Table **111.** Raman Stretching Frequencies for OPCl,, OSeCl,, and OSCl, Coordinated to SbCl, at 77 K and Frequency Shifts *(Au)* Due to the Notes

Table III. Raman Stretching Frequencies for OPCl₃, OSeCl₂, and OSCl₂ Coordinated to SbCl₅ at 77 K and Frequency Shifts ($\Delta \nu$) Due to the

Coordination (cm^{-1)a}

SbCl₅·OPCl₃ SbCl₅·OSeCl₂ SbCl₅·OS

a Key: w, weak; m, medium; sh, shoulder; v, very.

are assigned to bending modes (OSbC1) of e symmetry.

The bending vibration $\delta(b_2)$ (ClSbCl) can be easily assigned since it is expected to appear near 170 cm^{-1} when allowance is made for correlation between this mode and its corresponding mode $\delta(f_{2g})$ (ClSbCl) appearing at 170 cm⁻¹ in the Raman spectrum of the SbCl₆⁻ anion.¹³ The Raman spectra of all of the complexes studied present a strong depolarized band at 180 \pm 10 cm⁻¹ which has been assigned to the b₂ mode.

Ligand Vibration Shifts. POCl₃ and SeOCl₂ give molecular complexes with SbCl₅ and are coordinated through the oxygen atom.^{5,6} In the Raman spectra of these adducts, the coordination is shown by the shifts of the symmetric and asymmetric normal modes $\nu(PCl)$, $\nu(SeCl)$, $\nu(PO)$, and $\nu(SeO)$ with respect to the spectra of the free oxychlorides^{14,15} (Table III). As expected, the ν (PCl) and ν (SeCl) frequencies are increased whereas ν (PO) and ν (SeO) are strongly lowered. As shown by normal-coordinate analysis carried out on some adducts of Lewis acids, $9,16$ these latter shifts arise simultaneously from the weakening of the force constants $K(M-O)$ (M = Se, P) and the mechanical coupling generally observed between the M-0 and Sb-0 oscillators. Comparison between the spectra of free $OSCl₂¹⁷$ and the $SbCl₅·OSCl₂$ adduct shows the same trend and is in agreement with the expected molecular structure of the complex.

Influence of the Donor Strength of the Ligands. Antimony pentachloride has been used by $Gutmann¹⁸$ to define the donor strength of various Lewis bases from thermodynamic measurements. From x-ray crystallographic data, Lindqvist³ and Weiss and Chevrier² have shown the relation between the donor strength and the Sb-0 bond length in some oxygen donor complexes. From vibrational spectra, it is possible to correlate the position of the $\nu(SbO)$ vibration with the donor strength of the ligand; a definite decrease of the corresponding frequency is observed when the donor strength decreases. However, this mode has been shown to be strongly coupled with modes of the ligand by using deuteration (DMSO and DMF) and by carrying out a normal-coordinate analysis in the case of SbCl₅.DMSO.⁹ Consequently, there is no simple correlation between the $\nu(SbO)$ frequency and the donor strength.

The Sb-C1 modes appear to be more directly related to the donor strength of the ligands. Their frequencies are decreased when the strength of the donors is increased. This trend appears clearly in the case of DMSO and $OSCl₂$ complexes, in which a difference of $10-15$ cm⁻¹ is observed for the $\nu(SbCl)$ stretching modes. The three oxychlorides can by classified in a similar manner. Using the posftion of the strongest Raman band, the order is as follows: $OSCl₂$ (344 cm⁻¹) < OPCl₃ (341 cm⁻¹) < OSeCl₂ (329.5 cm⁻¹). Further, it has been possible using these results to propose a molecular structure for $SbCl₅ \cdot OVCl₃$, $OVCl₃$ being a weak donor with a $\nu(a_1)(SbCl_4)$ frequency at 350 cm⁻¹.¹⁹

Registry No. SbCl₅·OSCl₂, 58298-20-7; SbCl₅·OSeCl₂, 58298-21-8; SbCl₅.DMSO, 23058-09-5; SbCl₅.DMF-h₇, 12075-62-6; SbCl₅. DMF-d7, 58298-22-9; SbCl₃.OP(CH₃)₃, 37979-80-9; SbCl₃.OPCl₃, 181 16-31-9.

