Contribution from the Department of Chemistry, The University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Phosphoranes. 3. New Tris(trifluoromethyl)phosphoranes $(CF_3)_3PXY$ with Monofunctional [F, Cl, N(CH₃)₂, OCH₃, SCH₃, OSi(CH₃)₃] Substituents

KWAT I. THE and RONALD G. CAVELL*

Received February 3, 1976

New five-coordinate molecular phosphoranes of the types $(CF_3)_3PY_2$ (Y = OCH₃) and $(CF_3)_3P(F)Y$ (Y = N(CH₃)₂, OCH₃, SCH₃, OSi(CH₃)₃) have been prepared from $(CF_3)_3PF_2$ and the trimethylsilyl reagent $(CH_3)_3SiY$ or dimethylamine. An improved synthesis of $(CF_3)_3P(Cl)N(CH_3)_2$ is also described. Formulation of the monofluoro- and disubstituted phosphoranes as the isomeric phosphonium salts can be clearly ruled out by NMR spectroscopic studies. At low temperatures, ¹⁹F, ³¹P, and, in the case of $(CF_3)_3P(Cl)N(CH_3)_2$, ¹³C NMR spectra of the phosphoranes show the presence of different CF₃ environments consistent with substitution at axial or equatorial positions of the (assumed) trigonal-bipyramidal framework. The former are characterized by relatively small ²J_{PF} and the latter by relatively large ²J_{PF} values. Ground-state structures are consistent with the preferential location of halogen (F, Cl) in the axial positions and of OCH₃, SCH₃, or N(CH₃)₂] strongly support the location of both N(CH₃)₂ groups in the equatorial post in the equatorial post in the equatorial post in the equatorial post the location of both N(CH₃)₂ groups in the equatorial plane as suggested earlier. The barrier to the averaging of CF₃ environments appears to decrease in the order N(CH₃)₂ > SCH₃ > OCH₃. The presence of a halogen substituent appears to lower the barrier to the averaging process compared to the doubly substituted molecules and a chlorophosphorane

Introduction

Various substituted trifluoromethyl(dialkylamino)phosphoranes have been previously obtained^{1,2} from the well-known tris(trifluoromethyl)chloro- and -fluorophosphoranes $(CF_3)_3PX_2$ (X = F³, Cl⁴) by means of simple substitution reactions. It appears that the barriers to positional interchange processes⁵ such as Berry pseudorotation or Turnstile rotation which render CF₃ environments indistinguishable are relatively high in these derivatives and distinct axial and equatorial CF₃ environments in the trigonal-bipyramidal framework can be readily resolved. The relative preferences for axial and equatorial substitution can therefore be deduced from the resultant ground-state structures.^{1,2,6} In some cases, exemplified by the very low-temperature NMR spectra of $(CF_3)_3P[N(CH_3)_2]_2^1$ and $(CF_3)_3P[OSi(CH_3)_3]_2^7$ the ¹⁹F NMR spectra become very complex presumably because additional averaging processes such as P-N or P-O bond rotation, inversion at nitrogen, etc. cease, destroying the averaged magnetic environments in the molecule and creating detectable inequivalencies. In an effort to understand the chemical and stereochemical properties of five coordinate phosphorus compounds, we have embarked on a study of variously substituted phosphoranes⁸ and report herein the properties of several derivatives of tris(trifluoromethyl)phosphorane, (CF₃)₃PXY, containing a combination of monofunctional substituents such as F, Cl, OCH₃, SCH₃, $N(CH_3)_2$, and $OSi(CH_3)_3$.

Results and Discussion

A. Synthesis and Characterization. Trimethyl(dimethylamino)silane gave only the monosubstituted chlorophosphorane $(CF_3)_3P(Cl)N(CH_3)_2$ when treated with $(CF_3)_3PCl_2$ (eq 1)

$$(CH_3)_3SiN(CH_3)_2 + (CF_3)_3PCl_2 \rightarrow (CF_3)_3P(Cl)N(CH_3)_2 + (CH_3)_3SiCl$$
(1)

regardless of reacting ratio in contrast to the behavior of dimethylamine which gave both $(CF_3)_3P(Cl)N(CH_3)_2$ and $(CF_3)_3P[N(CH_3)_2]_2$ according to the conditions employed.¹ The silylamine therefore provides the superior synthetic route to $(CF_3)_3P(Cl)N(CH_3)_2$.¹

Controlled aminolysis of the difluorophosphorane $(CF_3)_3PF_2$ in the gas phase at ordinary temperatures gave the monofluoroaminophosphorane, $(CF_3)_3P(F)N(CH_3)_2$, in 55% yield assuming⁹ eq 2 is obeyed. The reaction is, however, clearly

$$2(CF_{3})_{3}PF_{2} + 3(CH_{3})_{2}NH \rightarrow 2(CF_{3})_{3}P(F)N(CH_{3})_{2} + (CH_{3})_{2}NH_{2}^{+}HF_{2}^{-}$$
(2)

more complex because a small amount of fluoroform which indicates loss of CF₃ substituents was formed and also because some $(CF_3)_3PF_3^-$, which presumably arises from a competitive addition of the unreacted fluorophosphorane to F⁻ during the course of the aminolysis, was observed (see eq 3). In addition,

$$(CF_3)_3 PF_2 + F^- \rightarrow (CF_3)_3 PF_3^-$$
(3)

the appearance of a species tentatively identified as $(CF_3)_3PN(CH_3)_2^+$ in the solid residues suggests that part of the reason for the low yield may be ascribed to the formation of the involatile isomeric phosphonium salt $(CF_3)_3PN-(CH_3)_2^+F^-$, which may be further stabilized by the large substituted trifluoromethylfluorophosphate anion also present.

Trimethylmethoxysilane and -methylthiosilane, ((CH₃)₃SiOCH₃ and (CH₃)₃SiSCH₃), provided efficient conversion of the halogenophosphoranes to methoxy or methylthio derivatives under mild (i.e., room temperature or below) reaction conditions. In general, the reactions proceeded similarly to the analogous reactions of these reagents and PF₅ or organofluorophosphoranes as described by Schmutzler et al.^{10,11} Thus (CH₃)₃SiOCH₃ converted (CF₃)₃PCl₂ to the disubstituted phosphorane (CF₃)₃P(OCH₃)₂ (eq 4, X = Cl)

$$(CF_{3})_{3}PX_{2} + 2(CH_{3})_{3}SIOCH_{3} \rightarrow (CF_{3})_{3}P(OCH_{3})_{2} + 2(CH_{3})_{3}SIX \quad (X = F, CI)$$
(4)

and no partially substituted product was obtained. If equimolar reactant proportions were employed, the difluorophosphorane was efficiently converted to the monoalkoxyfluorophosphorane

$$(CF_3)_3PF_2 + (CH_3)_3SiOCH_3 \rightarrow (CF_3)P(F)OCH_3 + (CH_3)_3SiF$$
(5)

and the use of a twofold molar ratio of $(CH_3)_3SiOCH_3$ resulted in complete conversion of the difluorophosphorane to the dimethoxyphosphorane according to eq 4 (X = F). Iodine appears to play a catalytic role in these reactions since in the presence of I₂ both mono- and disubstituted methoxyphosphoranes were formed from an equimolar ratio of $(CH_3)_3SiOCH_3$ and $(CF_3)_3PF_2$ in contrast to iodine-free systems which obeyed eq 5.

