KrF2 Adducts

 Sb_2F_{11} -, 39797-64-3; $XeO_2F+Sb_2F_{11}$ -, 52078-91-8; $XeOF_4$, 13774-85-1; SbF₅, 7783-70-2; IOF₃, 19058-78-7; XeO₂F₂, 13875-06-4.

References and Notes

- (1) N. Bartlett and F. 0. Sladky, "Comprehensive Inorganic Chemistry", **Vol.** 1, J. C. Bailar and A. F. Trotman-Dickenson, Ed., Pergamon Press, Oxford, 1973 Chaper 6.
- (2) R. J. Gillespie and B. Landa, *Inorg.* Chem., 12, 1383 (1973). (3) R. J. Gillespie, A. Netzer, and G. J. Schrobilgen, *Inorg.* Chem., **13,** 1455
- (1974).
- **(4) V.** M. McRae, R. D. Peacock, and D. R. Russell, Chem. *Commun.,* 62 (1969).
- (5) N. Bartlett, M. Gennis, D. D. Gibler, B. K. Monell, and A. **Zalkin,** *Inorg.* Chem., **12,** 1717 (1973).
- (6) N. Bartlett, F. Einstein, D. F. Stewart, and J. Trotter, *J.* Chem. *Soc.,* **4,** 1190 (1967).
- (7) N. Bartlett, B. G. **De** Boer, F. J. Hollander, F. 0. Sladky, D. H. Templeton, and A. Zalkin, *Inorg.* Chem., **13,** 780 (1974).
- (8) K. Leary, D. H. Templeton, A. Zalkin, and N. Bartlett, *Inorg.* Chem., 12, 1726 (1973).
- (9) R. J. Gillespie and G. J. Schrobilgen, *Inorg.* Chem., **13,** 765 (1974).
-
- (10) B. Landa and R. J. Gillespie, *Inorg.* Chem., in press. (11) K. 0. Christe, E. C. Curtis, and R. D. Wilson, private communication.
- (12) D. E. McKee, C. **J.** Adams, A. Zalkin, and N. Bartlett, J. Chem. *Soc.,*
- Chem. *Commun.,* 26 (1973). (13) N. Bartlett and M. Wechsberg, *Z. Anorg. Allg. Chem.,* **385,** *5* (1971).
- (14) B. Frlec, M. Bolinc, P. Charpin, and M. Drifford, *J. Inorg.* Nucl. *Chem.,*
- **34, 2938 (1972).**
(15) F. O. Sladky, P. A. Bulliner, N. Bartlett, B. G. DeBoer, and A. Zalkin,
- Chem. *Commun.,* 1048 (1968). (16) K. Leary, A. Zalkin, and N. Bartlett, *J.* Chem. *SOC., Chem. Commun.,* 131 (1973).
-
-
- (17) K. Leary, A. Zalkin, and N. Bartlett, *Inorg. Chem.*, 13, 775 (1974).
(18) N. Bartlett and F. O. Sladky, *J. Am. Chem. Soc.*, 90, 5316 (1968).
(19) D. Gibler, B. Morrell, N. Bartlett, and A. Zalkin, Abstracts, 162d Na Meeting of the American Chemical Society, Washington, D.C., Sept 13-17, 1971, NO FLU0 1.
- (20) (a) B. Cohen and R. D. Peacock, *J. Inorg.* Nucl. *Chem.,* 28,3056 (1966); (b) D. Martin, *C. R. Hebd. Seances Acad. Sci., Ser. C,* 1145 (1969).
- (21) H. Selig, *Inorg.* Chem., **5,** 183 (1966).
- (22) R. J. Gillespie, B. Landa, and G. J. Schrobilgen, Chem. *Commun.,* 1515 (1971).
- (23) R. J. Gillespie, B. Landa, and G. J. Schrobilgen, *J.* Chem. *Soc.,* Chem. Commun., 607 (1972).
- (24) P. Boldrini, R. J. Gillespie, P. R. Ireland, and G. J. Schrobilgen, *Inorg.* Chem., **13,** 1690 (1974).
- (25) R. J. Gillespie and G. J. Schrobilgen, *Inorg.* Chem., **13,** 2370 (1974). (26) D. E. McKee, A. Zalkin, and N. Bartlett, *Inorg.* Chem., 12,1713 (1973).
-
- (27) D. E. McKee, C. J. Adams, and N. Bartlett, *Inorg.* Chem., **12,** 1722 (1973).
- (28) H. Selig, H. H. Claassen, and J. H. Holloway, *J.* Chem. *Phys.,* 52, 3517 (1970).
- (29) H. Schmeisser, D. Naumann, and E. Lehmann, *J. Fluorine* Chem., **3,** 441 (1973).
- (30) H. H. Hyman, "Physical Chemistry", Vol. *5,* H. Eyring, D. Henderson, and W. Jost, Ed., Academic Press, New York, N.Y., 1970 Chapter 11, p 610.
-
- (31) See ref 30, pp 611-612 (32) R. J. Gillespie, "Molecular Geometry", Van Nostrand-Reinhold, London, 1972,
- (33) R. J. Gillespie and G. J. Schrobilgen, *Inorg.* Chem., **15,** 22 (1976).
-
- (34) R. L. Carter, *J.* Chem. *Educ.,* **48,** 297 (1971). (35) W. G. Fateley, F. R. Dollish, N. T. McDevitt, and F. F. Bentley, "Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method", Wiley-Interscience, New York, N.Y., 1972. (36) P. A. W. Dean, R. J. Gillespie, and R. Hulme, Chem. *Commun.,* 990
- (1969)
-
- (37) K. 0. Christe and E. C. Curtis, *Inorg.* Chem., **11,** 2196 (1972). (38) G. M. Begun, W. H. Fletcher, and D. F. Smith, *J.* Chem. Phys., 42, 1229 (1965).
- (39) H. H. Claassen and G. Knapp, *J. Am.* Chem. *Soc.,* 86, 2341 (1964). (40) K. Nakamoto, "Infrared Spectra of Inorganic and Coordination Compounds", 2d ed, Wiley-Interscience, New York, N.Y., 1970.
- (41) R. J. Gillespie and P. Spekkens, *J.* Chem. *Soc.,* Chem. *Commun.,* 314
- (1975).
- (42) H. A. Carter and F. Aubke, *Inorg.* Chem., **10,** 2296 (1971).
- (43) J. G. Malm and C. L. Chernick, *Inorg. Synth.,* 8, 254, 258 (1966). (44) I. Sheft, T. M. Spittler, and F. H. Martin, *Science,* **145,** 701 (1964).
- (45) C. L. Chernick, H, H. Claassen, T. G. Malm, and P. F. Plurien in "Noble Gas Compounds", H. H. Hyman, Ed., University of Chicago Press, Chigaco, Ill., 1963, p 106.

