Volume 15

Number 8

August 1976

Inorganic Chemistry

© Copyright 1976 by the American Chemical Society

Contribution No. 5265 from the Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125

Electronic Structures and Spectra of Nitrido Complexes of Osmium(VI)

C. D. COWMAN, W. C. TROGLER, K. R. MANN, C. K. POON, and HARRY B. GRAY*

Received February 3, 1976

AIC60079Q

The complexes $[(n-Bu)_4N][OsNX_4]$, $[(n-Pr)_4N][OsNX_4]$, and $[(n-Pr)_4N][OsNX_4(OH_2)](X^- = Cl^-, Br^-)$ have been prepared and characterized. Infrared spectral data suggest that the $OsNX_4^-$ units in all six complexes possess $C_{4\nu}$ symmetry. The $[(n-Bu)_4N]$ [OsNCl₄] complex exhibits relatively weak electronic absorption spectral bands at 20 300 (ϵ 93), 22 700 (ϵ 77), and 25 600 cm⁻¹ (ϵ 50) in dichloromethane solution at 298 K. Low-temperature (77 and 5 K) spectral measurements on solid samples show that the lowest band system consists of two components. Both components are perpendicularly polarized and exhibit similar vibrational structure ($a_1(OS=N)$, ~800-cm⁻¹ spacing). Assignment of the components to transitions to a Jahn-Teller split $E(^3E)$ excited state is proposed. It is estimated that the OS=N bond is lengthened by about 0.09 Å in the $E(^{3}E)$ state. Measurements on a single crystal at 5 K show that the band centered at 22 810 cm⁻¹ is parallel polarized and exhibits a 390-cm⁻¹ progression attributable to $a_1(Os-Cl)$. Assignment of this band to ${}^{1}A_1 \rightarrow A_1({}^{3}A_2)$ is suggested. The band that peaks at 25 490 cm⁻¹ in the 5-K crystal spectrum appears to be only vibronically allowed and is attributed to ${}^{1}A_{1} \rightarrow A_{2}({}^{1}A_{2})$. A progression in quanta of about 410 cm⁻¹ is observed on ${}^{1}A_{1} \rightarrow A_{2}({}^{1}A_{2})$ at low temperature. Additional bands are observed at 5 K and are assigned as follows: $30\,340 \text{ cm}^{-1}$ (a₁(Os=N) progression, ~840 cm⁻¹), ¹A₁ \rightarrow E(³B₂); 34710 cm⁻¹ (a₁(Os=N) progression, ~1000 cm⁻¹), ¹A₁ \rightarrow E(¹E). The estimated Os=N bond lengthening in E(³B₂) is 0.17 Å, which is consistent with a large degree of axial σ-antibonding character in that excited state. A spin-orbit crystal field calculation of the d-orbital energy levels of C_{4v} OsNCl₄⁻ has been performed. Satisfactory agreement with the band positions in the spectrum was obtained for the following parameter values: $\Delta_1(b_1-b_2) = 26\,000 \text{ cm}^{-1}$; $\Delta_2(e-b_2) = 36\,000$ cm⁻¹; $\Delta_3(a_1-b_2) = 49\,000$ cm⁻¹; $F_2 = 1400$ cm⁻¹; $F_4 = 55$ cm⁻¹. The unusually high energies of the a_1 and e levels are taken to indicate that both the σ and π bonds in the Os=N unit of OsNCl₄- are very strong. The electronic spectra of crystals containing related tetrahalonitrido complexes of osmium(VI) have also been measured at 5 K. The spectral features in each case are similar to those of OsNCl4-, and analogous assignments have been made.

Introduction

Nitrido (N³⁻) complexes of transition metal ions have attracted considerable attention in recent years.¹ Although the M \equiv N unit is formally analogous to M \equiv O of the well-studied oxo cation complexes,²⁻⁶ it is not known to what extent electronic structural parallels between the two can be drawn. For this reason, we have undertaken a detailed electronic spectroscopic investigation of a series of tetrahalonitrido complexes of osmium(VI).

In this paper we report the preparation, characterization, and electronic spectra of $[(n-Bu)_4N][OsNX_4]$, $[(n-Pr)_4N]$ - $[OsNX_4]$, and $[(n-Pr)_4N][OsNX_4(OH_2)]$ (X⁻ = Cl⁻, Br⁻). Griffith and Pawson have independently prepared the fivecoordinate complexes OsNX₄⁻,^{7,8} and the structure of $[Ph_4As][OsNCl_4]$ has been determined.⁹ In the present work, single-crystal polarized electronic spectra of several key compounds have been measured at 5 K.¹⁰ Interpretation of the spectra has been aided by a spin-orbit crystal field calculation of OsNCl₄⁻.