Only the mono(methylthio)fluorophosphorane, $(CF_3)_3$ -P(F)SCH₃, was obtained by treatment of $(CF_3)_3$ PF₂ with $(CF_3)_3$ SiSCH₃ at low temperatures

 $(CF_3)_3PF_2 + (CH_3)_3SiSCH_3 \rightarrow (CF_3)_3P(F)SCH_3 + (CH_3)_3SiF$ (6)

This phosphorane was unstable and decomposed at room

AIC60088Z

				Ions
		Quantity of	Yield of	remaining ¹³
	Con-	compd, g	CF ₃ H, g	in
	ditions	(mmol)	(mmol)	hydrolysate
(CF ₃) ₃ P(F)-	Neutral	0.127 (0.42)	0.029 (0.41)	(CF ₃) ₂ -
$N(CH_3)_2$				PO2
	Alkaline	0.147 (0.49)	0.066 (0.94)	CF 3PO 32-
(CF ₃) ₃ P-	Neutral	0.131 (0.44)	0.031 (0.45)	(CF ₃) ₂ .
(OCH,),				PO, ²
	Alkaline	0.096 (0.32)	0.045 (0.64)	CF ₃ PO ₃ ^{2~}
$(CF_{3})_{3}P(F)$ -	Neutral	0.146 (0.51)	0.035 (0.50)	$(CF_{3})_{2}$ -
OĊĤ,				PO
	Alkaline	0.121 (0.42)	0.058 (0.83)	CF ₃ PO ₃ ²⁻
$(CF_3)_3P(F)$ -	Neutral	0.131 (0.43)	0.030 (0.42)	(CF ₃) ₂ -
SCH,				PO, ²
3	Alkaline	0.091 (0.30)	0.041 (0.58)	CF ₃ PO ₃ ²⁻

temperature to (CF₃)₃P, (CF₃)₃PS, (CF₃)₃PF₂, and CH₃S-SCH₃ plus some as yet unidentified solid. Attempts to prepare $(CF_3)_3P(SCH_3)_2$ were unsuccessful and no evidence was found for the formation of this compound in a reacting system of (CF₃)₃PF₂ and (CH₃)₃SiSCH₃ followed by ¹⁹F NMR spectroscopy. Reaction of (CH₃)₃SiSCH₃ with (CF₃)₃PCl₂ gave only (CF₃)₃P, (CH₃)₃SiCl, and CH₃SSCH₃. The observed products suggest that the desired bis(thiomethyl)phosphorane may have been formed but subsequently decomposed at the reaction temperature. It is interesting to note that the methylthiofluorophosphoranes seem to be more stable than methoxyfluorophosphoranes¹¹ whereas the reverse order of stability appears to prevail in the trifluoromethylphosphorane system. The trifluoromethylphosphoranes are however more easily reduced than fluorophosphoranes and this may influence the relative stabilities. In this connection it is also worth noting that none of the disulfides $(RS)_2$ (R = CF₃, CH₃, C_6H_5) react with $(CF_3)_3P$ under reasonable conditions suggesting that they are not capable of oxidizing $(CF_3)_3P$ to a phosphorane.¹²

The treatment of $(CF_3)_3PF_2$ with $[(CH_3)_3Si]_2O$ gave tris(trifluoromethyl)fluorotrimethylsiloxyphosphorane, $(CF_3)_3P(F)OSi(CH_3)_3$, which was unstable and was only identified spectroscopically. This compound decomposed quickly to give as the ultimate products of the reaction, $(CF_3)_3PO$ and $(CH_3)_3SiF$. The reaction probably proceeds in two steps according to eq 7 and 8. No evidence for the

$$(CF_3)_3PF_2 + (CH_3)_3SiOSi(CH_3)_3 \rightarrow (CF_3)_3P(F)OSi(CH_3)_3 + (CH_3)_3SiF$$
(7)

$$(CF_3)_3 P(F)OSi(CH_3)_3 \rightarrow (CF_3)_3 PO + (CH_3)_3 SiF$$
(8)

formation of the known bis(trimethylsiloxy)phosphorane $(CF_3)_3P[OSi(CH_3)_3]_2^7$ was obtained although this compound might have been expected by analogy with the reactions of $(CH_3)_3SiOCH_3$ discussed above. It seems reasonable to suggest that the phosphorane $(CF_3)_3P[OSi(CH_3)_3]_2$ can only be obtained if the phosphorus atom possesses no halogen substituents; otherwise inter- or intramolecular halogen transfer to form trimethylsilyl halide and the phosphoryl derivative is favored.⁷

Alkaline hydrolysis of the stable new phosphoranes gave, in general, 2 molar equiv of fluoroform, leaving the $CF_3PO_3^{2-}$ anion¹³ in solution (eq 9). Neutral hydrolysis yielded 1 molar equiv of fluoroform leaving the $(CF_3)_2PO_2^{-}$ anion¹³ in solution (eq 10). Both reactions are characteristic⁴ of pentavalent trifluoromethylphosphorus compounds and provide quantitative characterization. Data are given in Table I.

B. Mass Spectra. In common with other pentacoordinate phosphorus compounds,¹⁴ the mass spectra (Table II) of all of the phosphoranes reported herein showed no parent ions. The identities of the largest mass fragments, which were confirmed by accurate mass measurement (Table III), leave

Table II. Mass Spectral Data

		Inten					
m/e	(CF ₃) ₃ - P(OC- H ₃) ₂	(CF ₃) ₃ - P(F)- (OCH ₃)	(CF ₃) ₃ - P(F)- (SCH ₃)	(CF ₃) ₃ - P(F)N- (CH ₃) ₂	Assignment ^b		
261 257	6.41	1.76		0.20	(CF ₃) ₃ POCH ₃ (CF ₃) PF		
254		0.01	0.32	0.20	$(CF_3)_3 PF_4(SCH_3)$		
251				0.10	$(CF_{3}), PF_{2}[N(CH_{3}),]$		
238		0.34			(CF ₃) ₃ P		
235			0.06		$(CF_3)_2 PF(SCH_3)$		
232	10.00			2.46	$(CF_3)_2 PF[N(CH_3)_2]$		
231	10.03	12.25			$(CF_3)_2 P(OCH_3)_2$		
219	2.22	15.55		1.09	$(CF_3)_2 PF(OCH_3)$		
207		6 57		2.12	$(CF_3)_2 FF[N(H)CH_3]$		
200	0.29	0.57		2.12	$(CF_3)_2 FF_2$ (CF) P(OCH)		
182	0.27			12.79	$(CF_3)_{2}^{1}(OCH_3)$		
181	4.55			12.75	$CE_1(CE_1)POCH$		
169	2.80	17.79			$(CF_{*})PF_{*}(OCH_{*})$		
					(CF,),P		
166	0.45		0.75		CF, (CF,)PO,		
					CF, P(F)SCH,		
162				1.08	CF ₃ PNC ₂ H ₅		
157				6.89	CF ₃ PF ₃		
150				1.08	CF ₃ PCF ₂		
147		0.51			C ₂ F ₄ PO		
135	0.58	1.12	0.63		$CF_{3}P(F)O, F_{3}PSCH_{3}$		
132	5 40 ¹			15.49	$F_3PN(CH_3)_2$		
131	5.48	10.00	4.04		CF,POCH,		
119	4.00	12.22	4.01	2.31	CF ₃ PF		
100	2 22		4 01	1.52	C_2F_3P		
97	0.80		4.01	1.15	$CF_{3}P$		
94	0.00			1 97	EDNICH		
93	1 98			1.07	P(OCH)		
81	11.31	9.66			CE.P FPOCH		
78	11.01	2.00		0.89	FPNCH.		
77	5.48		4.30		CFPCH, PO.CH.		
					PSCH,		
73	1.46				POC ₂ H ₂		
69	13.30	17.61	18.35	28.63	CF_3, F_2P		
63	1.41				HPOCH ₃		
51				1.43	HPF, HCF_2		
50	1.62	1.79	1.75	1.43	CF_2 , PF		
49			1.75		SCH,		
48	0.10	6 02	18.35	2.16	HSCH ₃		
4/	9.10	0.82	2 15	3.15	HPCH ₃ , PO, HPNH		
40			12 33		SCH ₂		
44			2.55		SCI SC		
43			2.04	2.16	NC.H.		
42				8.85	NC.H.		
33			1.23	2.00	SH		
32	5.71	0.85	7.17		PH, HCF		
31	8.16	2.93		2.41	P, CF, OCH ₃		