Contribution from the Department of Chemistry, The University of Leicester, Leicester LE1 7RH, England

Preparation and Characterization of $2KrF_2-SbF_5$ **,** KrF_2MF_5 **(M = Sb, Ta),** and KrF_2 -2MF₅ (M = Sb, Ta, Nb): the $[Kr_2F_3]^+$ and $[KrF]^+$ Cations¹

BORIS FRLEC² and JOHN H. HOLLOWAY^{*}

Received May 20, 1975 AIC503529

The new adducts $2KrF_2SbF_5$, KrF_2MF_5 (M = Sb, Ta), and KrF_22MF_5 (M = Ta, Nb) have been prepared and characterized, and $2KrF_2TAF_5$ has been obtained in solution. Raman spectra of these adducts and the already known KrF₂·2SbF₅ are interpreted in terms of the molecules having fluorine-bridged (Kr---F---M) contributions to the bonding as well as contributions from ionic formulations such as $[Kr_2F_3]^+ [MF_6]^$ and $[KrF]^+ [MF_6]^-(M = Sb, Ta)$ and $[KrF]^+ [M_2F_{11}]^-(M = Sb, Ta,$ Nb). Thermal decomposition studies on some of the adducts have produced evidence for other new adducts which can be conveniently formulated as $[xKr_{2}KrF]$ ⁺ $[Ta_{2}F_{11}]^-$ and $[xKrF_{2}KrF]$ ⁺ $[Nb_{2}F_{11}]^-$ (where x is probably equal to 1), in which the additional $KrF₂$ units appear to be weakly associated with the cationic parts of the adducts.

Introduction

The difficulty in preparing large-scale samples of $KrF₂$ and the fact that the compound is said to decompose readily at room temperature³ has impeded progress with its chemistry. Until our own¹ and Gillespie and Schrobilgen's recent work⁴ the only established krypton compound, other than $KrF₂$ itself, was $KrF_2.2SbF_5.^{5a}$ This has recently been characterized by Bartlett and his co-workers as the salt $[KrF]^+[Sb_2F_{11}]^{-}$.

Other information on krypton difluoride chemistry has been published by Russian workers.^{6,7} In an extensive review on krypton difluoride they briefly mentioned krypton difluoride adducts of the types $\text{KrF}_2 \cdot \text{MF}_5$ (M = Sb, Ta), $\text{KrF}_2 \cdot 2\text{MF}_5$ $(M = Sb, Ta, Nb)$, and $2KrF_2MF_4 (M = Ti, Sn)$ but no details of preparation or characterization were reported.⁶ In another paper, however, the same authors claimed that KrF_2-2SbF_5 is the only compound formed in the $KrF_2-Sb F_5$ -Br F_5 system.⁷

We have investigated the reactions of $KrF₂$ with NbF₅, TaF₅, and $[BrF₄]⁺[Sb₂F₁₁]⁻$ in BrF₅ solution and the thermal decompositions of the materials which can be separated. The solid adducts $2KrF_2-SbF_5$, KrF_2MF_5 (M = Sb, Ta), and $KrF_2.2MF_5$ (M = Ta, Nb) have been prepared and characterized by gravimetry and Raman spectroscopy for the first time and evidence for $2KrF_2TaF_5$ has been observed in so-

lution. The Raman spectrum of $KrF_2.2SbF_5$ has also been recorded and assigned. X-ray powder photographic and infrared spectroscopic examination of some of the compounds has been made. We have shown that the main Raman shifts in solid $2KrF₂·SbF₅$ and related shifts in the spectra of mixtures of excess of KrF_2 with TaF₅ in BrF₅ solution can be assigned to $[Kr_2F_3]^+$ stretching modes. As first pointed out by Gillespie and Schrobilgen, 4 this cation appears to have an asymmetric fluorine-bridged structure unlike its xenon analogue.⁸ The strongest bands in the Raman spectra of $KrF₂·MF₅$ (M = Sb, Ta) and $KrF₂·2MF₅$ (M = Ta, Nb) can be assigned to $\nu(Kr-F^+)$ split by weak intermolecular coupling. These frequencies, together with those associated with ν - $(Kr-F^+)$ in $KrF_2.2SbF_5$, decrease in the order SbF_5 > TaF₅ $>$ NbF₅ for both series of adducts in a way similar to that of their xenon difluoride analogue^.^ This we have interpreted as indicative of a progressive lengthening of the Kr-F bond in $KrF⁺$ and an increasing contribution to the bonding from the fluorine-bridged structures $F-Kr\cdots F-MF₅$ or $F-\widetilde{K}r\cdots F M_2F_{10}$.

Thermal decomposition studies on the adducts containing the highest KrF₂ content have produced evidence for other new adducts which contain weakly associated $KrF₂$. These can be conveniently formulated as $[xKrF_{2} \cdot KrF]^{+}[Ta_{2}F_{11}]^{-}$ and $[xKrF_2\cdot KrF]^+[Nb_2F_{11}]^-$ (where x is probably equal to 1).

Results and Discussion

Preparations of the Antimony Pentafluoride Adducts. The direct reaction of $KrF₂$ with SbF₅ at room temperature takes place even in the vapor phase and the exothermicity of the reaction results in the decomposition of a substantial portion of $KrF₂$ and the product. In some experiments white and blue flames accompanied the decompositions. Reaction of the decomposing $KrF₂$ with the Kel-F or glass walls of the reactor also occurs. The Raman spectra of solids resulting from such reactions, where the initial ratio of the components is $KrF_2:SbF_5 = -3:1$, indicate the formation of mixtures of mainly KrF_2-SbF_5 and KrF_2-2SbF_5 .

