* 1999 (1972).
- P. S. Peercy, **B.** Mormin, and G. **A.** Samara, *Phys. Reo. E,* 8,3378 (1973).

Contribution from the Department of Chemistry, University of Leicester, Leicester, England

Effect of High-Energy Radiation on a Range of Metal Pentacyanonitrosylferrate(I1) and Pentacyanonitroferrate(I1) Salts

MARTYN C. R. SYMONS, DOUGLAS **X.** WEST,* and JAMES G. WILKINSON

Received February 25, 1975 AIC50147T

Exposure of a range of alkali and alkaline earth pentacyanonitrosylferrate(II) salts to ${}^{60}Co \gamma$ rays at 77 K gave electron-capture centers having the unpaired electron largely confined to the nitrosyl ligand, as judged by their ESR spectra. These ESR spectra were almost independent of the salt except that for the hydrated sodium salt which changed reversibly to that exhibited by the other salts on cooling to 4.2 K. In all cases, ESR spectra assignable to normal d^7 iron(I) salts are also obtained, and these were enhanced at the expense of the nitrosyl center on annealing above 77 K. At least two d' centers were obtained in most cases. One, having axial symmetry, is assigned the structure $Fe(CN)$ 4 NO^{2-} , formed by loss of the axial cyanide ligand, and the other, having nonaxial symmetry, is assigned the structure $Fe(CN)5NO^{3-}$, with both the axial cyanide and the NO group present but bent slightly off the original axis. The nitroferrate(II) salts gave an electron-excess species having the unpaired electron largely confined to the NO₂ group, whose ESR spectra closely resembled that of the nitrosyl center. However, these were not converted into d' ferrate(I) salts under any circumstances. The Ag(I) salts also gave Ag(II) centers, whose ESR spectra exhibited hyperfine coupling to four equivalent ¹⁴N nuclei in addition to that to ¹⁰⁷Ag and ¹⁰⁹Ag. These d^9 ions have their unpaired electrons in a $d_{x^2-y^2}$ orbital on silver with considerable delocalization onto four in-plane nitrogen atoms.

There has been considerable speculation about the nature of paramagnetic electron-excess species formed from sodium **pentacyanonitrosylferrate(I1).** Three different types of ESR spectra have been reported. The first spectrum has $g_{\perp} \simeq 2.3$ and $g_{\parallel} \simeq 2.0$ with $A_{\perp}(\text{N}) \simeq 14.0$ G and $A_{\parallel}(\text{N}) \simeq 17.0$ G. We have assigned this spectrum to a d^7 iron complex (species I) having an unpaired electron in an a $(d_{z²)$ orbital and a strongly coupled NO group which is bent about 10° from the *z* axis of the complex.¹ Van Voorst and Hemmerich² have assigned this spectrum to $Fe(CN)_5 NOH^{2-}$ when studying the reduction products in DMF. A tetraethylammonium salt having similar ESR parameters has been isolated and shown by x-ray diffraction to be the pentacoordinated $Fe(CN)_{4}NO^{2-}$ d^7 species.³ In addition, we have generated this spectrum by the thermal reduction of anhydrous pentacyanonitrosylferrates.⁴ Most recently,⁵ this same spectrum has been assigned to $[Fe(CN)_5NOH]^{2-}$ in DMF, Cd $[Fe(CN)_5NOH]$. $2DMF$ solid, and $Cd_3[Fe(CN)_5NO]_2$.(formamide).

A second ESR spectrum has two g values near free spin with the third $g \approx 1.93$ and *A* values of approximately 30 and 10 G, respectively. Less controversy seems to exist for this spectrum with general agreement that it represents a $d⁶$ complex (species II), $Fe(CN)_5NO^{3-}$, with the unpaired electron largely in a π^* MO on the NO ligand.² However, a very similar ESR spectrum has been assigned to Fe- $(CN)_{5}NO_{2}^{5-}$ (species IV)⁶ and this has recently been substantiated. 5 Also, a similar ESR spectrum has been observed upon heating the potassium, rubidium, and cesium pentacyanonitrosylferrates(II) to temperatures of 240 °C.