^a Intensities are expressed as percent total ionization based on the sum of the intensities of ions with m/e greater than 30. ^b Assignments of some ions are given in terms of the structural formula for ease of recognition only.

$$(CF_{3})_{3}P(X)(Y) + 3H_{2}O \rightarrow CF_{3}PO_{3}^{2^{-}} + 2CF_{3}H + 2H^{+} + HX + HY$$
(9)
$$(CF_{3})_{3}P(X)(Y) + 2H_{2}O \rightarrow (CF_{3})_{2}PO_{2}^{-} + CF_{3}H + H^{+} + HX + HY (a) X = F; Y = OCH_{3}, SCH_{3}, N(CH_{3})_{2} (if Y = N(CH_{3})_{2}, H_{2}N(CH_{3})_{2}^{+} is formed) (b) X = Y = OCH_{3}$$

no doubt, however, that these fragments arise from the appropriate parent ion through loss of OCH₃ or CF₃ from $(CF_3)_3P(OCH_3)_2$, loss of F or OCH₃ from $(CF_3)_3P(F)OCH_3$, loss of CF₃, CF₂,¹⁵ or F from $(CF_3)_3P(F)SCH_3$, and loss of N(CH₃)₂ or CF₂¹⁵ from $(CF_3)_3P(F)N(CH_3)_2$. In all of these phosphorane spectra the most intense peak was that observed

Table III. Mass Measurement Data

Compd	Ion ^a	Calcd <i>m/e</i>	Found m/e
$\overline{(CF_3)_3 P(OCH_3)_2}$	(CF ₃) ₃ POCH ₃ ⁺	268.9778	268.9791
	$(CF_{3})_{2}P(OCH_{3})_{2}^{+}$	231.0009	231.0012
	$(CF_3)_{P}(F)(OCH_3)^+$	218.9810	218.9811
$(CF_3)_3 P(F)(OCH_3)$	(CF ₃),POCH ₃ ⁺	268.9778	268.9778
	$(CF_3)_3 PF^+$	256.9578	256.9585
	$(CF_3)_3P^+$	237.9594	237.9594
$(CF_3)_3P(F)(SCH_3)$	$(CF_{3})_{2}P(F)_{2}(SCH_{3})^{+}$	253.9565	253.9570
	$(CF_3)_{2}P(F)(SCH_3)^{+}$	234.9581	234.9572
$(CF_3)_3P(F)N(CH_3)_2$	$(CF_3)_3 PF^+$	256.9578	256.9585
	$(CF_{3})_{2}P(F)_{2}N(CH_{3})_{2}^{+}$	251.0108	251.0118

^a A reasonable structural formula rather than the molecular formula is given for each fragment ion for convenience only.

at m/e 69 which was principally the CF₃⁺ ion with small proportions of the PF₂⁺ ion.¹⁵

The intensity distribution of the ions in the spectrum of $(CF_3)_3P(OCH_3)_2$ suggests that the major fragmentation processes involve cleavage of P-O and P-C bonds to give $(CF_3)_3POCH_3^+$ and $(CF_3)_2P(OCH_3)_2^+$ species. Similarly fragmentation of (CF₃)₃P(F)OCH₃ involves preferential loss of OCH₃ and CF₃ rather than loss of the single fluorine atom. In both of the methoxy derivatives, CF₂ elimination was a prominent process.¹⁵ In contrast, ions arising from loss of CF₃ and SCH₃ from $(CF_3)_3P(F)SCH_3$ were either not detectable or were present only in very low abundance. In this spectrum the smaller fragments were dominant reflecting the less stable character of this compound. The more stable fluorophosphorane $(CF_3)_3P(F)N(CH_3)_2$ gave a significant proportion of the ion $CF_3P(F)_2N(CH_3)_2^+$ (*m/e* 182, 12.79%) by means of CF₂ elimination.¹⁵ The ions CF₃PF₃⁺ (m/e 157, 6.9%) and $F_3PN(CH_3)_2^+$ (m/e 132, 15.5%) which can also arise from a CF₂ elimination process were similarly abundant in this spectrum.

C. Infrared Spectra. Bands typical of CH₃ and (CF₃)₃P structural units are found in the infrared spectra (Table IV) of the phosphoranes. Assignments indicated therein support the presence of these and other (e.g., C-O-(P) at 1080 cm⁻¹ and P-O-(C) at 810 cm⁻¹)¹⁶ structural units in the compounds. The latter assignment is somewhat more speculative than the former. In these complicated molecules with low symmetry such group shift analysis must be regarded with caution because of the possibility of extensive mixing of the vibrational modes in the molecule. A particular example of this is presented by $(CF_3)_3P(F)N(CH_3)_2$ which has bands at 750, 720, and 700 cm^{-1} which can be tentatively assigned to the symmetric CF₃ deformation, the P-N stretch, and the P-F stretch (or some other permutation of these assignments), respectively, but each band may well contain elements of all three motions. The assignments given in Table IV, based on qualitative group shift arguments derived from related molecules, ^{1,16} must be regarded as very tentative.