Experimental Section

Preparation of Compounds. $K[OsO_3N]$ was prepared by a standard method.¹¹ [(*n*-Bu)₄N][OsNX₄] and [(*n*-Pr)₄N][OsNX₄(OH₂)] (X⁻ = Cl⁻, Br⁻) were prepared by adding the appropriate tetraalkyl-ammonium halide to an HX solution of K[OsO₃N]. Details are given for [(*n*-Bu)₄N][OsNCl₄]. K[OsO₃N] (1.0 g, 0.0034 mol) was dissolved in hydrochloric acid (8 ml, 4 M). The solution, which immediately turned red, was placed on a steam bath for 5 min. The solution was then diluted by addition of an equal volume of water.

Dropwise addition with stirring of a concentrated aqueous solution of $[(n-Bu)_4N]Cl$ to the cooled solution immediately precipitated the pink $[(n-Bu)_4N][OsNCl_4]$ product. The compound was filtered off, was washed with boiling dilute hydrochloric acid and then with water, and was dried in a vacuum oven at 80 °C for 6 h; yield 1.4 g, 70%. The $[(n-Pr)_4N][OsNX_4]$ complexes were obtained by dehydrating the corresponding $[(n-Pr)_4N][OsNX_4(OH_2)]$ compounds in a vacuum oven at 78 °C for 5 h. $[(n-Bu)_4N][OsNCl_4]$ was recrystallized from dichloromethane-hexane and dichloromethane-chloroform solutions. Large square crystalline plates of the compound were grown. The other compounds were recrystallized from acetonitrile solution. Analytical data for these compounds are given in Table I.

Physical Measurements. Electronic spectral data were obtained using a Cary 17 spectrophotometer equipped with an Andonian liquid helium Dewar and double Glan Taylor air-spaced calcite polarizers. For the low-temperature spectroscopic studies, crystals were grown on aluminum oxide and quartz substrates. Crystals of $[(n-Bu)_4N][OsNCl_4]$ are tetragonal, space group P4/n, with lattice parameters a = b = 11.757 (1), c = 8.789 (1) Å.¹² The osmium-nitrogen bond line coincides with the crystallographic fourfold axis. As crystals formed on the (001) face, only perpendicular (or σ) polarized spectra were obtained.

Results and Discussion

Infrared spectral similarities suggest¹² that the OsNX₄⁻ and OsNX₄(OH₂)⁻ units all possess C_{4v} symmetry, by analogy to the geometrical structure of OsNCl₄⁻ found in crystalline compounds.^{9,12,13} In the ground state, the Os \equiv N bond distance is extremely short, being 1.60 Å in [Ph₄As][OsNCl₄].⁹ Under the assumption of a strong axial ligand field, the d orbitals are expected to increase in energy according to b₂ (d_{xy})

Table I. Analytical Data for Tetrahalonitrido Complexes of Osmium(VI)

		% c	alcd			% fc	ound	
Complexes	C	Н	N	X	С	Н	N	X
$[(n-Bu), N][OsNCl_{4}]$	32.6	6.16	4.75	24.1	32.5	6.20	4.69	24.2
$[(n-Pr)_{A}N][OsNCl_{A}]$	27.1	5.30	5.26	26.6	27.2	5.33	5.12	26.8
[(n-Pr)] N][OsNCl ₄ (OH ₂)]	26.2	5.49	5.09	25.8	26.4	5.35	4.97	26.0
$[(n-Bu)_{A}N][OsNBr_{A}]$	25.1	4.74	3.66	41.7	25.1	4.73	3.64	41.3
$[(n-Pr)_{4}N][OsNBr_{4}]$	20.3	3.97	3.95	45.0	20.4	4.02	3.97	44.8
$[(n-\Pr)_4N][OsNBr_4(OH_2)]$	19.8	4.15	3.85	43.9	20.0	3.99	3.87	43.7