References and Notes

-
- (1) M. Webster, *Chem. Rev.,* 66, 87 (1966). (2) B. Chewier and R. Weiss, *Angew. Chem., Int. Ed. Engl.,* 13, 1 (1974). (3) I. Lindqvist, "Inorganic Adduct Molecules of Oxo Compounds", Springer-Verlag, West Berlin, 1963.
-
- (4) L. Brun and C. **I.** Branden, *Acta Crystallogr.,* **20,** 749 (1966). (5) I. Lindqvist and C. I. Branden, *Acta Crystallogr.,* 12, 642 (1959).
-
- *(6)* Y. Hermodsson, *Acta Chem. Scand.,* **21,** 1313 (1967). (7) D. M. Byler and D. F. Shriver, *Inorg. Chem.,* 13, 2697 (1974).
-
-
-
- (8) A. B. Burg and W. E. McKee, J. Am. Chem. Soc., 73, 4590 (1951).
(9) M. Burgard and M. J. F. Leroy, J. Mol. Struct., 20, 153 (1974).
(10) D. M. Byler and D. F. Shriver, Inorg. Chem., 12, 1412 (1973).
(11) M. Masson, Th Strasbourg, 1973.
-
- (12) U. Muller, *2. Anorg. Allg. Chem.,* 396, 187 (1973). (13) I. R. Beattie, T. Gilson, K. Livingston, V. Fawcett, and G. A. Ozin, *J. Chem.* Soc. *A,* 712 (1967).
- (14) A. Burgos, E. Huler, E. Silberman, and H. W. Morgan, *J. Mol. Struct.*, **9.** 283 (1971).

(15) J. A. Rolfe and L. A. Woodward, *Trans. Faraday Soc.*, **51**, 778 (1955).
-
- (16) M. Tranquille, Thèse de Doctorat d'Etat, Universite de Bordeaux I, 1975.
- (17) R. J. Gillespie and E. A. Robinson, *Can. J. Chem.,* 39, 2171 (1961). (18) V. Gutmann, A. Steininger, and E. Wychera, *Monatsh. Chem.,* 97,460
- (1966).
- (19) J. P. Brunette, R. Heimburger, and M. J. F. Leroy, *Inorg. Nucl. Chem. Lett.,* 10, 903 (1974).

Contribution from the Department of Chemistry, University of Washington, Seattle, Washington 98 195

Pluorosulfates of the Lanthanide Elements

Wesley M. Johnson, Sudhindra Misra, and George H. Cady*

Received April 10, *1975* AIC50261B

Fluorosulfates of scandium, yttrium, and most of the lanthanide elements in oxidation state **I11** have been prepared by the action of peroxydisulfuryl difluoride upon anhydrous carbonates of the metals. When oxides of Nd, Sm, and Eu were used in place of carbonates, only part of the solid reacted.

Experimental Section

Synthesis. Peroxydisulfuryl difluoride, S₂O₆F₂, was prepared by allowing sulfur trioxide to react with fluorine.] Carbonates of the metals were produced by dissolving the appropriate oxide in dilute nitric acid and adding sodium bicarbonate to give a precipitate. The solid was washed with water followed by methanol. It was powdered in a mortar and dried for several hours at 110 "C. Oxides of metals used in these preparations were of a quality in which at least 99.9% of the rare earth element was the one desired.

In a typical preparation, about 1 mmol of a freshly prepared carbonate was placed in a Pyrex glass bulb which could be attached to a vacuum line by a ground joint and later closed by a Fischer and Porter Lab Crest valve having a Teflon stem. The vessel was held at about 70 "C and evacuated until it reached constant weight. It was then cooled to -183 °C, and peroxydisulfuryl difluoride, $S_2O_6F_2$, was added in sufficient amount to be present in excess for the reaction. When the vessel stood at room temperature or somewhat higher for about 15 h the following reaction occurred

$$
M_2(CO_3)_3 + 3S_2O_6F_2 \rightarrow 2M(SO_3F)_3 + 3CO_2 + 1.5O_2
$$

a Not obtained pure by this reaction (see text).