D. NMR Spectra, Ground-State Structures, and Stereochemical Preferences of Substituents. The ground-state structures of these phosphoranes have been revealed by means of temperature-dependent NMR spectroscopy. In some cases the spectra also confirm the molecular formulas and permit a distinction between the phosphorane and the isomeric phosphonium salt. We assume that the basic structure of these relatively simple molecules is a trigonal bipyramid in keeping with the few examples¹⁷ of this structure in analogous molecules and in agreement with the extensive NMR^{18,19} and vibrational²⁰ spectroscopic studies of closely related molecules. It is worth noting that the only established square-pyramidal phosphorane²¹ structures involve bidentate chelate ligands and that characteristic NMR parameters have yet to be established for square-pyramidal geometry.²²

Table IV. Infrared Spectral Data^a

	(CF ₃) ₃ -	(CF ₃) ₃ -	(CF ₃) ₃ -	
$(CF_3)_3P$ -	P (F)-	P(F)-	P(F)[N-	
$(OCH_3)_2$	(OCH_3)	(SCH ₃)	(CH ₃) ₂]	Assignment
3040 vw	3020 w			
2990 m	2970 m	2950 m	2960 m	
2930 vw	2900 vw	2920 w, sh	2940 w, sh (v(C-H)
			2890 w	
2880 w	2860 w	2840 w	2840 w	
		2280 w		
1470 w	1470 w	1440 m	1470 w	$\delta_{asym}(CH_1)$
1360 vw				asym
1330 w		1330 w	1290 m	$\delta_{\rm sym}(\rm CH_3)$
1215 vs	1225 vs	1220 vs	1210 vs	39111 3,
1200 vs	1190 vs	1200 vs	1190 s, sh	
1170 vs	1170 vs		1160 vs	$\nu(C-F)$
1130 vs	1145 vs	1100 vs	1130 vs	
			1065 m	
			1010 s	$\nu(PNC_2)$
1085 m	1075 vs)	
810 m	820 s		}	$\nu(P-O-C)$
		850 vw	,	
760 vw				
740 vw		760 sh	760 sh	
680 m	765 s	745 m	750 s	$\delta_{sym}(CF_3)(?)$
	740 m			3,711. 57.7
			720 s	$\nu(PN)(?)$
	705 s	690 s	700 s	$\nu(PF)$
		640 s		
610 s	610 s	590 s	600 s	$\delta_{aevm}(CF_1)(?)$
		530 m, sh		$\nu(\mathbf{PS})(?)$
520 m	520 m	510 s	515 w	$\nu(PCF_3)$
455 w	425 m	420 m		

^a Gas-phase spectra; all values in cm⁻¹: s, strong; m, medium; w, weak; v, very; sh, shoulder; ν , stretching; δ , deformation; sym, symmetric; asym, asymmetric; ?, a very tentative assignment.

Figure 1. Ground-state structures of the phosphoranes $(CF_3)_3PXY$.

The present series of phosphoranes can be assigned to either structure B (X = F, Y = OCH₃, SCH₃, N(CH₃)₂; X = Cl, Y = N(CH₃)₂¹) or structure C (X = Y = OCH₃) (Figure 1). With the exception of (CF₃)₃ P(Cl)N(CH₃)₂ the ground-state structures of the phosphoranes are those predicted by application of the rule that the most electronegative substituents preferentially occupy the axial positions in the trigonal bipyramid as first proposed by Muetterties et al.¹⁹ We have proposed⁶ that Cl, although less electronegative than CF₃,²³ also preferentially occupies the axial position in chlorophosphoranes and that a superior indicator⁶ of positional preference is the σ_I value²⁴ of the substituent. Thus all halogens²⁵ preferentially occupy the axial positions whereas Tris(trifluoromethyl)phosphoranes

Figure 2. ¹⁹F (94.2 MHz) normal-temperature (+33 °C) spectrum of $(CF_3)_3$ PF[N(CH₃)₂] obtained on a solution in CCl₃F. Scale values refer to shifts from CCl₃F in Hz.

substituents such as OCH₃, SCH₃, and N(CH₃)₂ prefer equatorial locations^{1,2,6} either as a result of their low inductive character (i.e., σ_I is relatively small) or as a result of stronger π interactions between these substituents and phosphorus in the equatorial plane.²⁶ CF₃ groups, which appear to possess no strong preference for either location, occupy the remaining positions in the five-coordinate molecular framework.

In almost all cases the ground-state structure can be clearly deduced from low-temperature ¹⁹F (and ³¹P) NMR spec-troscopy. At normal probe temperatures the ¹⁹F NMR spectra of the $(CF_3)_3P(F)Y$ [Y = OCH₃, SCH₃, N(CH₃)₂] series of phosphoranes show only two distinct fluorine atom environments due to the three equivalent CF₃ groups and the single fluorine, respectively. The latter signal comprises a doublet of multiplets (see Figure 2) characterized by a large coupling constant (~900 Hz) due to ${}^{1}J_{PF}$. The magnitude of ${}^{1}J_{PF}$ clearly indicates that the fluorine is directly bound to phosphorus¹⁸ even in the solution state at ordinary temperatures and confirms the phosphorane⁸ formulation. Small couplings within each component of the doublet arise from coupling of this single fluorine to the fluorine atoms of equivalent CF₃ groups $({}^{3}J_{FF})$ and to the protons $({}^{4}J_{FH})$ of the fifth substituent. The more intense ¹⁹F signal which arises from the equivalent CF₃ groups comprises a major doublet due to ${}^{2}J_{\rm PF}$ (~100 Hz) coupling with phosphorus plus smaller couplings to the single fluorine $({}^{3}J_{FF})$ and to the protons. The expected correspondences of coupling constant values are observed in both regions of the spectrum.

Fluorine NMR spectroscopy of the compounds $(CF_3)_3$ -P(F)Y, (Y = OCH₃, NMe₂, SCH₃) at progressively lower temperatures showed that the signal due to the single fluorine atom was essentially unaffected except for loss of the multiplet fine structure within each component of the major doublet, most probably as a result of increased multiplicity and some broadening due to solvent effects. The signal due to CF₃ resonances collapsed completely at intermediate temperatures to resolve eventually (-80 °C for $Y = OCH_3$ and -40 °C for $Y = N(CH_3)_2$; see Figure 3) into two chemically shifted regions with 2:1 relative intensity. In both of the above spectra the more intense signal appears as a doublet of quintets due to the equality of ${}^{4}J_{FF}$ coupling to the axial CF₃ group and ${}^{3}J_{FF}$ (both 15–16 Hz) coupling to the single fluorine. The relatively large value of ${}^{2}J_{PF(eq)}$ is clearly shown by the major doublet structure in the stronger signal. The weaker signal is poorly resolved or unresolved in the ¹⁹F spectrum at the illustrated and lower temperatures due to the relatively small value of ${}^{2}J_{PF(ax)}$; however, even in the less favorable cases of $(CF_3)_3P(F)SCH_3$ and $(CF_3)_3P(F)N(CH_3)_2$ (Figure 4), this

Figure 4. Low-temperature ³¹P{¹H} spectrum (36.4 MHz) of $(CF_3)_3P(F)N(CH_3)_2$ obtained at -50 °C on a solution in CCl₃F. The frequency scale gives the shift relative to P₄O₆ but was measured by heteronuclear lock techniques relative to ²H of CD₂Cl₂. The stick diagram shows the axial and equatorial ²J_{PF} values and the expected pattern arising from the central five lines of the septet.

value can be unambiguously obtained from the low-temperature ³¹P spectrum. In general all of the required ${}^{2}J_{PF}$ coupling constant data which could not be obtained by ${}^{19}F$ NMR spectroscopy alone were provided by proton-decoupled ${}^{31}P$ NMR spectroscopy at similar temperatures placing the stereochemical assignments on a relatively firm uniform foundation.

The low-temperature (-70 °C) ¹⁹F NMR spectrum of $(CF_3)_3P(F)SCH_3$ showed overlapping axial and equatorial signals with the latter appearing as a doublet of doublets of quartets superimposed on the broad and poorly resolved signal arising from the axial CF₃ group. Additional complexity in the spectrum arises from this accidental chemical shift co-incidence.