Table II. Ligand Field Transitions in C_{4v} OsNCl₄^{- a}

One-electron transition	Excited	One-electron transition	Excited state
h → e	A (³ F)	$h \rightarrow h$	$A_{1}(^{3}A_{2})$
$(d_{xy} \rightarrow d_{xz}, d_{yz})$	$A_{1}(^{3}E)$	$(d_{xy} \rightarrow d_{x^2-y^2})$	$E(^{3}A_{2})$
	$B_1({}^{3}E)$	1	$\mathbf{A}_{2}(^{1}\mathbf{A}_{2})$
	$B_2(^{3}E)$ E(³ E)	$\mathbf{b}_2 \rightarrow \mathbf{a}_1$ $(\mathbf{d}_{\mathbf{x}\mathbf{y}} \rightarrow \mathbf{d}_{\mathbf{x}^2})$	$E({}^{3}B_{2})$
	$\vec{E}(^{1}\vec{E})$	·	$B_{2}(^{1}B_{2})$

^{*a*} Ground state is ${}^{1}A_{1}(b_{2}{}^{2})$.

Figure 1. Electronic absorption spectra of a Nujol mull of $[(n-Bu)_4N][OsNCl_4]$: A, 77 K; B, 298 K.

< e $(d_{xz}, d_{yz}) \sim b_1 (d_{x^2-y^2}) < a_1 (d_{z^2})$. The ground state for $d^2 OsNX_4^-$ is therefore ${}^{1}A_1(b_2{}^{2})$. The e and a_1 orbitals possess nitrogen-osmium π - and σ -antibonding character, respectively. Table II gives the symmetries of the ligand field excited states for transitions from b_2 to the e, b_1 , and a_1 orbitals. Spin-orbit coupling is included, as it is expected to be of considerable importance in an Os(VI) complex. In C_{4v} symmetry, transitions from $a {}^{1}A_1$ ground state to A_1 and E excited states are allowed.

The electronic absorption spectrum of $[(n-Bu)_4N][OsNCl_4]$ in dichloromethane solution at 298 K shows distinct bands centered at 20 300 (ϵ 93), 22 700 (ϵ 77), and 25 600 cm⁻¹ (ϵ 50). Additionally, shoulders are observed at 18 300 and 28 000 cm⁻¹. Intense absorption occurs at energies greater than 33 000 cm⁻¹. The relatively low intensities of the bands below 33 000 cm⁻¹ suggest that many of them may arise from transitions to excited states derived from spin triplets.

In a solid sample of $[(n-Bu)_4N][OsNCl_4]$ at low temperature, the lowest energy shoulder is resolved at 18 120 cm⁻¹ (Figure 1). The band at 20 410 cm⁻¹ sharpens and vibrational fine structure with a spacing of 750–860 cm⁻¹ is observed. We shall refer to the 20 410-cm⁻¹ maximum and its low-energy shoulder as band system I. An analogous system is observed in $[(n-Bu)_4N][OsNBr_4]$. Peak positions in system I taken from 5-K measurements on single crystals of $[(n-Bu)_4N]$ -[OsNCl_4] and $[(n-Bu)_4N][OsNBr_4]$ are given in Table III.

The fact that band system I is observed in the axial (001) spectrum of $[(n-Bu)_4N][OsNCl_4]$ at 5 K clearly demonstrates that it is perpendicularly polarized (Figure 2). The lower energy component is slightly red-shifted and therefore more

Figure 2. Electronic absorption spectrum measured on the (001) face of a single crystal of $[(n-Bu)_4N][OsNCl_4]$ at 5 K.

Figure 3. Electronic absorption spectrum of a single crystal of $[(n-Pr)_4N][OsNCl_4(OH_2)]$ at 5 K.

pronounced in the 5-K spectrum of $[(n-Pr)_4N][OsNCl_4(OH_2)]$ (Figure 3). Moreover, sharper vibrational structure is detected in the axially aquated compound. The main vibrational progression of 800-900 cm⁻¹ is attributed to the excited-state $a_1(Os \equiv N)$ stretching mode (ground state ~1120 cm⁻¹).¹² The fact that a reduction of the Os=N stretching frequency is observed indicates an increase in that bond distance in the excited state. As the Poisson formula¹⁴ may be fit with a Franck-Condon factor of 1.68 for band I in [(n-Pr)₄N]- $[OsNCl_4(OH_2)]$, we estimate that the Os=N bond lengthening is approximately 0.09 Å (taking 9.67 mdyn/Å for the stretching force constant).¹⁵ The progression in $a_1(Os \equiv N)$ is split by 162 cm⁻¹ in $[(n-Pr)_4N][OsNCl_4(OH_2)]$ (Figure 3) and by 119 cm⁻¹ in $[(n-Pr)_4N]$ [OsNBr₄(OH₂)] (Table IV). From the dependence on halide, assignment of this low-frequency mode to an $a_1(OsX_4)$ umbrella deformation is proposed. For comparison, the analogous ground-state deformations in [Ph₄As][OsNCl₄] and [Ph₄As][OsNBr₄] occur¹⁵ at 184 and 122 cm^{-1} , respectively.