Table **11.** Data from the Analysis of Lanthanide Fluorosulfates

	$\%$ M		% S		% F	
Compd	Calcd	Found	Calcd	Found		Calcd Found
Sc(SO ₃ F) ₃	13.0	12.9	28.0	28.1	17.1	15.9
Y(SO, F)	23.1	23.4	24.8	24.7	14.7	13.6
La(SO ₃ F) ₃	31.9	31.5	22.0	21.3	13.1	12.7
Nd(SO, F)	32.7	32.3	21.8	21.9	12.9	12.6
$Sm(SO, F)$,	33.6	33.3	21.5	21.5	12.7	12.6
$Eu(SO, F)$,	33.9	35.4	21.4	21.6	12.7	12.0
Gd(SO ₃ F) ₃	34.6	35.0	21.5	21.6	12.6	12.0
Tb(SO ₃ F) ₃	34.7	34.9	21.1	20.8	12.5	11.7
Dy(SO ₃ F) ₃	35.3	36.9	20.9	20.4	12.4	11.7
Ho(SO, F)	35.7	36.0	20.8	20.2	12.3	11.5
Er(SO ₃ F) ₃	35.9	35.0	20.6	20.0	12.3	11.9
Tm(SO, F)	36.3	37.4	20.5	19.8	12.2	11.8
$Yb(SO, F)$,	36.8	36.9	20.4	22.4	12.1	12.1
$Lu(SO_3F)_3$	37.1	37.4	20.4	20.4	12.0	12.3

After the reaction had gone to completion, the vessel was pumped to constant weight under dynamic vacuum. The carbonates of lanthanum, praseodymium, and neodymium as prepared for this work required a reaction temperature of about 60 "C and a period of 5-10 days. Cerium carbonate gave a Ce(IV) compound which is discussed elsewhere.' Table I gives data regarding the preparations.

Oxides of only three of the rare earth elements, Nd, Sm, and Eu, gave indications of reacting extensively with $S_2O_6F_2$. Results obtained for these are included in Table I. Raman spectra indicated the products to be mixtures of fluorosulfate with oxide. Complete reaction of these oxides was not obtained even at 75 "C with a reaction period up to 17 days.

Analysis. For each salt, with the exception of $Pr(SO_3F)_3$, M, S, and F were determined, and the results are shown in Table **11.**

Properties. The various fluorosulfates had the colors characteristic of the metals in the I11 oxidation state. All of the salts were soluble in water or in dimethyl sulfoxide. They also dissolved, but to a much smaller extent, in formamide. They appeared to be essentially insoluble in fluorosulfuric acid, acetonitrile or N , N -dimethylformamide.

Acknowledgment. This work was performed in part under contract with the Office of Naval Research.

Registry **No.** Sc(SO3F)3, 58438-33-8; Y(S03F)3, 58438-34-9; La(SO₃F)₃, 58438-35-0; Pr(SO₃F)₃, 58438-36-1; Nd(SO₃F)₃, 58438-37-2; $Sm(SO_3F)_3$, 58438-38-3; $Eu(SO_3F)_3$, 58438-39-4; $58438-42-9$; Ho(SO₃F)₃, 58438-43-0; Er(SO₃F)₃, 58438-44-1;
Tm(SO₃F)₃, 58438-45-2; Yb(SO₃F)₃, 58438-46-3; Lu(SO₃F)₃, $Gd(SO_3F)_3$, 58438-40-7; Tb($SO_3F)_3$, 58438-41-8; Dy($SO_3F)_3$, 58438-47-4; $S_2O_6F_2$, 13709-32-5.

References and Notes

(1) J. M. Shreeve and *G.* H. Cady, *Inorg. Synth.,* **7,** 124 (1963).

(2) R. Dev, W. M. Johnson, and G. H. Cady, *Inorg. Chem.,* 11,2259 (1972).

Contribution from the School of Chemistry, Rutgers University, New Brunswick, New Jersey 08903

Reactions of $M_0{}_2X_8H^{3-}$ and $M_0{}_2X_9{}^{3-}$ with Pyridine¹

Joseph San Filippo, Jr.,* and Margaret A. Schaefer King

$$
Received\;Mav\;15,\;1975
$$

Received *May IS, 1975* AIC503374

The dinuclear complexes of molybdenum,^{2,3} tungsten,⁴ and rhenium^{2b,3,5,6a} halides undergo a variety of reactions with various heteroatom-containing ligands. Although they are frequently accompanied by geometric rearrangement and/or reduction of the metal to a lower oxidation state, in general these reactions occur with retention of the dinuclear framework. This paper describes the study of the extended reactions of several dinuclear complexes of molybdenum with pyridine as well as certain related spectroscopic observations about the products.