The reaction of KrF_2 with solid $[BrF_4]^+[Sb_2F_{11}]^-$ at room temperature gives BrF_5 and the corresponding reaction in BrF_5 solution results in the total decomposition of $KrF₂$ to krypton and fluorine. At -40 °C, however, a rather slow reaction occurs and, provided an excess of krypton difluoride is used, $2KrF_2SbF_5$ is produced in the solution (solubility at $-40 °C$ is \sim 0.15 mmol/100 g of solvent). The solvent and excess of KrF₂ can be removed at -50 $^{\circ}$ C to leave a white solid. The weight loss vs. time of pumping curve at this temperature levels out close to the weight expected for the composition $2KrF_2-SbF_5$. The solid is quite stable at $-40 °C$ in a dynamic vacuum but slowly decomposes at -30 $^{\circ}$ C to give KrF₂ and $KrF₂·SbF₅$.

When the reaction is carried out with a $KrF₂:SbF₅$ (from $[BrF₄]⁺[Sb₂F₁₁]⁻$ ratio approaching 2:1, the product is more heavily contaminated with $[KrF]^+[SbF_6]$ ⁻ than in reactions where larger excesses of $KrF₂$ are used. Figure 1 shows a weight loss vs. time of pumping curve for the product from a reaction of 4.14 mmol of $KrF₂$ with 2.02 mmol of $SbF₅$ in BrF₅. The complexity of initial product is reflected in the poor correlation of the first point of inflection with the expected weight of $2KrF_2SbF_5$. However, there is close agreement with the expected weight loss after further decomposition to the more stable KrF_2-SbF_5 .

 $KrF₂·SbF₅$ is stable at room temperature in a dynamic vacuum. Its x-ray powder diffraction pattern shows a very close relationship to that of XeF_2TaF_5 (or the isostructural XeF_2NbF_5 ⁹ but there is a more marked difference between that of KrF_2-SbF_5 and its xenon analogue.⁹ The solid melts at 45 ± 1 °C with decomposition. Above 35 °C under a dynamic vacuum it slowly decomposes to give the more stable,

Figure 1. Weight loss vs. time of pumping curve for the reaction of 4.14 mmol of $KrF₂$ with 2.02 mmol of $SbF₅$ in $BrF₅$ at -40° C.

cream-colored KrF_2 -2SbF₅ and KrF_2 , some of which is decomposed into krypton and fluorine. The adduct KrF_2-2SbF_5 , like the 1:l adduct, is stable under a dynamic vacuum at room temperature.

Preparation of the Tantalum Pentafluoride Adducts. If the reaction of $KrF₂$ with Ta $F₅$ in anhydrous hydrogen fluoride is carried out in Kel-F containers at room temperature, vigorous attack and the almost immediate fracture of the containers occurs. Ta F_5 is only sparingly soluble in Br F_5 at room temperature but, in the presence of $KrF₂$, solution is effected easily even at -55 **OC.** These mixtures **can** be handled in either Kel-F or well-seasoned glass without attack. However, at room temperature krypton and fluorine are rapidly liberated and decomposition is detectable even at -30 **OC.** In spite of these difficulties we have found that tantalum pentafluoride adducts of $KrF₂$ can be isolated and characterized provided that temperature conditions are carefully controlled.

 KrF_2TaF_5 can be obtained by the reaction of TaF₅ with excess of KrF_2 in BrF_5 at $-55 °C$. In a typical experiment 3.78 mmol of KrF_2 was condensed onto 1.29 mmol of TaF_5 in BrF₅ (2.775 g). The mixture was held at -55 °C for 60 min and then the weight loss vs. time of pumping curve was recorded (Figure 2). Raman spectra of the frozen-solution mixture, recorded during the first 500 min, showed that most of the solvent is removed before the excess of $KrF₂$ leaves the reaction mixture. Peaks at 595 and 571 cm⁻¹ may be assigned to the presence of $[Kr_2F_3]^+$ in solution,^{1b} but no evidence of a point of inflection at the 2:l composition could be found, and the peaks disappear sometime before the 1:1 stoichiometry is reached. Peaks which can be correlated with KrF_2TaF_5 (and smaller amounts of $[KrF_2:KrF]^+[Ta_2F_{11}]^-$) are also evident. The KrF_2TaF_5 finally remaining is stable under a dynamic vacuum at -45 °C but decomposes above this temperature to $KrF₂$ and TaF₅. No changes are observed in the slope of the decomposition curve (except for those caused by changes in the ambient temperature) and the almost constant slope at -35 °C is indicative of a significant dissociation pressure of the adduct at that temperature. However, Raman spectra of the reaction mixture at various times during the decomposition (see Figure 2) indicate that decomposition

Figure **2.** Weight **loss vs.** time of pumping curve for the reaction of 3.78 mmol of $KrF₂$ with 1.29 mmol of TaF_s in BrF_s at -55 °C.

of 6.82 mmol of KrF_2 with 1.55 mmol of TaF_s in BrF_s at -30 °C.

proceeds via the intermediate $KrF_2·2TaF_5$.

 $KrF₂2TaF₅$ can be isolated from the solution after excess of $KrF₂$ has been allowed to react with TaF₅ in BrF₅ at -30 ^oC for 1 h. The mixture was quenched and the weight loss vs. time of pumping curve was recorded (Figure **3).** The decomposition curve and the Raman spectra observed during the course of the decomposition showed no evidence for the occurrence of KrF_2TaF_5 intermediate in this case. This suggests that at the reaction temperature no $\text{KrF}_2\text{-}\text{TaF}_5$ adduct is formed. This is in accord with our previous observation that $KrF_2 \cdot TaF_5$ is decomposed at temperatures above -45 °C.

Figure **4.** Weight loss **vs.** time *of* pumping curve for the reaction of 4.21 mmol of KrF_2 with 1.55 mmol of NbF_s in BrF_s at -30°C.

 $KrF_2.2TaF_5$, which is white, can be retained under a dynamic vacuum at -50 °C but decomposes slowly above -20 **"C** to the component molecules.