It is unlikely that the lowest σ -polarized band is ${}^{1}A_{1} \rightarrow E({}^{3}A_{2})$ (i.e., $b_{2} \rightarrow b_{1}$), as the $E({}^{3}A_{2})$ excited state has σ^{*} character with respect to the halide ligands. Such σ^{*} character is inconsistent with the relative insensitivity of the position of band system I to halide substitution and also with the fact that a progression in $a_{1}(Os-X)$ is *not* present. We conclude, therefore, that band system I results from the one-electron excitation $b_{2} \rightarrow e$. Population of an antibonding e orbital effectively reduces the Os=N bond order and is consistent with a lower stretching frequency (and bond lengthening) in the excited state.

Assuming band system I is derived from $b_2 \rightarrow e$, it remains to assign the excited states associated with the two components. The two components could be attributable either to ${}^{1}A_{1} \rightarrow E({}^{3}E)$ split by Jahn-Teller vibronic interactions or to the two

Table III.	Electronic Absorption	Spectra of T	etrahalonitrido	Complexes of	Osmium(VI) at 5 K
------------	-----------------------	--------------	-----------------	--------------	-------------------

		$[(n-Bu)_4N][OsN]$	Cl ₄]		[(n-Bu) ₄ N][OsNB	r ₄]	
Band	nm ^a	cm ⁻¹ ,	Spacing	nm ^a	cm ⁻¹	Spacing	$^{1}A_{1} \rightarrow$
I	527.0	18 200	70.00	575.3	17 380	7020	E(³ E)
	549.5	19 000	1800	546.5	18 300	920	. ,
	501.3	19 950	1950	508.0	19 690		
	482.4	20 7 30	1780	486.9	20 540	850	
	463.2	21 590	860	466.2	21 450	910	
				444.7	22 490	_1040	
II	446.0	22 420					$A_1(^3A_2)$
	443.7	22 540	390^{-120}				1 (2)
	438.4	22 810			Ь		
	435.9	22 940	$[380]^{140}$				
	431.2	23 190					
	428.8	23 320	390^{130}				
	424.1	23 580					
	421.9	23 700					
	414.9	24 100	400				
Ш	406.5	24 600	7.44				$A_{2}(^{1}A_{2})$
	399.7	25 020	420				2(2)
	392.3	25 490	470	416.2	24 030		
	386.4	25 880	390				
	381.0	26 250	_]370				
IV	358.9	27 860	7	390.2	25 630 ^c		$E(^{3}B_{2})$
- /	349.0	28 650	790	388.1	25 770		-(-2)
	339.4	29 460	810	382.1	26 170		
	329.6	30 340	880	378.5	26 420		
	320.3	31 220	880	373.8	26 750		
	312.7	31 980	_760	364 1	27 460		
	304.5	32 840	860	358 7	27 880		
	504.5	52 040		355.8	28 100		
				347.0	28 810		
				337 3	29 650		
				378 1	30 480		
				320.1	21 050		
				322.1	31 600		
v	206.0	33 680		510.4	51 000		$\mathbf{F}(1\mathbf{F})$
Y	270.7	24 710	71030				Е(Е)
	200.1	34 /10	71000				

^a Uncertainties in peak positions are generally ± 1.0 nm. ^b A band attributable to ${}^{1}A_{1} \rightarrow A_{1}({}^{3}A_{2})$ was observed at 21 325 cm⁻¹ in dichloromethane solution. ^c A complex series of peaks begins here. It is likely that transitions to $E({}^{3}B_{2})$ and $E({}^{1}E)$ overlap in this region.

transitions ${}^{1}A_{1} \rightarrow E({}^{1}E)$ and ${}^{1}A_{1} \rightarrow E({}^{3}E).{}^{16}$ Complete spin-orbit crystal field calculations show that the latter interpretation is untenable (vide infra). Therefore, we conclude that band system I is attributable to split components of the transition ${}^{1}A_{1} \rightarrow E({}^{3}E)$.