A third spectrum having a large hyperfine coupling to ^{14}N and two low g values (species 111) was obtained by irradiating the hydrated sodium salt.⁸ It was tentatively suggested that this species is chemically identical with the $d⁶$ complex with the unpaired electron largely in the π ^{*} MO on the NO ligand, differing only in the extent of NO group libration. Trapped radical pairs have also been observed upon prolonged exposure of Na₂Fe(CN)₅NO-2H₂O to γ radiation at room temperature.⁹

The aim of the present study was threefold: to investigate the relationship between spectra I1 and 111, to distinguish, if possible, between the spectra assigned to $Fe(CN)_5\text{NO}^{3-}$ and $Fe(CN)_5\text{NO}_2^{5-}$, and to examine the effects of environment upon the three different spectra. Incidental to this study, we

^{*} To whom correspondence should be addressed at the Department of Chemistry, Illinois State University, Normal, Ill. 61761.

Table I. g and A^a Values for Species I and II^b

^a A values in gauss (1 G = 10⁻⁴ T). ^b Species I was prepared by radiolysis for 2 h at room temperature and species II by radiolysis at 77 K for 2 h. ^c A₃ = 8-10 G in all cases (see text). ^d Both axial and nona

have formed silver(II) cations in the silver(I) pentacyanonitrosyl salt and studied their **ESR** spectra.

Experimental Section

Sodium **pentacyanonitrosylferrate(I1)** of Analar reagent grade was used in the preparation of all other compounds in this study. The Zn, Cd, Hg(I), Hg(II), and Ag(I) salts of $Fe(CN)_{5}NO^{2-}$ were prepared by the method of Ayers and Waggoner.¹⁰ The alkali and alkaline earth metal salts were prepared by adding the chlorides to Ag₂Fe(CN)_sNO as previously reported.¹¹ Samples of these salts were dehydrated at **80** "C in a vacuum oven for a period of **2-3** days with the absence of water confirmed by recording their ir spectra as Nujol mulls. The $Na_4Fe(CN)_5NO_2$ salt was prepared as described in the literature.¹² Other salts of Fe(CN)₅NO₂⁴⁻ were prepared by adding the appropriate metal nitrate to a cooled solution of $\text{Na}_4\text{Fe}(\text{CN})_5\text{NO}_2$ at pH 12 in the absence of light. The resultant precipitate was washed with water, alcohol, and anhydrous ether to apparent dryness.

Samples of the powdered salts were exposed to γ radiation from a 6oCo source at **77 K** and room temperature for variable **periods** at a dose rate of ca. 4 Mrad h⁻¹. ESR spectra were recorded on a Varian **E3** spectrometer equipped with a conventional insert Dewar. Samples irradiated at **77 K** were annealed by allowing them to warm up in the cold Dewar in the absence of liquid nitrogen, with rapid quenching back to **77 K** whenever interesting changes were observed. Samples were cooled to **4.2 K** using a liquid helium Dewar insert. At no time were distinct color changes observed in the solid samples, although the samples appeared slightly darker on occasion after irradiation.

Results and Discussion

With the exception of the hydrated sodium salt, low-field **ESR** features for species I1 dominated, with weak contributions from species I in the free spin region when γ radiated and observed at 77 K (Figure 1). This result was found to be independent of whether the rest of the metal nitrosyl salts were hydrated or anhydrous.

In addition, in all but the silver salts, features from Fe(II1) centers were detected at lower fields. These will not be discussed herein. In the unique case of the hydrated sodium salt, species I11 was obtained in place of I1 (see Figure 1 of ref 8 for typical **ESR** spectrum). However, on cooling to ca. **4.2** K these features broadened and then narrowed to a typical spectrum of 11. This effect was completely reversible.

The calcium salt and to a less marked extent the strontium and barium salts had ESR spectra at 77 K which exhibited far greater yields of species I, although I1 was still clearly detectable. In all cases on annealing, features for species I1 rapidly and reversibly broadened beyond detectability and at higher temperatures were irreversibly lost, with simultaneous gain of features for species I.