All (CF₃)₃P(F)Y (except Y = OSi(CH₃)₃ which was not investigated) compounds therefore show two CF₃ environments with a relative intensity ratio of 1:2 at low temperatures as expected for structure B. The weaker signal, characterized by a relatively small value of ${}^{2}J_{PF}$, arises from the axial CF₃ group and the stronger signal, characterized by the larger value of ${}^{2}J_{PF}$, is associated with the equatorial CF₃ substituents. Note (Table V) that the relative chemical shifts of axial and equatorial groups do not display a consistent relationship to

Table V.	NMR	Data of	Tris(trifluorom	ethyl)phosphorane
----------	-----	---------	-----------------	-------------------

	Temp, °C	$ au^{lpha}$	ф _F , b ppm	$\phi_{CF_3}^{b}$, ppm (rel intens)	σ31 p , ^c ppm	¹ J _{PF} , Hz	$^{2}J_{\mathbf{PF}},$ Hz	³ Ј _{РН} , Hz	$^{4}J_{\rm FH}$ ($^{5}J_{\rm FH}$), Hz	³ J _{FF} , Hz	⁴J _{FF} , Hz
$(CF_3)_3 P(OCH_3)_2$	$+30 \\ -80$	6.19 ^g		63.4^{h} $61.7 (1)^{e,h,k}$	+187.0 ^{<i>f</i>,<i>j</i>}		96.0 108.0 ^k	13.6	0.8		13.5
		603m	50 2f.n	$63.6 (2)^{e,i,l}$	+ 160 of.n	012	88^{l}	12.0	1.2	14.0	
(Cr ₃) ₃ r(r)(Cr ₃)	8 0	0.05	51.4	$63.0 (2)^{e,k,o}$ $67.0 (1)^{e,l,p}$	+109.07 $+170.9^{d,q}$	909 909	112.5 133.0^{k} 72.0^{l}	13.9	1.2	15.5	12.0
(CF ₃) ₃ P(F)SCH ₃	+30	7.92 ^m	1.0 ^{<i>f</i>,<i>n</i>}	61.7^{m} $60.3^{k,o}$	161.5 ^{f,n} 161.5 ^{d,f,q}	980 973	103.7 134 0 ^d , ^k	19.2	2.5 (0.5)	16.5 r	13.0
	-70			~59.9 ^r	in a dfr	275	33.8 ^{d,l}			r	10.0
$(CF_3)_3P[N(CH_3)_2]_2$	40			55.6 $(1)^{z}$ 57.0 $(2)^{z}$	+152.54,7,*		$50.8^{l,y}$				
$(CF_3)_3 P(F) [N(CH_3)_2]$	+30 -40	7.00 ^{<i>m</i>,s}	30.5 ^{f,t} 32.3	61.1^{m} $62.3 (2)^{e,k,o}$ $59.6 (1)^{e,l,p}$	174.7 ^{f,t} 175.9 ^{d,f,q}	857 849	109.0 130.0^{k} 54.0^{l}	10.6	2.8 (0.4)	16.0 16.0	16.0
$(CF_3)_3 P(Cl)[N(CH_3)_2]$ $(CF_3)_3 P(F)OSi(CH_3)_3^{\nu}$	$^{+30}_{+30}$	7.20 ^g 9.56 ^w	45.5 ^{f,g}	$59.0^{h,z}$ 66.7 ^m	156.5 ^{d,u}	979	107.0 120.5	14.0	0.7	13.5	

^a τ relative to internal tetramethylsilane (τ 10.0). ^b ϕ relative to internal (solvent) CCl₃F standard with positive values indicating resonance to high field of standard. ^c Versus P₄O₆³⁰ as external standard (capillary), positive values indicating resonance to high field of standard. ^d Obtained from ³¹P{¹H} MMR spectra. ^e Relative intensity in arbitrary units. ^f Outermost unit intensity lines not observed, but observed intensity ratio is correct for first-order pattern given. ^g Doublet of decets. ^h Doublet of septets. ⁱ Doublet of quartets. ^J Decet of septets. ^k CF₃ equatorial. ^l CF₃ axial. ^m Doublet of doublets. ⁿ Doublet of septets of quartets. ^o Doublet of overlapping doublet of quartets (approximate quintet). ^p Broad doublet (see text). ^q Doublet of septets of quartets. ^r Axial signal is broad and unresolved, and, because of accidental chemical shift equivalence, the signal lies under the equatorial signal. Therefore relative intensities and some coupling constants cannot be obtained from the ¹⁹F spectrum. ^s Additional fine structure observed but not resolved clearly. ^t Doublet of decets of septets. ^u Decet. ^v Identified spectroscopically; not isolated. ^w Singlet. ^x Quartet of septets. ^y Values which give best fit of experimental and calculated (NUMARIT³⁶) ³¹P spectrum. ^z Reference 1.

one another even within this limited series. For example the axial CF₃ resonances of unit intensity appear to higher field of equatorial CF₃ resonances of twofold relative intensity in $(CF_3)_3P(F)OCH_3$ whereas the reverse is true in the case of $(CF_3)_3P(F)N(CH_3)_2$; thus no consistent association of CF₃ chemical shift with substituent position is possible. The value of $^2J_{PF}$ however appears to consistently indicate the substituent position in all of the compounds studied herein and previously.^{1,2,6}

The ${}^{2}J_{PF}$ values assigned to axial and equatorial CF₃ environments in the $(CF_3)_3P(F)Y$ series of compounds are consistent with our suggestion¹ that the structures of the trifluoromethylfluorophosphoranes agree with the electronegativity rule having only equatorial CF₃ groups rather than the inconsistent proposed structures¹⁹ with axial CF₃ sub-stitution for $(CF_3)_2PF_3$ and $(CF_3)_3PF_2$ and an equatorial CF₃ group in CF₃PF₄. The similarity of ${}^{2}J_{PF}$ values within the series (CF₃PF₄, 172 Hz; (CF₃)₂PF₃, 175 Hz; (CF₃)₃PF₂, 167 $(Hz)^{1}$ and the agreement of these values with the relatively large ${}^{2}J_{\rm PF}$ values found both herein and earlier² in a series of compounds in which equatorial environments appeared to be clearly distinguished strongly support the proposed assignment of exclusive equatorial CF₃ substitution in the ground-state structures of all three trifluoromethylfluorophosphoranes. The chemical shift arguments used previously19 appear to be unreliable. The apparent inability of distinguishing axial and equatorial F environments particularly in CF3PF4, also used to support the earlier proposed structures,¹⁹ can be understood in terms of a fast positional interchange process with a low barrier, which averages these F environments.