Preparation of KrF₂.2NbF₅. We were unable to isolate or find evidence for KrF_2NbF_5 even in very low-temperature reactions. The only clearly identifiable adduct is $KrF_2.2NbF_5.$

In a typical preparation 1.55 mmol of NbF₅ was allowed to react with 4.21 mmol of KrF_2 in BrF₅ (3.454 g) at -40 ^oC for 20 min. The clear, slightly yellow solution was quenched and the weight loss vs. time of pumping curve was recorded (Figure 4). No evidence for KrF_2NbF_5 could be found in the Raman spectra **of** decomposition products but the change in slope after about 170 min of pumping at -50 °C may correspond to decomposition of $[KrF_2\cdot KrF]^+[Nb_2F_{11}]^-$. However, the Raman spectra recorded throughout the decomposition up to about 430 min do not change appreciably and, therefore, only one compound, $KrF_2.2NbF_5$, has been definitely characterized.

The white $KrF_2.2NbF_5$ clearly has a considerable dissociation pressure even at -50 °C (in fact it is just slightly lower than the vapor pressure of $KrF₂$ at that temperature) and the decomposition products are $KrF₂$ and NbF₅.

General Discussion. The main products of the reactions are formed by the series of schemes outlined in Figure *5.* The only room-temperature-stable adducts are $KrF_2.2SbF_5$ and $KrF₂-SbF₅$ and the observed trend in thermal stability under a dynamic vacuum is as follows: $KrF_2.2SbF_5 > KrF_2.5bF_5$ $>$ KrF₂·2TaF₅ $>$ 2KrF₂·SbF₅ $>$ KrF₂·TaF₅ $>$ KrF₂·2NbF₅.

In view of the low thermal stability of KrF_2 -2NbF₅ (which dissociates under a dynamic vacuum even at -50 **"C)** and the above trends with respect to the antimony and tantalum pentafluoride adducts, it is not surprising that we have been unable to obtain KrF_2-NbF_5 .

The fact that KrF_2 -TaF₅ is produced at -60 °C but $KrF₂·2TaF₅$ is the product of the reaction of $KrF₂$ and $TaF₅$ in BrF₅ at -30 °C is in line with the observation (Figures 2) and 5) that KrF_2TaF_5 decomposes under dynamic vacuum at temperatures in excess of about **-35 OC** whereas Kr- F_2 -2TaF₅ is stable under vacuum up to -20 °C.

Vibrational Spectra in the $\text{KrF}_2-\text{MF}_5-\text{BrF}_5$ (M = Sb, Ta, **Nb) Systems.** The Raman shift of the symmetrical stretching **1.** Large excess of $\text{KrF}_2 + [\text{BrF}_4]^*[\text{Sb}_2\text{F}_{11}] - \frac{-40 \text{ °C in}}{\text{BrF}_5}$ $2KrF_2\cdot SbF_5(\text{soln})$ **remove solvent at -50 °C** under dynamic vacuum *>35* 'C under dynamic vacuum KrF_2 + $KrF_2.2SbF_5$ (some of which is $Kr + F_2$) 2. Excess of $KrF_2 + TaF_s \xrightarrow{55^\circ C \text{ in}} FrF_s$ $2 \text{KrF}_2 \cdot \text{SbF}_5(\text{cryst}) \xrightarrow{\text{--}30\text{ }^{\circ}\text{C under}} \text{KrF}_2 \cdot \text{SbF}_5 + \text{KrF}_2$ **BrF,** remove solvent at **-45** 'C

$$
KrF_2 \cdot TaF_5 \text{(soln)} \frac{\text{remove solvent at } -45 \text{ °C}}{\text{under dynamic vacuum}}
$$

$$
KrF_2 \cdot TaF_5 \text{(soln)} \xrightarrow{\text{remove solvent at } -45^\circ \text{C}}
$$
\n
$$
KrF_2 \cdot TaF_5 \text{(soln)} \xrightarrow{\text{remove solvent at } -45^\circ \text{C}}
$$
\n
$$
KrF_2 \cdot TaF_5 \text{(cryst)} \xrightarrow{-35^\circ \text{C under}}
$$
\n
$$
\text{(KrF}_2 \cdot 2TaF_5 \text{ intermediate)} \xrightarrow{-25^\circ \text{C under}}
$$
\n
$$
3. \text{Excess of KrF}_2 + TaF_5 \xrightarrow{-30^\circ \text{C in}}
$$
\n
$$
r_{\text{cF}} = 3TrF_5 \text{(cells)} \xrightarrow{-50^\circ \text{C under}}
$$

$$
(KrF2 \cdot 2TaFs intermediate) \xrightarrow{\text{dynamic vacuum}} TaFs + KrF2
$$

3. Excess of KrF₂ + TaF₅
$$
\xrightarrow{\text{730 }^{\circ}C \text{ in}}
$$

-50 'C under KrF,.2TaF5 (soln) + dynamic vacuum KrF, t NbF, -

$$
KrF_2.2TaF_5(cryst) \frac{>-20°C under}{dynamic vacuum} TaF_5 + KrF_2
$$

4. Excess of $KrF_2 + NbF_5 \xrightarrow{\text{--}30^\circ C \text{ in}} \text{BrF}_5$ $\frac{6}{\text{BrF}_5}$

$$
\mathrm{KrF}_2 \cdot 2\mathrm{NbF}_5 \cdot (\mathrm{soln}) \xrightarrow{\mathrm{60\ ^{\circ}C\ under}}
$$

$$
KrF_2.2NbF_5(cryst) \frac{>-50°C under}{dynamic vacuum} NbF_5 + KrF_2
$$

Figure *5.* Schemes for the formation of krypton difluoride adducts with SbF_s, TaF_s, and NbF_s.

mode of KrF_2 dissolved in BrF₅ at room temperature appears at 462.5 cm⁻¹ and in the frozen solution (-196 °C) at 475 cm⁻¹. The room-temperature value coincides with ν_1 of solid $KrF₂$ (462.3 cm⁻¹)¹⁰ which means that the environments of $KrF₂$ in our solutions and in the solid must be very similar.