Two extreme forms of species I were obtained, as shown in Figure **2,** one exhibiting an axially symmetric **ESR** spectrum

Figure 1. First-derivative X-band ESR spectrum for ZnFe(CN)₅-NO after exposure to 60 Co γ rays at 77 K for 2 h, showing features assigned to species II. The three narrow features (α) are assigned to **.CN** radicals or, possibly, to N atoms.

Figure 2. First-derivative X-band ESR spectrum for $Na₂Fe(CN)₅$ -**NO-2H₂O** after exposure to ⁶⁰Co γ rays at room temperature for **4** h, showing features assigned to species **I**. A is for I_{ax} and **B** for **~nonax.**

and the other exhibiting three distinct **g** values. Data for all these centers are collected in Table I.

The pentacyanonitro salts all gave species IV, having **an ESR** spectrum remarkably similar to that for species 11, the small differences **being** insufficient to enable **us** to make a clear differentiation. However, species 11 invariably changed thermally into species I, but species IV never exhibited this behavior, simply disappearing upon warming and then recooling. We consider that this difference is the best method

Figure 3. First-derivative X-band ESR spectrum for $Ag_2Fe(CN)_{5}$ -NO after exposure to ^{60}Co γ rays at 77 K, showing features assigned to Ag(I1) centers. The features to high field of **A** were merged with those from the pentacyanonitrosylferrate centers. M_I values for ¹⁴N are displayed with those for ¹⁰⁹ Ag in parentheses.

Table 11. ESR Data for the Ag(I1) Center Formed in Irradiated $Ag₂Fe(CN)₅NO$ together with Data for the Cu²⁺ Doped into $ZnFe(\tilde{C}N)_{5}N\tilde{O}^{13}$

	$A^{(109)}$ Ag), $A^{(63)}$ Cu),		$A(^{14}N)$, G^{α}		
	C^a	\mathfrak{c}^a			g values
Ag(II) Cu(II)	40 146	28 21	24 17.5	18 12.5	2.275, 2.076 2.337, 2.060

 a 1 G = 10^{-4} T. b Calculated setting the perpendicular splitting as $(A_{\parallel} + A_{\perp})/2$. ^c Taken from the parallel (low-yield) features.

for distinguishing between these two species.

For the zinc salt, and to a small extent for several others, a narrow-line, isotropic triplet (α) having $A_{\text{iso}} = 4.5$ G and *g* = 2.00 was also detected at *77* K (Figure 1). This species rapidly decayed on annealing.

Only in the case of the silver (I) salt was any evidence obtained for cation involvement. In this case, $Ag⁰$ centers were not detected, but Ag(I1) features showing well-defined interaction with four nitrogen ligands were clearly defined (Figure **3** and Table 11).

Species I1 **and** 111. There can be little doubt that species I1 is formed by electron capture at the NO ligand.13 Direct capture by the iron atom can also occur, especially in the case of the calcium salt. We interpret this as a competition involving distortions. Given that the electron resides, initially, in the π^* NO orbital, then bending of the Fe-N-O system will tend to trap the electron on the ligand, while stretching of the $Fe-(NO)$ and $Fe-(CN)_{trans}$ bonds will tend to trap the electron on iron. The latter gives the more thermally stable product, but the former is more facile at *77* K.

The initial trapping of the electron in the π ^{*} NO orbital as the main product is consistent with the molecular orbital scheme of Manoharan and Gray.¹⁴ Also considering the charge distribution which they assigned to $Fe(CN)_5NO^{2-}$, it is logical that γ irradiation at 77 \bar{K} would yield both d⁷ Fe and π^* NO capture with the latter being the dominant feature.