Experimental Section

General **Data.** Pyridine (Matheson Coleman and Bell) was distilled from calcium hydride under a nitrogen atmosphere prior to use. Molybdenum hexacarbonyl and molybdenum(II1) chloride (Climax Molybdenum) were used without further purification. Optical spectra were recorded using a Cary Model 14 spectrophotometer. Infrared spectra (>400 cm⁻¹) were obtained on a Perkin-Elmer Model 225 grating spectrophotometer employing either KBr disks or Nujol mulls supported on polyethylene plates. Frequencies are precise to ± 1 cm⁻¹. Raman spectra were recorded on a Cary Model 82 laser Raman spectrometer equipped with a rotating sample cell similar to that described elsewhere.^{6b} Unless otherwise noted, a slit width of 3 cm⁻¹ and a scan rate equal to the ratio of the slit width to time constant were employed. Excitation was provided by Coherent Radiation Laboratory Model 52 argon and kryton ion lasers. Reported frequencies are precise to ± 1 cm⁻¹. Far-infrared spectra (<400 cm⁻¹) were recorded on a Beckman Fourier Model FS-720 spectrophotometer employing Nujol mulls supported on polyethylene plates. Frequencies are precise to ± 0.5 cm⁻¹.

Raman intensities were determined by adding a known amount of internal standard (KReO₄ or $KNO₂$) to a predetermined quantity of the desired complex admixed with an inert substrate (KBr). The resulting mixture was homogenized in a Spex Wig-L-Bug for 3-5 min. A polar planimeter was used to determine the intensity of each band of interest by integrating the area under each envelope and comparing it to the area of a selected band in the internal standard. All intensities were corrected for phototube response.

Analyses were performed by Galbraith Laboratories, Knoxville, Tenn.

Tricesium 1,1,1,2,2,2-Hexachloro-u-hydrido-di-u-chloro-di $molybdenum(III), ~ Cs₃Mo₂Cl₈H, tricesium 1,1,1,2,2,2-hexabromo \mu$ -hydrido-di- μ -bromo-dimolybdenum(III), Cs₃Mo₂Br₈H, tricesium enneachlorodimolybdenum,⁷ Cs₃Mo₂Cl₉, mer-trichlorotris(pyridine)molybdenum(III),⁸ mer-MoCl₃(py)₃, tetrachloro-² and tetrabromotetrakis(pyridine)dimolybdenum(II),^{2a} Mo₂Cl₄(py)₄ and $Mo₂Br₄(py)₄$, and tetrapotassium octachlorodimolybdenum(II),⁹ K4Mo2C18, were prepared according to literature procedures.

Preparation **of** Tricesium **Enneabromodimolybdenum(III),** Cs₃Mo₂Br₉. Cs₃Mo₂Br₈H (1.0 g, 0.81 mmol) was placed in a 200-ml beaker along with a Teflon-coated stirrer bar. Deoxygenated hydrobromic acid (75 ml, 48%) was added and the mixture stirred under nitrogen until dissolution was completed. Two platinum electrodes, each measuring $\sim 10 \text{ cm}^2$ in area, were then inserted into the solution, and, with continuous stirring and maintaining a steady stream of nitrogen through the solution, the mixture was electrolyzed for 2 min at 4.0 ± 0.5 A.¹⁰ The red precipitate, which began forming almost immediately, was collected by suction filtration, washed with 50 ml of distilled water, 50 ml of absolute ethanol, and finally 50 ml of anhydrous ether, and dried in vacuo. The isolated yield of tricesium enneabromodimolybdenum was 65%. Anal. Calcd for $Cs₃Mo₂Br₉$: Br, 55.04. Found: Br, 55.08.

Reaction of Cs₃Mo₂Cl₈H with Pyridine. Tricesium 1,1,1,2,2,2hexachloro- μ -hydrido-di- μ -chloro-dimolybdenum(III) (1.5 g, 1.2 mmol) was placed in a 12 -in. \times 0.5-in. (i.d.) Fischer-Porter combustion tube. Pyridine (20 ml) and a Teflon-coated stirring bar were added and the vessel was tightly sealed with a Teflon-lined cap and placed