The observed Raman and infrared frequencies for the series of adducts are listed in Table I together with our tentative assignments, which are based on the ionic formulations $[Kr_2F_3]^+[MF_6]^-, [KrF]^+[MF_6]^-,$ and $[KrF]^+[M_2F_{11}]^-.$ However, the appearance of $Kr \cdot F$ and $M \cdot F$ ($M = Sb$, Ta, Nb) bridge stretching modes and the F-Kr--F bending modes in the spectra is indicative of appreciable covalent character, there being a significant contribution to the bonding from fluorine-bridged structures. This is further borne out in the 1:l adducts by consideration of the spectra associated with the anionic part of the molecule. The spectra can be interpreted by assuming that the compounds are ionic species $[KrF]^{+}$ - $[MF₆]$ ⁻ (in which the anion has O_h symmetry). However, for $[KrF]^+[SbF_6]$ ⁻ this results in the assignments of peaks in the Raman spectrum as follows: 671 and 647 cm⁻¹ are associated with $v_1(\mathbf{a_g})$; 591 cm⁻¹ is associated with $v_2(\mathbf{e_g})$; 687 cm⁻¹ is associated with $\nu_3(t_{1u})$; 270 and 260 cm⁻¹ are associated with $\nu_4(t_{1u})$; and 294 and 284 cm⁻¹ are associated with $\nu_5(t_{2g})$. In the infrared spectrum bands at 666 cm^{-1} have to be assigned to ν_1 , and those at 572 cm⁻¹, to ν_2 but no satisfactory assignment for 652 and 630 cm⁻¹ can be made. If, however, the compounds are formulated as fluorine-bridged structures

Figure 6. Raman spectra showing stretching frequencies (cm⁻¹) associated with $Kr - F^+$ and $Kr_2F_3^+$ stretching modes.

 $F-Kr^+\cdots F-MF_5$, the anion can be regarded as distorted from O_h to C_{4v} symmetry.^{9,11} For C_{4v} symmetry 11 normal modes of vibration are expected which are related to the six vibrational modes of the $[MF_6]$ ⁻ anion of O_h symmetry. In particular the frequencies of the normal modes for the C_{4v} molecule, $v_1(a_1)$, $v_2(a_1)$, $v_8(e)$, $v_3(a_1)$, and $v_7(b_2)$, should correspond closely to those of the respective normal modes of the O_h molecule. The more satisfactory assignment on the basis of C_{4v} symmetry (see Table I) is an indication of the significant contribution to the bonding from the fluorinebridged formulation.

Recently we have shown that the stretching frequencies associated with $\nu(Xe-F^+)$ for the XeF_2 -2MF₅ and XeF_2 -MF₅ $(M = Sb, Ta, Nb)$ adducts decrease in the order SbF₅ > TaF₅ > NbF₅ while those assigned to $\nu(Xe^{-E})$ increase.⁹ There is also a similar correlation between $2XeF_2SbF_5$ and $2XeF_2TaF_5$ ⁹ A similar trend is evident in the krypton analogues (Figure 6) except that $[KrF]^+$ in $[KrF]^+[Nb_2F_{11}]^$ has one band higher in frequency than $[KrF]^+[Ta_2F_{11}]^-$. In this case, if a weighted mean is taken, the progression is again evident. This suggests that in each series the antomony adduct is the most ionic and the strength of the fluorine-bridged interaction is increased in the order $Sb < Ta < Nb$. This is totally in accord with the accepted order of base strengths for the $[SbF_6]^-$, $[TaF_6]^-$, and $[NbF_6]^-$ anions. Comparison of the frequencies of $\nu(Kr-F)$ and $\nu(Kr-F)$ for the $[MF_6]$ ⁻- and $[M_2F_{11}]$ -containing adducts of the same metal indicate that the bridging bond in the $[MF_6]$ ⁻ adduct is weaker in each case (see Table **I).**

Detailed examination of the Raman spectra observed during the decompositions of adducts containing the most krypton difluoride has revealed a new class of adducts which we have tentatively formulated as $[xKrF_2*KrF]^+[M_2F_{11}]^-$. Since we have only observed these species in mixtures with $[KrF]^{+}$ -[MF₆]⁻ and [KrF]⁺[M₂F₁₁]⁻ adducts, definitive assignments of all of the peaks is difficult. The principal characteristic of the spectra is a collection of peaks in the $535-575$ -cm⁻¹ region. These are at higher frequency than the symmetric stretching mode in solid KrF_2 (462.3 cm⁻¹)¹⁰ and may be attributed to $KrF₂$ loosely associated with one of the anionic-cationic species. Since this association can reasonably be expected to occur at the cation (see below), there should be a partial donation of electron density to the cationic part of the adduct which should be evidenced by a slight drop in the observed frequencies of $\nu(Kr-F)$. Table II lists the main assigned

Table I. Observed Infrared (Ir) and Raman (R) Frequencies (cm⁻¹) and Tentative Assignments for 2KrF₂.MF₅, KrF₂.MF₅, and $KrF₂$.2MF_s Adducts^c

ax is probably 1. Relative intensities are given in parentheses. All spectra were run at -196 °C. ^b Peaks are coincident with the spectra of the related simpler adduct (see Table I) and assignment, therefore, **is** dubious.

Raman frequencies for the $[xKrF_2.KrF]^+[M_2F_{11}]^-$ species. It has already been pointed out by Gillespie and Schrobilgen,⁴ that solid $[Kr_2F_3]^+$ [SbF₆]⁻ appears to contain an unsymmetrical V-shaped cation (I, Figure **7).** It is also possible that it may consist of a mixture of unsymmetrical and symmetrical (I and 11, Figure **7)** forms. Although it is uncertain how many weakly associated KrF2 molecules are attached to each $[KrF]^+[M_2F_{11}]^-$ entity in the $[xKrF_2$ $KrF[^{+}[M_2F_{11}]^-$ species, which we have observed, in view of the overall stoichiometry of the mixtures in which they are observed, it seems likely that only one is present. It may, therefore, be possible to regard the $[xKrF_2.KrF]^+[M_2F_{11}]^$ adducts as $\text{[Kr}_2\text{F}_3]^+$ species (i.e., $\text{[xKrF}_2\text{-}KrF]^+ \text{[M}_2\text{F}_{11}]^ [Kr_2F_3]^+[M_2F_{11}]^-$).

 $[Kr_2F_3]^+$ [Sb F_6]⁻ **Raman Spectrum.** The main shifts in the Raman spectra of the white solids remaining after removal

Figure 7. Asymmetric and symmetric $[Kr_2F_3]^+$ cations.

of solvent and $KrF₂$ from the reactions of $KrF₂$ with $SbF₅$ at -40 °C (Table I) can be readily assigned to the $[Kr_2F_3]$ ⁺ cation and the assignment correlates well with that of the xenon difluoride adduct.^{8,9} However, additional peaks at 565 and 559 cm-', which are only 15% and **40%** of the height of the main peak associated with $\nu(Kr-F)$, also appear in the

Figure 8. Raman spectra of solids obtained during the vacuum decomposition of the reaction mixture KrF₂-SbF₅-BrF₅. Spectra were run at -196 °C except where otherwise stated.

spectra. The positions of these shifts are intermediate between those associated with $\nu(Kr-F)$ in cationic $[KrF]^+$ species and free $KrF₂$ itself.