The species^{$2,5$} in solution which are stable at room temperature and assigned the same spectrum as I1 are converted to I by addition of acid. We have found that the higher energy metal π^* NO charge transfer band¹⁴ is shifted to lower energy with decreasing solvent polarity indicating solvent interaction with the NO ligand. Therefore, the species being reduced in solution cannot be considered as a simple $Fe(CN)_{5}NO^{2-}$, but **pentacyanonitrosylferrate** ion is solvated in an ion-dipole interaction involving the $NO⁺$ ligand. In a recent report⁵ $Cd₃[Fe(CN)₅NO]₂$ (formamide) had an ESR spectrum of species I in the solid state but when dissolved in a formamide solution gave an ESR spectrum assignable to species II. This indicates that the species in solution yielding a spectrum assignable to species I1 would better be considered as

where **X** is a solvent molecule or the conjugate base of the solvent. This, of course, would account for the conversion to species I by addition of acid, if this caused removal of X allowing the electron to migrate to the iron atom.

Species I11 has proved to be unique in that it is only obtained from the sodium hydrate. This strongly supports the concept that this is just a physical modification of species 11, and our results at **4.2** K confirm this. *As* tentatively postulated in our earlier work,⁸ the data for III at 77 K can be explained in terms of NO group librations, and it must **be** purely fortuitous that such librations are only facile in this particular solid. However, the extensive line broadening observed for I1 at temperatures above *77* K strongly suggests the onset of libratory movement prior to chemical change.

One characteristic of species I1 is the uneven distribution of the +1, 0, and -1 (¹⁴N) features in the high-field ("z") component (see Figure 1). This cannot arise for any fundamental reason and must mean that those features experience different turning points, none of which represent true limiting values (i.e., the turning points seen in the powder spectra do not correspond to the true z components of the **g** and **A** tensors). This situation is often found when the **g** and **A** tensors have different axes,¹⁵ and hence the estimated g_z and A_z values are not the true tensor components. Nevertheless, they are likely to be close to the true values, and since our main purpose is one of identification, we have not endeavored to derive the true components from single crystals.

Species I. There now seems no doubt that I is formed from I1 by electron transfer from ligand to metal in the case of the solids. This will occur when the z-axis ligands move outward, stabilizing the σ^* orbital involved, one extreme being complete loss of the trans cyanide ligand.³ However, as we have shown in our studies of cobalt(II) cyanides,¹⁶ another method is to bend the N-C-metal group. This usually results in a small hyperfine coupling to the cyanide nitrogen,¹⁷ but no clear evidence of such secondary structure has been detected in our work. However, the features for I_{nonax} are considerably broader than those for I_{ax} , which could well be indication of unresolved hyperfine coupling.

We stress that formation of I is irreversible in the solids studied here. Addition of cyanide ion to I_{ax} would simply give I_{nonax} and not II as implied by Schmidt et al.³ unless a solvent molecule is present to aid the NO group in attracting the electron.

Species IV. This is undoubtedly the d^6 Fe(II) complex $Fe(CN)_5NO_2^{5-}$, formed by electron capture at the NO₂ ligand. The same species was prepared by Raynor and Symons by chemical reduction in solution 6 and has recently been isolated as the sodium salt.⁵ Although confusion has arisen because the ESR parameters for this anion are indistinguishable from those of \overline{II} , this is supportive of

$$
\text{Fe(CN)}_{s} \text{N}^{\text{O}^{n-}}_{x}
$$

being the species observed in solution. That is, **X** is, in this case O^{2-} , and it is not too surprising that similar ESR spectra are obtained in view of the structural similarities of the two species. [Thus, RNO⁻ and RNO₂⁻ (R is alkyl) have quite similar magnetic properties.] Since no d^7 species is formed on annealing species IV, we must conclude that this complex is unstable.