Spectral data for the higher energy band systems in [(n- Bu_4N [OsNX₄] and [(*n*-Pr)₄N] [OsNX₄(OH₂)] complexes are set out in Tables III and IV, respectively. Band II, which is centered at 22810 cm⁻¹ in $[(n-Bu)_4N]$ [OsNCl₄] at 5 K, is not observed in perpendicular polarization. The parallel polarization of this band suggests that it be assigned to ${}^{1}A_{1}$ \rightarrow A₁(³E) or to ¹A₁ \rightarrow A₁(³A₂). The fact that band II shifts over 1400 cm⁻¹ to the red in the spectrum of OsNBr₄⁻ supports the latter choice, as the $A_1({}^{3}A_2)$ excited state is antibonding with respect to the equatorial ligands. The doubled vibrational progression of 390 cm⁻¹ split by 130 cm⁻¹ for $[(n-Bu)_4N]$ -[OsNCl₄] indicates an excited-state distortion in a₁(Os-Cl), which is additional evidence in favor of the one-electron b₂ \rightarrow b₁ origin of A₁(³A₂). The corresponding a₁ metal-halide stretching frequency in the ground state has been reported¹⁵ to be 358 cm⁻¹. The 130-cm⁻¹ splitting observed at 5 K could result from coupling of the a_1 deformation (ground state 184 cm⁻¹)¹⁵ to the a_1 stretch. Thus band II may be assigned confidently to the transition ${}^{1}A_1 \rightarrow A_1({}^{3}A_2)$.

The weak band that peaks at 25490 cm⁻¹ (III) in [(n-Bu)_4N][OsNCl₄] at 5 K is perpendicularly polarized. This band is assigned to the orbitally forbidden transition ${}^{1}A_{1} \rightarrow A_{2}({}^{1}A_{2})$, which, in the Herzberg–Teller coupling scheme, 17 is vibronically allowed *only* in perpendicular polarization. Band III is red-shifted in the bromide complexes, as was found for band II. Band III also slightly blue-shifts upon cooling,

consistent with a vibronic intensity-giving mechanism. Vibrational structure with a spacing of about 410 cm⁻¹ is assigned to an excited-state deformation in $a_1(Os-Cl)$, as expected for a one-electron excitation to the b_1 orbital. Note that ${}^{1}A_1 \rightarrow E({}^{3}A_2)$ is not observed, presumably because it is weak and obscured by band system I.

The next feature in the 5-K spectrum of $[(n-Bu)_4N]$ -[OsNCl4] is a broad, perpendicularly polarized band (IV) with a maximum at 30340 cm⁻¹. A long progression with a spacing of about 840 cm⁻¹ is observed, and standard analysis¹⁴ gives a Franck-Condon factor of 6 or greater. Taking an Os \equiv N stretching force constant of 9.67 mdyn/Å,¹⁵ as before, we estimate an Os=N bond lengthening of about 0.17 Å in the excited state in question. Assignment of band IV to ${}^{1}A_{1} \rightarrow$ $E(^{3}B_{2})$ is consistent with such large Os=N bond lengthening, as substantial axial σ^* character is predicted for the E(³B₂) excited state. Band IV is not found in the same region in the spectrum of $[(n-Pr)_4N][OsNCl_4(OH_2)]$ (Figure 3), and we assume it falls at higher energy. In $[(n-Bu)_4N][OsNBr_4]$, a complex system of overlapping bands begins at 25630 cm^{-1} . It is likely that transitions to $E({}^{3}B_{2})$ and $E({}^{1}E)$ occur in this region, but we are not able to make any specific peak assignments at this time. Band IV in the 5-K spectrum of $[(n-Pr)_4N]$ [OsNBr₄] appears less complex, being comprised of a ~ 750 -cm⁻¹ progression beginning at 26 830 cm⁻¹.

A relatively intense, perpendicularly polarized progression (V) in quanta of about 1000 cm⁻¹ originates at 33 680 cm⁻¹ in the spectrum of $[(n-Bu)_4N][OsNCl_4]$ at 5 K. Band V, which does not appreciably shift upon axial H₂O coordination, is assigned to ${}^{1}A_{1} \rightarrow E({}^{1}E)$. As noted above, transitions to $E({}^{1}E)$ in the bromide complexes are not well separated from

Table IV.	Electronic Absorption	Spectra of	Tetrahalonitridoaquo	Complexes of	Osmium(VI) at 5 K
-----------	-----------------------	------------	----------------------	--------------	-------------------