In view of the evidence of weak peaks at 623 and 619 cm⁻¹, which seemed to be shifted from the frequencies of bands associated with $\nu(Kr-F)$ in $[KrF]^+[SbF_6]^-$ (Table I) we at first assumed^{1b} that these, together with the shifts at 565 and 559 cm⁻¹, were associated with $[KrF_2:KrF]^+[SbF_6]$. Under the conditions in our dynamic experiments, in which species were observed during continuous pumping procedures, this might be expected as the intermediate in the decomposition of a symmetrical V-shaped $[Kr_2F_3]^+$ ion in $[Kr_2F_3]^+[SbF_6]^+$ as it decomposed to KrF_2 and $[KrF]^+[SbF_6]^-$. A second possibility is that the shifts at 565 and 559 cm⁻¹ are associated with the $[Kr_2F_3]^+$ cation and that the $2KrF_2-SbF_5$ adduct exists as an equilibrium mixture containing both the symmetric and asymmetric cations. A more satisfactory interpretation, however, is that advanced by Gillespie and Schrobilgen^{4,12} which suggests that the main peaks in the $585-610$ -cm⁻¹ region and those at 565 and 559 cm^{-1} (557 cm^{-1} in their spectra) should all be assigned to an asymmetric $[Kr_2F_3]^+$ cation (I, Figure 7). The Raman spectrum of $[Kr_2F_3]^+$ [SbF₆]⁻, assigned on this basis is shown in Table I. **A** single-crystal x-ray diffraction study could unambiguously confirm this interpretation and will permit detailed comparison with the symmetrical $[Xe_2F_3]^+$ cation.

Raman Spectra of Products Obtained during the Vacuum Decomposition of the KrF2-SbF5-BrF5 Reaction Mixture *(See* **Figure 1).** The Raman spectrum recorded during the preparation and decomposition of a $2KrF_2SbF_5$ sample prepared from 4.14 mmol of $KrF₂$ and 2.02 mmol of $SbF₅$ is shown in Figure 8. After 235 min of pumping the spectrum, run at -196 °C, indicates that the main constituent is $[Kr_2F_3]$ ⁺- $[SbF₆]$. However, additional weaker shifts at 623 and 619 cm⁻¹ are very close to the values expected for $\nu(KrF^+)$ in $[KrF]^+$ [SbF₆]⁻ and that at 671 cm⁻¹ coincides with ν_1 of $[{\rm SbF}_6]$ ⁻ in $[{\rm KrF}]^+[{\rm SbF}_6]$ ⁻. The conclusion is, therefore, that after 235 min of pumping, a mixture of $[Kr_2F_3]^+$ [SbF₆]⁻ and $[KrF]^+$ [Sb F_6]⁻ remains.

It is interesting to note that the spectrum was taken before the point of inflection associated with the composition $2KrF₂SBF₅$ was reached and yet the decomposition curve at -40 °C (Figure 1) shows a greater weight loss than is anticipated for this composition. These observations suggest that, in the presence of low excesses of $KrF₂$ (starting mole ratio $KrF_2:SbF_5 = 2.09:1.00$, an equilibrium such as $Kr_2F_3 + SbF_6$ \equiv $[KrF]^+$ [SbF₆]⁻ + KrF₂ may occur in the BrF₅ solution.

The equilibrium will be pushed to the right by the slow removal of the $KrF₂$ under the dynamic vacuum. This also explains why free $KrF₂$ is not observed in the Raman spectrum of the solid.

On further pumping at -30 to 0 °C peaks characteristic for $[KrF]^+$ [SbF₆]⁻ grow in. Those assigned to $[Kr_2F_3]^+$ disappear and there is a slight shift in the frequencies associated with ν (Kr-F) from 623 and 619 to 621 and 618 cm⁻¹. The spectrum after 1080 min of pumping is interpreted as being essentially pure KrF_2-SbF_5 (Table I) and the weight loss vs. time of pumping curve confirms the 1:l stoichiometry (Figure

1). If samples of $KrF_2.SbF_5$ are scanned repeatedly at room temperature, the heat generated by the laser beam causes decomposition of the small area of material under investigation and peaks attributable to $KrF_2.2SbF_5$ grow in (see c and d of Figure 8). If KrF_2SbF_5 is heated at 38 °C under dynamic vacuum, it is slowly converted to KrF_2-2SbF_5 (see e of Figure 8).

Raman Spectra of KrFz-TaFs-BrFs Mixtures. Spectra of Products during the Vacuum Decomposition of the KrF2- TaF5-BrF5 Reaction Mixture. Raman spectra of frozen solutions containing excess of $KrF₂$ with TaF₅ in BrF₅ exhibit shifts at 477 (72) cm^{-1} due to undissociated KrF₂. There are also bands at 699 (36) and 579.5 (14) cm^{-1} which are due to the ν_1 and ν_2 modes of $[TaF_6]$ ⁻ or related species, while that at 603 (17) cm⁻¹ is almost certainly due to $[KrF]^+$ in $[KrF]^+[TaF_6]$ (see Table I). The expected related shift at 599 cm^{-1} is not observed but may be obscured by the intense band at 595 (60) cm^{-1} which, together with that at 571 (30) cm^{-1} , is almost certainly due to $[Kr_2F_3]^+$. It appears, therefore, that some of the shifts in the Raman spectra of BrF₅ solutions containing excesses of $KrF₂$ with TaF₅ can be assigned to $[Kr_2F_3]^+ [TaF_6]^-(solv)$ as follows: $\nu(Kr-F)$ 595 (intensities are scaled so that the most intense peak has a value $of 100$). (100), 571 (50); $\nu_1(TaF_6^-)$ 699 (60); $\nu_2(TaF_6^-)$ 579.5 (23)

In experiments where mixtures were pumped at -55 \degree C until most of the $BrF₅$ solvent was removed, Raman spectra of the residual solids did not exhibit strong features at 595 cm^{-1} .