Radical Pairs. We have previously shown that a range of radical-pair "triplet-state" species are formed during room-temperature irradiation of $Na₂Fe(CN)₅NO·2H₂O⁹$ We have searched for similar pair trapping during radiolysis of all of the new salts studied, but only in the case of the sodium hydrate have the characteristic features been obtained. We therefore tentatively postulate that these pairs arise as a consequence of initial damage to the hydrate water

 $H_2O \rightarrow H_2O^+ + e^$ e^- + Fe(CN), NO²⁻ \rightarrow I

 $H_2O^+ \rightarrow (H^+) + \cdot OH$

 \cdot OH + Fe(CN)_sNO²⁻ \rightarrow ONC-Fe-NO³⁻ (V)

Species V would be expected to have properties very similar to those for'Inonax. Provided electron capture is efficient, this could lead to pair trapping of species I as observed.

The $Ag(II)$ Center. Our results demonstrate that electron loss from Ag' competes favorably with loss from the nitrosylferrate ion. The spectra are clearly caused by d^9 Ag(II) centers having four strongly coupled nitrogen ligands. Just this situation was observed for metal(I1) pentacyanonitrosylferrate salts doped with Cu^{2+} ions.¹⁸ In both cases the unpaired electron occupies a b_{2g} level which is σ antibonding with respect to four isocyanide ligands in the *x-y* plane and mainly $d_{x^2-y^2}$ on the metal.

The large value for g_{\parallel} indicates strong coupling between the $d_{x^2-y^2}$ and d_{xy} orbitals on silver and is quite normal for Ag(II) complexes. The far smaller shift for g_{\perp} is again quite normal and arises because of the larger separation between the $d_{x^2-y^2}$ and filled $d_{xz,yz}$ orbitals on silver. The factors controlling the *g* values and \hat{A} (109 Ag, 107 Ag) coupling constants are discussed in depth for the copper complexes.¹⁸

There is an appreciable increase in the A_{\parallel} and A_{\perp} (¹⁴N) coupling constants relative to the Cu^{2+} complexes. These are compared in Table 11. We stress that the "parallel" features for the silver A- and g-tensor components display the "perpendicular" coupling to $14N$. The "perpendicular" g and **A** features then display a nitrogen coupling equal to $[A\parallel^{(14)}N) + A_{\perp}^{(14}N)]/2$.¹⁹ This increase corresponds to an increase in both 2s and 2p character on nitrogen, relative to the copper

complex. This can be understood in terms of the greater polarizability of silver. Thus, the σ -bonding level gains more silver character, and the σ^* -orbital gains more ligand character.

Acknowledgment. We thank the University of Leicester for a fellowship to J.G.W. and the Research and Creative Endeavor Committee of Central Michigan University for the partial support of this work.

Registry No. $Li_2Fe(CN)_5NO$, 33751-92-7; $Na_2Fe(CN)_5NO$, 14402-89-2; Na₂Fe(CN)₅NO-2H₂O, 13755-38-9; K₂Fe(CN)₅NO, 14709-57-0; $Rb_2Fe(CN)_5NO$, 33751-93-8; $Cs_2Fe(CN)_5NO$, $33751-94-9$; MgFe(CN)₅NO, 58512-43-9; CaFe(CN)₅NO, 58512-44-0; SrFe(CN)₅NO, 58512-45-1; BaFe(CN)₅NO, 24378-32-3; ZnFe(CN)₅NO, 14709-62-7; CdFe(CN)₅NO, 17569-97-0; Hg-Fe(CN)₅NO, 15393-68-7; Hg₂Fe(CN)₅NO, 58512-46-2; Ag₂-Fe(CN)₅NO, 13755-36-7; Na₄Fe(CN)₅NO₂, 14099-03-7; Fe- $(CN)_4NO^{2-}$, 55188-49-3; Fe $(CN)_5NO^{3-}$, 14636-58-9; Fe $(CN)_5NO_2^{5-}$, 27709-47-3; Ag2+, 15046-91-0.