Although further study of $(CF_3)_3P(Cl)N(CH_3)_2^1$ with low-temperature ¹⁹F and ³¹P NMR spectroscopy failed to add any more conclusive evidence to that reported previously,¹ new ¹³C{¹⁹F} NMR data have provided convincing evidence to support the suggestion that this molecule adopts the ground-state structure B at low temperatures.²⁵ At 163 K the ¹³C{¹⁹F} spectrum of the CF₃ groups in (CF₃)₃P(Cl)N(CH₃)₂ consists of a pair of doublets with a relative intensity ratio of 2:1. The more intense doublet with the larger coupling constant (¹J_{PC} = 237 Hz) can be confidently assigned to two equatorial CF₃ groups and the doublet of lesser intensity with the smaller coupling constant (${}^{1}J_{PC} = 83 \text{ Hz}$), to the single axial CF₃ group since the ${}^{1}J_{PC}$ values appear to correlate linearly with ${}^{2}J_{PF}$ values²⁵. At 233 K, the distinction between axial and equatorial environments is lost and the resultant average value of the coupling constant (${}^{1}J_{PC} = 186 \text{ Hz}$) is in good agreement with the weighted average of the above axial and equatorial ${}^{1}J_{PC}$ values. Thus Cl appears to occupy the axial position in preference to a CF₃ group, in violation of the electronegativity rule, 19 as we tentatively suggested earlier, 1 and this behavior appears to persist for the chlorophosphoranes¹ and bromophosphoranes²⁵ supporting our proposed⁶ apicophilicity series indicated by σ_I . Also notable is the fact that the barrier to the positional interchange process affecting (CF₃)₃P(X)N(CH₃)₂ molecules appears to be significantly lower in the case of X = Cl than for X = F.

The ¹⁹F NMR spectrum of (CF₃)₃P(OCH₃)₂ (Figure 5) is also temperature dependent and consists, at normal temperatures, of a doublet of septets. The spectrum was transformed into two chemically shifted regions with a 2:1 relative intensity ratio at -80 °C. The twofold intensity region consisted of a well-resolved doublet of quartets, characterized by a relatively smaller value of ${}^{2}J_{\rm PF}$, which can be assigned to the axial CF₃ signals. The unit intensity region, which consisted of a doublet of septets (with a slightly skewed intensity distribution within the multiplet pattern) with a relatively larger value of ${}^{2}J_{\rm PF}$, can be assigned to the equatorial CF₃ groups. The two OCH₃ groups, which have a low apical preference^{1,2,6} or, equivalently, a pronounced preference for location in the equatorial plane, are expected to reside in the equatorial plane forcing two CF₃ groups into the axial positions. The expected ground-state structure is therefore C. Again we consider that positional indication is only reliably provided by ${}^{2}J_{PF}$ values and we associate the largest ${}^{2}J_{PF}$ values with equatorial CF₃ substituents. In this context, the appearance of the smaller ${}^{2}J_{\rm PF}$ value in the most intense ${}^{19}F$ signal of $(CF_3)_3P(OCH_3)_2$ in contrast to the $(CF_3)_3P(F)Y$ series where the smaller ${}^{2}J_{\rm PF}$ value was found in the least intense ¹⁹F (CF₃ portion) resonance signal is consistent with the proposal that the structures consist of two and one axial CF_3 group(s), respectively, in the two systems suggesting that F (and Cl) is preferentially located in the axial position

Figure 5. ¹⁹F (94.2 MHz) NMR spectra of $(CF_3)_3P(OCH_3)_2$ at +33, -60, and -80 °C obtained on a solution of the compound in CCl₃F. The frequency scale gives shifts (in Hz) from the CCl₃F reference. The inset at +33 °C shows the fine structure present in the peaks at higher resolution.

Figure 6. Observed and calculated ³⁶ (³¹P {¹H}, 36.4 MHz) NMR spectra of $(CF_3)_3P[N(CH_3)_2]_2$ at -40 °C. The frequency scale gives chemical shift values relative to P_4O_6 (actually measured by heteronuclear lock reference system). The pattern consists of an overlapping septet of quartets due to two axial CF₃ groups (²J_{PF} = 50.8 Hz) and one equatorial CF₃ group (²J_{PF} = 107.0 Hz) attached to phosphorus.

whenever it is present in the molecule.

It is unfortunate that solubility and solvent limitations prevented the observation of the ${}^{31}P$ { ^{1}H } NMR spectrum of (CF₃)₃P(OCH₃)₂ which would provide additional confirmation of the ${}^{19}F$ spectral behavior. We have, however, now obtained the ${}^{31}P$ { ^{1}H } NMR spectrum of (CF₃)₃P[N(CH₃)₂]₂ 1 at -40 °C (Figure 6) which completely supports the previous conclusions¹ derived from the ${}^{19}F$ spectrum in which the ground-state structure C was suggested. The behavior of (CF₃)₃P(OCH₃)₂ is similar to that of (CF₃)₃P[N(CH₃)₂]₂ including a similar pattern of relative ${}^{2}J_{PF}$ values and intensities in both cases. In both molecules, additional effects are observed in the ${}^{19}F$ NMR spectra at temperatures below that required to distinguish CF₃ environments. These effects were more readily discernible in the amino compound because of the higher barrier to CF₃ averaging present therein¹ and for this reason further analysis of the ${}^{19}F$ spectrum of (CF₃)₃P(OCH₃)₂ has not been completed at this time.

Similar additional complexities in the ¹⁹F spectra of $(CF_3)_3P(F)Y$ molecules were observed upon cooling the samples to temperatures well below those required to clearly distinguish the CF₃ environments (i.e., <-100 °C). Notable was the broadening of the lines and loss of coupling constant

structure in the portion of the spectrum assigned to the axial CF₃ groups, whereas the equatorial portions of the spectrum remained relatively unaffected. At very low temperatures, occasional resolution of the axial signal into a complex multiplet spread over nearly 1000 Hz having similar appearance to the ${}^{19}F$ spectra of $(CF_3)_3P[N(CH_3)_2]_2^1$ and $(CF_3)_3P[OSi(CH_3)_3]_2^7$ occurred. We suggest that additional averaging processes such as P-O, P-S, or P-N bond rotation or nitrogen inversion etc. are stopped at these very low temperatures with concomitant cessation of the rotation of the axial CF₃ groups creating, thereby, inequivalent F atoms within the CF₃ group. For steric reasons, the axial CF₃ groups are the more likely to be affected by these restricted rotational processes and this is reflected in the observed collapse of the axial CF_3 portion of the spectrum while the equatorial CF_3 portion is relatively unaffected. Further studies of this phenomenon and of related intramolecular exchange behavior are in progress on simpler systems.²⁵

In the absence of detailed line shape analyses and quantitative information establishing the intramolecular character (which we think likely, particularly in the case of disubstituted derivatives such as $(CF_3)_3P(OCH_3)_2$) of the exchange processes, it is premature to speculate further on the nature of the permutational exchange process. Either a Berry or a Turnstile process can account for the observed spectral behavior but at this time we cannot distinguish between these mechanisms or verify their validity.

The ¹H NMR spectra of the compounds $(CF_3)_3P(F)Y$ [Y = OCH₃, SCH₃, N(CH₃)₂] at normal instrument temperatures (+33 °C) showed a doublet of doublets due to coupling of the protons with $({}^{3}J_{PH})$ and with the single fluorine $({}^{4}J_{FH})$ directly bound to the phosphorus atom. The ¹H NMR spectrum of $(CF_3)_3P(OCH_3)_2$ under similar conditions showed a major doublet due to ${}^{3}J_{PH}$ coupling. In all cases, each component was further split into decets as a result of coupling of the protons to nine equivalent fluorine nuclei of the three CF₃ groups, thus confirming the presence of three CF₃ groups in the molecules. Very low-temperature ¹H NMR spectroscopy of these molecules also suggested onset of inequivalencies arising from frozen molecular conformations as discussed above; however, no clear interpretation could be obtained from these spectra.

Summary and Conclusions

NMR spectra of $(CF_3)_3P(F)X$ derivatives show in all cases a signal due to the single fluorine with a large coupling to phosphorus strongly suggesting that the compounds are correctly formulated as five-coordinate phosphoranes rather than phosphonium salts.