The Raman spectra of the solids isolated from the reaction of 3.78 mmol of KrF_2 and 1.29 mmol of TaF_5 in BrF_5 at -55 **"C** are shown in Figure 9. After 104 min of pumping at -55 ^oC the spectrum consists mainly of peaks associated with $[KrF]^+$ [TaF₆]⁻ together with free KrF₂ and peaks in the $325-345$ -cm⁻¹ region and at 539 (7), 564 (9), 571 (20), 575 (17), and 613 (18) cm⁻¹ and four peaks in the 620-690-cm⁻¹

Figure 9. Raman spectra of the solids obtained during the vacuum decomposition of the reaction mixture KrF₂-TaF_s-BrF_s at -55 °C. Spectra were run at -196 °C except where otherwise stated.

region, all of which we have tentatively attributed to $[xKrF_2.KrF]^+ [Ta_2F_{11}]$. Further pumping reduces the amount of KrF2 present and after **796** min the shift at **469** cm^{-1} due to free $KrF₂$ is no longer visible. At the same time the shifts attributable to weakly associated KrF₂ (Table II) collapse first to two shifts at **571 (37)** and **576 (33)** cm-* and then to a single peak at 569 (42) cm^{-1} . The increase in height of these peaks is paralleled by a similar increase in the height of the band at **613** cm-'. The doublet at **602 (54), 604.5 (46)** cm^{-1} associated with $[KrF]^+ [TaF_6]^-$ reverts to the, more usual, single shift at **603.5** cm-I (see b and c of Figure **9).**

The main features of the Raman spectrum of the compound we have designated $[xKrF_2.KrF]^+[\overline{Ta}_2F_{11}]^-$ are summarized in Table **11.** The existence and formulation of this entity is not definitive. However, the peak at 613 cm⁻¹ associated with ν (Kr-F) is at higher frequency than ν (Kr-F) in any of the tantalum fluoride adducts (see Table **I),** and the trends evident in Figure **6** suggest, therefore, that this band belongs to a $[KrF]$ ⁺ cation which is associated with $[Ta_2F_{11}]$. It seems reasonable to suppose that a proportion of the excess of $KrF₂$ present is weakly associated with the cation, and we are inclined to formulate this as a transient species $[xKrF₂']$ KrF ⁺[Ta₂F₁₁]⁻ rather than as a [Kr₂F₃]⁺ adduct.

On the assumption that the interpretation above is correct we have interpreted the first spectrum (see a in Figure **9)** to mean that initially free KrF_2 , $[KrF]^+ [TaF_6]^-,$ and $[KrF_2$. KrF ⁺[Ta₂F₁₁]⁻ are present in the mixture. The free KrF_2 is removed rather rapidly but, after **769** min of pumping, $[KrF]^+$ [TaF₆]⁻ contaminated with a smaller proportion of $[KrF_2\cdot KrF]^+ [Ta_2F_{11}]$ remains. The Raman spectra of these two materials seem to disappear from the reaction mixture at about the same time, which indicates that they are of comparable stability.

After **1330** min of pumping almost all evidence of $[KrF]^+$ [TaF₆]⁻ and $[KrF_2:KrF]^+$ [Ta₂F₁₁]⁻ disappears. The main evidence for this latter compound in the mixture is the persistence of the band at $341 \overline{(18)}$ cm⁻¹ which does not coincide with any shifts attributable to $\nu(Kr...F)$ in $[KrF]^+ [Ta_2F_{11}]^-$ and, in any case, is too strong. The principal constituent in the mixture is clearly $[KrF]^+ [Ta_2F_{11}]$. Small differences in the recorded frequencies and intensities of the observed shifts associated with v(Kr-F) **(609 (89), 601.9 (loo),** and **595.7 (31)** cm-'; c.f. Table **I)** may not be significant or may be due to the presence of residual $[KrF]^+ [TaF_6]^-$ and [KrFyKrF]+[Ta2F11]-. However, after **1865** min of pumping the spectrum of $[KrF]^+ [Ta_2F_{11}]^-$ is quite clear and superimposed on it is the first evidence of free TaFs **(757.5 (14)** $cm⁻¹$. This continues to grow in as pumping continues, and after **2200** min of pumping the peak height is **50%** of that of the shifts associated with v(Kr-F). After **2582** min of pumping most evidence of krypton-containing adducts disappears and the spectrum is essentially that of free $TaF₅$.

Raman Spectra **of** Products **during** Vacuum Decomposition **of** the KrFz-NbFs-BrFs Reaction Mixture *(See* Figure **4).** In this *case* the spectra in the 520-62O-cm-' region are essentially consistent throughout the pumping procedure as shown in Figure 10. The intense shift at 476 (145) cm⁻¹ in the spectrum run after **77** min of pumping is not coincident with that expected for free $KrF₂$ and is almost certainly due to the presence of the KrFyBrF5 molecular adduct. After **192** min the peak is totally absent but a weak band at 468 cm^{-1} is suggestive of small amounts of $KrF₂$ being still present. The first evidence of free NbF₅ appears in the form of the 773 (5) cm-' peak after **562** min of pumping and this grows in at the expense of the krypton adducts until, after **1920** min only NbFs remains (see Figure **10).**

Most of the remaining peaks in the spectra can be reasonably assigned on the basis of the formulation $[KrF]^{+}$ - $[Nb_2F_{11}]^-$ (see Table I), but those at 571, \sim 537, and 322 cm⁻¹ cannot. In the $KrF_2-SbF_5-BrF_5$ system we observed a group of similar **peaks (576,565,559,334,** and **325** cm-') which were tentatively assigned to the stretching and bridging vibrations of $[Kr_2F_3]^+$ (or KrF_2 loosely bound to KrF^+). The total absence of any shift which could be assigned to octahedral $[NbF₆]⁻$ rules out the presence of an analogous adduct but the spectra and the stoichiometry would allow the existence of $[KrF_2:KrF]^+[Nb_2F_{11}]^-$ in the mixture and our assignments (Table II) are consistent with the presence of this species.⁹

Experimental Section

Materials. KrF2 was prepared **by** a modified electric discharge method³ at -183 °C and \sim 20 mmHg pressure in Pyrex apparatus.