			$[(n-Pr)_4N][OsN]$	ICl ₄ (OH ₂)]	[$(n-Pr)_{4}N$][OsNB	r ₄ (OH ₂)]	
	Band	nm ^a	cm ⁻¹	Spacing	nm ^a	cm ⁻¹	Spacing	$^{1}\mathrm{A}_{1}\rightarrow$
· · · · · · · · · · · · · · · · · · ·	Band	nm ^a 617.8 611.7 605.7 593.8 588.2 585.2 579.6 574.1 568.8 563.5 558.4 555.9 550.8 545.9 550.8 545.9 541.2 536.5 530.0 525.6 521.2 516.8 507.1 502.9 498.9 495.1 491.4 486.2	cm ⁻¹ 16 190 16 350 16 510 16 680 16 810 17 000 17 000 17 250 17 420 17 580 17 750 17 910 17 990 18 160 18 870 19 030 19 190 19 350 19 720 19 880 20 040 20 200 20 350 20 570	Spacing 160 160 170 160 170 160 150 850	nma 626.6 621.9 616.9 612.4 607.9 603.5 599.2 592.8 588.6 584.5 580.4 576.4 572.4 568.5 562.7 559.0 555.6 551.9 544.7 541.4 538.5 532.8 526.6 521.9 544.7 541.4 538.5 532.8 520.0 520.0 516.5	cm ⁻¹ 15 960 16 080 16 210 16 330 16 450 16 570 16 690 16 70 16 990 17 170 17 700 17 790 17 790 18 240 18 380 18 470 18 570 18 680 18 770 18 990 19 110 19 230 19 360	Spacing 120 130 120 120 120 120 120 120 120 12	$^{1}A_{1} \rightarrow E(^{3}E)$
			X		513.3 510.2 507.1 507.6 504.5 501.8 498.5 495.5 495.5 492.6 485.0 481.9 479.2 476.2 471.5 471.0	19 480 19 000 19 720 19 700 19 820 20 060 20 180 20 300 20 620 20 750 20 870 21 120 21 120 21 230	930 930 120 120 120 120 120 120 110 120 12	
	II	463.5 460.4 455.4 449.6 447.7 444.8 441.9 440.5 437.5 434.8 430.2	$\begin{array}{c} 21 \ 570 \\ 21 \ 720 \\ 21 \ 960 \\ 22 \ 100 \\ 22 \ 240 \\ 22 \ 340 \\ 22 \ 480 \\ 22 \ 630 \\ 22 \ 700 \\ 22 \ 860 \\ 23 \ 000 \\ 23 \ 250 \end{array}$	$\begin{bmatrix} 130 \\ 390 \\ 380 \\ 380 \\ 380 \\ 360 \\ 380 \\ 390 \end{bmatrix} 370$				A ₁ (³ A ₂)
	III IV	398.0	25 100		427.4 372.7 361.5 350.8 342.2 333.9 326.5	23 400 26 830 27 660 28 510 29 220 29 950 30 630	830 850 710 730 680	$\begin{array}{c} \mathbf{A}_2(^1\mathbf{A}_2) \\ \mathrm{E}(^3\mathbf{B}_2) \end{array}$
	V	344.4 355.3 363.6	34 440 35 530 36 360]1090]830	. 20.0	20 000		E('E)

^{*a*} Uncertainties in peak positions are generally ± 1.0 nm.

those attributable to ${}^{1}A_{1} \rightarrow E({}^{3}B_{2})$.

Our assignments for the five-band systems were based in part on a spin-orbit crystal field calculation of the energy levels of OsNCl₄⁻. Matrix elements for all single excitations in OsNCl₄⁻ were expressed in terms of a spin-orbit parameter $\alpha = \zeta/2$, the three crystal field splittings $\Delta_1 = E(b_1) - E(b_2)$, $\Delta_2 = E(e) - E(b_2)$, and $\Delta_3 = E(a_1) - E(b_2)$, and the Slater-Condon parameters, F_2 and $F_{4.}^{18}$ In the calculation, α was fixed at 1000 cm⁻¹, which accords with the value of 950 cm⁻¹ found¹⁹ for the $(t_{2g})(e_g)$ configuration of OsF₆. Various combinations of Δ_1 , Δ_2 , Δ_3 , F_2 , and F_4 were employed in the crystal field calculations. Satisfactory agreement with the spectral data for OsNCl₄⁻ was achieved for $\Delta_1 = 26\,000$, $\Delta_2 = 36\,000$, $\Delta_3 = 49\,000$, $F_2 = 1400$, and $F_4 = 55$ cm⁻¹ (Table