At ordinary temperatures, the CF₃ environments are equivalent. Axial and equatorial CF₃ environments were detected by low-temperature ¹⁹F and ³¹P NMR or, in the case of $(CF_3)_3P(Cl)N(CH_3)_2$, only by very low-temperature (160 K) ¹³C NMR spectroscopy. The barrier to the CF₃ averaging process increases roughly in the order (CF₃)₃P(Cl)N(CH₃)₂ $<(CF_3)_3P(F)(OCH_3) \sim (CF_3)_3P(OCH_3)_2 < (CF_3)_3P(F)_3$ $SCH_3 \sim (CF_3)_3 P[OSi(CH_3)_3]_2 < (CF_3)_3 P(F)N(CH_3)_2 <$ $(CF_3)_3P[N(CH_3)_2]^1$ as indicated by the approximate coalescence temperatures. At very low temperatures, other dynamic averaging processes cease which further complicates the spectra. In some cases these effects are evident at temperatures required to resolve CF₃ environments so that the axial signals, which are more susceptible to the effects of a conformational interaction, may not be as clearly resolved as equatorial CF_3 environments.

All of the ground-state structures are consistent with apical substitutional preferences proposed elsewhere,⁶ and the trend appears to be predicted by the σ_I^{24} value of the substituent. Since all halogens appear to occupy axial positions in pref-

erence to equatorial ones, the compounds $(CF_3)_3P(X)Y$ [X = F, Y = OCH₃, SCH₃, N(CH₃)₂ (and presumably OSi- $(CH_3)_3$; X = Cl, Y = N $(CH_3)_2$] possess ground-state structures having either F or Cl and one CF₃ in axial positions. The axial CF₃ group is characterized by a relatively low value of ${}^{2}J_{PF}$. Two CF₃ groups (characterized by relatively large ${}^{2}J_{\rm PF}$ values) are found in the equatorial plane along with the fifth group (Y). When no halogens are present as in $(CF_3)_3P(OCH_3)_2$ (and $(CF_3)_3P[N(CH_3)_2]_2^1$), two CF₃ groups (with a ${}^{2}J_{PF}$ value similar to that of the axial CF₃ group in the above systems) occupy axial positions and the third (with a ${}^{2}J_{\rm PF}$ value similar to the equatorial CF₃ groups above) occupies the equatorial plane along with two OCH₃ (or $N(CH_3)_{2^1}$ groups. A clear and consistent interpretation of the NMR spectral behavior is obtained for this and related 1,2,6,7 systems if the larger $^{2}J_{PF}$ values are associated with equatorial CF₃ and the smaller $^{2}J_{PF}$ values with axial CF₃ substitution. The relative numbers of CF₃ groups can be deduced from the relative intensity of the ¹⁹F signal. Chemical shifts vary irregularly and cannot be used to indicate substituent position.

Experimental Section

All reactions were done in sealed tubes using standard vacuum techniques. $(CF_3)_3P$, $(CF_3)_3PCl_2$, $(CF_3)_3PF_2$, $(CH_3)_3SiN(CH_3)_2$, $(CH_3)_3SiOCH_3$, $(CH_3)_3SiSCH_3^{29}$ were prepared according to published methods.

Infrared spectra were recorded with a Perkin-Elmer 457 spectrometer in a 9-cm gas cell with potassium bromide windows. Mass spectra were recorded with an AEI MS-9 spectrometer operating at an ionizing voltage of 70 eV. Proton and ¹⁹F NMR spectra were obtained with Varian A56/60 or HA100 spectrometers operating at 56.4 or 94.2 MHz (19 F) or at 60 or 100.1 MHz in the case of 1 H. Phosphorus NMR spectra were obtained with a Bruker HFX-90 spectrometer operating at 36.4 MHz in the pulsed FT mode. In general all spectra were obtained on approximately 10% solutions in CCl₃F or CF₂Cl₂ or mixtures of both. Fluorine chemical shifts were measured relative to internal CFCl₃ solvent or relative to external (capillary) CCl₃F if other solvents were used. Proton and phosphorus chemical shifts were measured relative to internal tetramethylsilane and an external capillary of P₄O₆ (neat),³⁰ respectively. Each instrument was equipped with a calibrated variable-temperature controller and quoted temperatures are reliable to ± 5 °C.

Hydrolysis. All compounds were hydrolyzed in 10% aqueous NaOH at room temperatures for 48 h and the yields of fluoroform, characterized by infrared and gas-phase molecular weight measurements, are quoted in Table I. Anions remaining in solution were characterized by ¹⁹F NMR.¹³ The results of neutral hydrolyses are also given in Table I.

Preparation of Tris(trifluoromethyl)chlorodimethylaminophosphorane.¹ Tris(trifluoromethyl)dichlorophosphorane (CF₃)₃PCl₂ (0.533 g, 1.73 mmol) and an equimolar quantity of dimethylaminotrimethylsilane (CH₃)₃SiN(CH₃)₂ (0.201 g, 1.71 mmoles) were allowed to warm slowly from -196 °C in a sealed tube with agitation. Reaction occurred quickly upon warming to form a white solid at about -10 °C. Separation of the mixture of products under vacuum gave $(CF_3)_3P(Cl)N(CH_3)_2^1$ (0.385 g, 1.21 mmol) trapped at -45 °C and (CF₃)₃P^{4,31} (0.048 g, 0.20 mmol) trapped at -196 °C. Samples of $(CF_3)_3P(Cl)N(CH_3)_2$ were observed to decompose at room temperatures yielding further amounts of $(CF_3)_3P$ and an unidentified white solid. In a similar fashion (CF₃)₃PCl₂ (0.524 g, 1.70 mmol) and an excess of (CH₃)₃SiN(CH₃)₂ (0.496 g, 4.24 mmol) gave an undetermined amount of (CF₃)₃P(Cl)N(CH₃)₂ collecting in the -45 °C trap, as the only volatile phosphorane product, identified by its ir spectrum, plus an unseparated mixture of (CH₃)₃SiCl and $(CH_3)_3SiN(CH_3)_2$ (0.486 g total, trapped at -78 and -96 °C) in a 1.0:1.5 molar ratio, respectively, according to the integrated ¹H NMR spectrum,³² and (CF₃)₃P^{4,31} (0.111 g, 0.47 mmol) which was obtained as the most volatile fraction.

Preparation of Tris(trifluoromethyl)fluorodimethylaminophosphorane. Gaseous dimethylamine (0.162 g, 3.60 mmol) was slowly admitted to a sample of gaseous $(CF_3)_3PF_2$ (0.502 g, 1.82 mmol) contained in a 1-l. gas-phase reactor⁹ at room temperature. A white solid formed immediately upon contact of the two vapors. After 1 h at room temperature, separation of the volatile products under vacuum gave tris(trifluoromethyl)fluoro(dimethylamino)phosphorane, $(CF_3)_3P(F)N(CH_3)_2$ (0.301 g, 1.00 mmol), trapped at -45 °C and dimethylamine (0.004 g). The compound $(CF_3)_3P(F)N(CH_3)_2$ was characterized by its spectroscopic properties (ir, Table IV; NMR, Table V; mass spectral data, Tables II and III) and hydrolysis reactions (Table I).