Figure 10. Raman spectra of the solids obtained during the vacuum decomposition of the reaction mixture KrF_2-NbF_5 . Spectra were run at -196 °C except where otherwise stated.

The average yield was \sim 50 mg/h. It was purified by trap to trap sublimation and stored in a preseasoned all-Kel-F container at low temperature.

 $SbF₅$, TaF₅, and NbF₅ were prepared from the elements by pressure fluorination in nickel reactors under static conditions and purified by trap to trap distillation or sublimation under dynamic vacuum.

BrF5 (Matheson Co., East Rutherford, N.J.) was treated with elemental fluorine at room temperature until colorless and then purified by distillation and stored in an all-Kel-F vessel over KF.

Apparatus. Some reactions were carried out in all-Kel-F test tubes (30-ml volume) or Kel-F 0.75-in. diameter tubes equipped with Kel-F valves. Most preparations were carried out in Pyrex U-tubes (25-ml volume) fitted with an extended bottom of square cross section (7 **X** 7 mm). The tubes were equipped with Teflon TF2/ 13 Rotaflo valves and attached to a nickel vacuum line via ground-glass joints and glass-to-metal seals.

Preparation Technique. Reaction tubes were thoroughly seasoned with $BrF₅$ vapor. Solid pentafluorides were loaded into the reaction tube in a drybox (Lintott Engineering Ltd., Horsham, Essex). SbF₅ was distilled into the reactor under dynamic vacuum. Weights were determined by difference to ± 0.2 mg. BrF₅ was distilled onto the pentafluoride, the tube was weighed again, and then $KrF₂$ was sublimed into the reaction mixture at -196 °C under dynamic vacuum. The amount of KrF_2 was determined by difference on the KrF_2 container.

The reaction mixture was warmed up to the reaction temperature and held there until all of the reactants were in solution. Weight loss vs. time of pumping curves were recorded by attaching a second U-tube to the reaction tube and collecting volatiles at -196 °C. The collection tube was periodically weighed and replaced with another empty collection tube. Thus the amount of volatiles was determined indirectly by differential weighing. Occasionally, Raman spectra of the contents of the reaction tube were recorded at -196 °C. Great care was taken to avoid warming up the reaction tube at any time during the experiment. At the end of each decomposition a direct weight loss was determined by weighing the reaction tube. Very good agreements were obtained; a difference of less than 10 mg was obtained in every experiment after 50 weighings.

Raman Spectra. Raman spectra were recorded using either a Coderg modified PH1 or T800 (with triple monochromator) spectrometer. Exciting radiation was the blue 4880-A line of a Coherent Radiation Laboratories Model 52 argon ion laser. Usually power of

 400 mW was used and the slit aperture was below 2 cm⁻¹. The spectra were recorded at -196 °C with the solids in the reaction tubes partially immersed in liquid nitrogen contained in a transparent Dewar.

Infrared Spectra. Infrared spectra of pulverized solids sandwiched between AgCl plates were recorded using a Perkin-Elmer 225 Grating infrared spectrometer.

X-Ray Diffraction Measurement. X-ray diffraction studies were carried out by the powder technique. Powdered samples were mounted in evacuated Pyrex capillaries and photographed on a Philips 11.64-cm diameter camera with Cu K α filtered radiation.

Acknowledgment. We are indebted to Mr. Alan Hewitt for supplying purified $KrF₂$, the SRC for financial support, the Royal Society for **an** equipment grant, and the Boris Kidric Foundation for a fellowship to B.F.

Registry No. [Kr2F3]+[SbFs]-, 52721-22-9; [KrF]+[SbF6]-, 58815-70-6; $[KrF]^+ [TaF_6]^-,$ 58815-71-7; $[KrF]^+ [Sb_2F_{11}]^-,$ 39578-36-4; $[KrF]^+$ [Ta₂F₁₁]⁻, 58815-72-8; $[KrF]^+$ [Nb₂F₁₁]⁻, 58815-73-9; $[Kr_2F_3^+][Ta_2F_{11}]^-$, 58815-74-0; $[Kr_2F_3]^+[Nb_2F_{11}]^-$, 58815-75-1; KrF₂, 13773-81-4; [BrF₄]⁺[Sb₂F₁₁]⁻, 29303-54-6; TaF₅, 7783-71-3; NbF₅, 7783-68-8; SbF₅, 7783-70-2.

References and Notes

- (1) Some preliminary information has already been published: (a) B. Frlec and J. H. Holloway, *J. Chem. Soc., Chem. Commun.*, 370 (1973); (b)
B. Frlec and J. H. Holloway, *ibid.*, 89 (1974).
- On leave from Jozef Stefan Institute, University of Ljubljana, Ljubljana, (2) Yugoslavia.
- (3) F. Schreiner, J. G. Malm, and J. C. Hindman, *J. Am. Chem. Soc.,* **87,** 25 (1965).
- **R.** J. Gillespie and G. J. Schrobilgen, *J. Chem.* **SOC.,** *Chem. Commun.,* 90 (1974).
- (a) H. Selig and R. D. Peacock, *J. Am. Chem.* **SOC.,** *86,* 3895 (1964); (5) (b) D. E. McKee, C. J. Adams, A. Zalkin, and N. Bartlett, *J. Chem. SOC., Chem. Commun.,* 26 (1973).
- **V.** N. Prusakov and **V.** B. Sokolov, *At. Energ.,* **31,** 259 (1971). **V.** N. Prusakov and **V.** B. Sokolov, *Zh. Fir. Khim.,* **45,** 2950 (1971).
- (8)
- F. 0. Sladky, P. A. Bulliner, N. Bartlett, B. G. DeBoer, and A. Zalkin, *Chem. Commun.,* 1048 (1968).
- B. Frlec and J. H. Holloway, *J. Chem. SOC., Dalton Trans.,* 535 (1975). H. H. Claassen, G. L. Goodman, J. G. Malm, and F. Schreiner, *J. Chem.*
- *Phys.,* **42,** 1229 (1965). G. J. Schrobilgen, Ph.D. Thesis, McMaster University, 1973; R. J. Gillespie and G. J. Schrobilgen, *Inorg. Chem.,* in press; **R.** J. Gillespie, B. Landa, and *G.* J. Schrobilgen, *ibid.,* in press.
- R. J. Gillespie and G. J. Schrobilgen, *Inorg. Chem.,* **15,** 22 (1976).