Table V. Calculated and Observed Electronic Transitions in OsNCl4-

$^{1}A_{1} \rightarrow$	$\overline{\nu_{\max}}(obsd),$ cm ⁻¹	$\overline{\nu}_{\max}$ (calcd), cm ⁻¹
E(³ E)	19 300 ^a	19 596
$A_{1}(^{3}E)$	b	20 395
$E(^{3}A_{2})$	b	21 360
$A_{1}({}^{3}A_{2})$	22 810	22 749
$A_{2}(^{1}A_{2})$	25 490	25 246
$E(^{3}B_{2})$	30 340	29 544
E(¹ E)	34 710	32 675

^a Average position of the two components. ^b Not observed.

V). More precise fitting would be meaningless in view of the crudeness of the theory. It is somewhat reassuring that the assigned values of parameters F_2 , F_4 , and Δ_1 for OsNCl₄⁻ are in good agreement with those obtained²⁰ from a detailed analysis of the electronic spectrum of $PtCl_4^{2-}$ ($F_2 = 1406$, $F_4 = 54$, $\Delta_1 = 25961$ cm⁻¹). Such close correspondence is to be expected, as the Os–Cl $(2.31 \text{ Å})^{10}$ and Pt–Cl $(2.32 \text{ Å})^{21}$ bond distances are nearly equal.

It should be pointed out that in all of our computations,¹⁸ even when the values of F_2 and F_4 were greatly reduced, the $^{1}E^{-3}E$ splitting was found to be greater than 6000 cm⁻¹. This is the main basis of our assignment of both components of band system I to transitions to a split $E(^{3}E)$ state. It is not likely that the higher component is ${}^{1}A_{1} \rightarrow E({}^{1}E)$, as in that case the implied singlet-triplet splitting would be well below the lower limit set by theory.

The unusually high energies of the osmium d orbitals (e, a_1) that interact with the nitrido group are particularly noteworthy. Indeed, the antibonding character of the e level in Os=N appears to be much greater than that inferred for M=O from spectral studies of oxo cation complexes containing second- and third-row metals.^{22,23} We take this result to mean that nitride is a much better π donor than is oxide, a conclusion not incompatible with recent Mössbauer spectral experiments on $Ru(VI)^{24}$ and $Os(VI)^{25}$ nitrido complexes that clearly indicate the presence of a high degree of ligand \rightarrow metal electron donation. It should also be emphasized that our analysis suggests that both σ and π nitrido-osmium bonds are very strong. As electron donation from N^{3-} to a metal center increases, the nucleophilic character of the coordinated nitrido group decreases. Our electronic structural model for Os≡N, then, would suggest a rather low nucleophilicity for the nitrido ligand, which accords well with experimental

observations made previously.26

Acknowledgment. We thank Richard Kahn for assistance with the ligand field calculations and Professor Robert Bau for helpful comments. This research was supported by the National Science Foundation.

Registry No. [(n-Bu)₄N][OsNCl₄], 42993-50-0; [(n-Pr)₄N]- $[O_{s}NCl_{4}], 59219-46-4; [(n-Pr)_{4}N][O_{s}NCl_{4}(OH_{2})], 59187-87-0; [(n-Bu)_{4}N][O_{s}NBr_{4}], 42720-45-6; [(n-Pr)_{4}N][O_{s}NBr_{4}], 59187-88-1;$ [(n-Pr)₄N][OsNBr₄(OH₂)], 59187-90-5; K[OsO₃N], 21774-03-8.

Supplementary Material Available: Crystal field matrices with inclusion of spin-orbit coupling and sample calculations (2 pages). Ordering information is given on any current masthead page.