References **and** Notes

- B. A. Goodman, D. A. C. McNeil, J. **B.** Raynor, and M. C. R. Symons, *J. Chem. SOC. A,* 1547 (1966).
- J. D. W. Van Voorst and P. Hemmerich, *J. Chem. Phys.,* 45,3914 (1966). J. Schmidt, H. Kuhr, W. L. Dorn, and J. Kopf, *Inorg. Nucl. Chem. Lett.,* (3)
- **10**, 55 (1974). R. L. Brennan, M. C. R. Symons, and D. **X.** West, *Inorg. Nucl. Chem. Lett.,* 11, 61 (1975).
- B. Jezowska-Trzebiatowska, and A. Keller, *Inorg. Chim. Acta,* 13,201 (1975).
- J. B. Raynor and M. C. R. Symons, *J. Chem. SOC. A,* 339 (1970). R. L. Brennan, M.S. Thesis, Central Michigan University, Mt. Pleasant, Mich., 1975.
- M. B. D. Bloom, J. B. Raynor, and M. C. R. Symons, *J. Chem. SOC.*
- *A,* 3843 (1971). D. **A.** C. McNeil, J. B. Raynor, and M. C. R. Symons, *Mol. Phys.,* **10,** 297 (1966).
- **J.** B. Ayers and W. H. Waggoner, *J. Inorg. Nucl. Chem.,* 31,2045 (1969).
- M. M. Chamberlain and **A.** F. Greene, Jr., *J. Inorg. Nucl. Chem., 25,* 1471 (1963).
-
- D. *X.* West, *J. Inorg. Nucl. Chem., 29,* 1163 (1967). M. C. R. Symons, D. **X.** West, and **J.** G. Wilkinson, *Chem. Commun.,* 917 (1969).
- P. T. Manoharan and H. B. Gray, *J. Am. Chem. Soc.,* 87,3340 (1965). M. C. R. Svmons, D. **X.** West, and J. G. Wilkinson, *J. Chem. Soc., Dulfon*
- *Trans., 2247 (1974).*
 Trans., 2247 (1974).

(16) M. C. R. Symons and J. G. Wilkinson, J. Chem. Soc. A, 2069 (1971);
- M. C. R. Symons and J. G. Wilkinson, *J. Chem. Soc. A*, 2069 (1971);
J. Chem. Soc., Dalton Trans., 1086 (1972).
K. D. J. Root and M. C. R. Symons, *J. Chem. Soc. A*, 2366 (1968).
- M. C. R. Symons, D. **X.** West, and J. G. Wilkinson, *Inorg. Nucl. Chem.* Lett., **10**, 995 (1974).
- C. M. Guzy, J. B. Raynor, and M. C. R. Symons, *J. Chem. SOC. A,* 2299 (1969).

Contribution from the Department of Inorganic Chemistry, Free University, De Lairessestraat 174, Amsterdam, The Netherlands

Competition between Ammonia and the Nitrite Ion as Leaving Groups in Cobalt(II1) Complexes. I. Hydrolysis of the Nitropentaamminecobalt(II1) Ion in Ammonia Buffers

S. BALT' and C. DEKKER

Received October 28, 1975 AIC50780E

Kinetic measurements are reported on the base hydrolysis and the spontaneous aquation of the **nitropentaamminecobalt(II1)** cation in weakly alkaline ammoniacal solutions, at a constant ionic strength. The results are at variance with the generally accepted picture of the inert $Co^{III}(NH₃)_n$ frame. On the basis of kinetic evidence for the occurrence of the *trans***hydroxonitrotetraamminecobalt(II1)** ion as an intermediate in the aquation of nitropentaammine, a novel mechanism is presented for the hydrolysis reaction: in the aquation the first step is **loss** of the trans NH3 group, whereas in base hydrolysis $NO₂$ is the first group to leave. Numerical values of activation parameters agree with published results.

Introduction

The hydrolysis of the nitropentaamminecobalt(II1) ion has been widely investigated. Roughly there are three independent reaction paths: base hydrolysis, acid-catalyzed hydrolysis, and a spontaneous reaction of the complex. Of these, especially the acid-catalyzed reaction has been thoroughly

Much less is known about the base hydrolysis reaction of the complex.^{5,6} The mechanism of the spontaneous reaction seems to present some difficulties. There are indications² that a direct aquation is not involved.

An additional disturbing aspect appears to be that extrapolation of hydrolysis rates measured in acid solutions under