References and Notes

- (1) W. P. Griffith, Coord. Chem. Rev., 8, 369 (1972), and references therein.
- C. J. Ballhausen and H. B. Gray, *Inorg. Chem.*, 1, 111 (1962). R. A. Wentworth and T. S. Piper, *J. Chem. Phys.*, 41, 3884 (1964). (2)
- (4) C. J. Ballhausen, B. F. Djurinskij, and K. J. Watson, J. Am. Chem. Soc.,
- 90, 3305 (1968).
- (5) J. Selbin, Coord. Chem. Rev., 1, 293 (1966).
 (6) W. P. Griffith, Coord. Chem. Rev., 5, 459 (1970).
 (7) W. P. Griffith and D. Pawson, J. Chem. Soc., Chem. Commun., 418 (1973)
- W. P. Griffith and D. Pawson, J. Chem. Soc., Dalton Trans., 1315 (1973).
 S. R. Fletcher, W. P. Griffith, D. Pawson, F. L. Phillips, and A. C. Skapski, Inorg. Nucl. Chem. Lett., 9, 1117 (1973); F. L. Phillips and A. C. Skapski, J. Cryst. Mol. Struct., 5, 83 (1975).
- (10) A preliminary report of the spectra of K₂[OsNCl₅] and [(n-Bu)₄N]-[OsNCl₄] has been published: C. K. Poon and H. B. Gray, *Proc. XII* Int. Conf. Coord. Chem., 12, 26 (1969). (11) A. F. Clifford and C. S. Kobayashi, Inorg. Synth., 6, 204 (1960).
- (12) O. Siiman and C. K. Poon, unpublished results; C. D. Cowman, Ph.D. Thesis, California Institute of Technology, 1974.
- (13) J. Chiang, M.S. Thesis, University of Southern California, 1974 (R. Bau, private communication).
 (14) E. I. Solomon and C. J. Ballhausen, Mol. Phys., 29, 279 (1975).
 (15) R. J. Collin, W. P. Griffith, and D. Pawson, J. Mol. Struct., 19, 531
- (1973).
- (16) The band splitting cannot be a result of a low-symmetry Os site, as the anion in a crystal of $[(n-Bu)_4N][OsNCl_4]$ is rigorously $C_{4\nu}$.^{12,13}
- (17) G. Herzberg, "Molecular Spectra and Molecular Structure", Vol. III, Van Nostrand-Reinhold, Princeton, N.J., 1966, p 140.
- (18) Supplementary material. (19) W. Moffitt, G. L. Goodman, M. Fred, and B. Weinstock, Mol. Phys.,
- 2, 109 (1959); J. C. Eisenstein, J. Chem. Phys., 34, 310 (1961) (20) H. H. Patterson, J. J. Godfrey, and S. M. Kahn, Inorg. Chem., 11, 2872
- (1972). (21) H. J. M. Bowen, Chem. Soc., Spec. Publ., No. 11 (1958).
- H. B. Gray and C. R. Hare, *Inorg. Chem.*, 1, 363 (1962).
 E. A. Allen, B. J. Brisdon, D. A. Edwards, G. W. A. Fowles, and R. G. Williams, *J. Chem. Soc.*, 4649 (1963).
 T. C. Gibb, R. Greatrex, N. N. Greenwood, and R. H. Meinhold, *Chem.*
- Phys. Lett., 29, 379 (1974).
 F. E. Wagner, D. Kucheida, U. Zahn, and G. Kaindl, Z. Phys., 266, 223 (1974).
- (26) J. Chatt and J. R. Dilworth, J. Chem. Soc., Chem. Commun., 508 (1974).

Contribution from Cogswell Laboratory, Rensselaer Polytechnic Institute, Troy, New York 12181

Raman Studies of Sulfur-Containing Anions in Inorganic Polysulfides. Barium Trisulfide

G. J. JANZ,* E. RODUNER,¹ J. W. COUTTS,² and J. R. DOWNEY, Jr.

Received January 9, 1976

The present work reports an investigation of the S_{3}^{2-} anion from -125 to 580 °C using laser-Raman and rotating scattering arrangements as principal techniques, with BaS₃ (mp 554 °C) as the model system. The room-temperature and low-temperature spectra are understood in terms of a $C_{2\nu}$ symmetry for S_3^{2-} . A unique spectral transformation occurs at higher temperature and in addition the compound exhibits a temperature-independent but magnetic-field-dependent paramagnetism. These changes are discussed from the viewpoint of bond angle changes, resonance Raman effect, and rotation of the S_3^{2-} species in the solid state.

Introduction

The alkali and alkaline earth metals form a series of polysulfides containing S_n^{2-} anions. Since complex equilibria undoubtedly occur between species such as S^{2-} and S_n^{2-} , we have undertaken the characterization of some of the S_n^{2-} anions using, as model systems, a series of inorganic polysulfides for which the structures have been well characterized by careful x-ray crystallographic studies. The present work reports the results of an investigation of the S_3^{2-} anion using laser-Raman spectroscopy as the principal technique and, as

AIC600271