The ¹⁹F NMR spectrum of the acetonitrile solution of the remaining white solid showed four multiplets, three of which (centered at 67.0, 90.8, and 99.9 ppm; $J_{PF} = 860$ Hz) were consistent with those reported³³ for (CF₃)₃PF₃⁻. The other signal, centered at 54.7 ppm, is tentatively assigned²⁵ to (CF₃)₃PN(CH₃)₂+.

Preparation of Tris(trifluoromethyl)dimethoxyphosphorane. (a) $(CF_3)_3PCl_2$ (0.264 g, 0.85 mmol) and methoxytrimethylsilane $(CH_3)_3SiOCH_3$ (0.171 g, 1.64 mmol) reacted upon slow warming from -196 °C to room temperature in a sealed tube. Separation of the volatile products gave $(CF_3)_3P(OCH_3)_2$ (0.240 g, 0.80 mmol) trapped at -45 °C, $(CF_3)_3PCl_2$ (0.007 g) trapped at -63 °C, and $(CH_3)_3SiCl$ (0.172 g, 1.58 mmol) trapped at -96 °C. $(CF_3)_3$ -P(OCH_3)_2 was characterized by its spectroscopic properties (ir, Table IV; NMR, Table V; mass spectral data, Tables II and III) and hydrolysis reactions (Table I).

(b) The reaction of $(CF_3)_3PCl_2$ (0.290 g, 0.94 mmol) with a limited quantity of $(CH_3)_3SiOCH_3$ (0.091 g, 0.87 mmol) gave $(CF_3)_3$ -P(OCH₃)₂ (0.100 g, 0.33 mmol) and an unseparated, more volatile mixture of $(CF_3)_3PCl_2$, $(CH_3)_3SiCl$, and $(CF_3)_3P(OCH_3)_2$ (0.275 g), all identified by their NMR spectra.^{31,32}

(c) $(CF_3)_3PF_2^3$ (0.452 g, 1.64 mmol) and excess $(CH_3)_3SiOCH_3$ (0.406 g, 3.90 mmol) reacted on slow warming from -196 °C to room temperature in a sealed tube. Separation of the volatile products gave $(CF_3)_3P(OCH_3)_2$ (0.489 g, 1.63 mmol) and a fraction which was mainly $(CH_3)_3SiF^{32}$ contaminated with some unreacted $(CH_3)_3$ -SiOCH₃ (0.362 g), identified by NMR and ir spectra.

Preparation of Tris(trifluoromethyl)fluoromethoxyphosphorane. (a) Tris(trifluoromethyl)difluorophosphorane (CF₃)₃PF₂³ (0.657 g, 2.38 mmol) and slightly less than 1 molar equiv of (CH₃)₃SiOCH₃ (0.201 g, 1.93 mmol) reacted on slowly warming from -196 °C to room temperature. Separation of the volatile products gave tris(trifluoromethyl)fluoro(methoxy)phosphorane (CF₃)₃P(F)OCH₃ (0.511 g, 1.77 mmol) trapped at -63 °C and an unseparated mixture of (CH₃)₃SiF, (CF₃)₃PF₂, and (CF₃)₃P(F)OCH₃ (0.340 g), all identified by their NMR spectra. The methoxyfluorophosphorane (CF₃)₃P(F)OCH₃ was characterized by its spectroscopic properties (ir, Table IV; NMR, Table V; mass spectral data, Tables II and III) and hydrolysis reactions (Table I).

(b) A similar reaction of $(CF_3)_3PF_2$ (0.6242 g, 2.26 mmol) with $(CH_3)_3SiOCH_3$ (0.225 g, 2.15 mmol) plus a trace amount of iodine gave $(CF_3)_3P(OCH_3)_2$ (0.0830 g, 0.28 mmol) which was trapped at -45 °C, $(CF_3)_3P(F)(OCH_3)$ (0.490 g, 1.70 mmol) which was trapped at -63 °C, and an unseparated mixture of $(CH_3)_3SiF$ and $(CF_3)_3PF_2$ (0.226 g) also identified by NMR¹⁹ and infrared spectroscopy.

Tris(trifluoromethyl)fluorotrimethylsiloxyphosphorane. The reaction of $(CF_3)_3PF_2$ (0.898 g, 3.25 mmol) and $[(CH_3)_3Si]_2O$ (0.506 g, 3.13 mmol) was followed by NMR spectroscopy. The spectrum of the freshly prepared sample showed the presence of $(CH_3)_3SiF$ (τ 9.74 (doublet), ϕ_F 155 ppm (doublet), $J_{FH} = 8.0$ Hz),³² ($CF_3)_3P=O$ (ϕ_F 65.8 (doublet), $J_{PF} = 113.0$ Hz),³¹ and a species which is consistent with (CF_3)_3P(F)OSi(CH_3)_3 (see Table V). After 4 h at room temperature, the signals attributed to (CF_3)_3P(F)OSi(CH_3)_3 had disappeared leaving (CF_3)_3PO and (CH_3)_3SiF as the only ¹⁹Fcontaining species present in solution.

Preparation of Tris(trifluoromethyl)fluoro(thiomethyl)phosphorane. (a) $(CF_3)_3PF_2$ (0.375 g, 1.36 mmol) and trimethylthiomethylsilane, $(CH_3)_3SiSCH_3$ (0.105 g, 0.88 mmol), reacted in a sealed tube when slowly warmed from -196 to -10 °C. The reaction vessel was kept at -10 °C and the volatile products were removed under vacuum to give tris(trifluoromethyl)fluoro(thiomethyl)phosphorane, $(CF_3)_3$ -P(F)(SCH₃) (0.256 g, 0.84 mmol), which was trapped at -45 °C and an unseparated mixture of $(CH_3)_3SiF$ and $(CF_3)_3PF_2$ (0.223 g). The compound $(CF_3)_3P(F)(SCH_3)$ was characterized by its spectroscopic properties (ir, Table IV; NMR, Table V; mass spectral data, Tables II and III) and hydrolysis reactions (Table I). A sample of $(C-F_3)_3P(F)(SCH_3)$ (0.3440 g, 1.13 mmol) decomposed on standing at room temperature for 1 week in a sealed tube. The volatile products which were only partly separated by vacuum fractionation were identified as a mixture of CH_3SSCH_3 and $(CF_3)_3P=S$ (0.133 g)³⁴

Thiourea Adducts of Dimethylhaloarsines

which was trapped at -78 °C and a more volatile mixture of (CF₃)₃PF₂ and (CF₃)₃P (0.177 g) identified by their NMR spectra.^{19,31,35} An unidentified yellow-brown solid (0.034 g by difference) remained in the reaction vessel.

(b) A sample of (CF₃)₃PF₂ (contaminated with a trace of (CF₃)₃-P=O) (0.185 g, ca. 0.67 mmol) and (CH₃)₃SiSCH₃ (0.169 g, 1.41 mmol) were combined in an NMR tube. NMR spectra obtained on the mixture after reaction for 15 min at room temperature showed the presence of (CF₃)₃P(F)(SCH₃) and trace amounts of (CF₃)₃PO, (CH₃)₃SiF, and (CH₃)₃SiSCH₃ but showed no signals which could be assigned to the disubstituted phosphorane (CF₃)₃P(SCH₃)₂.

Acknowledgment. We thank the National Research Council of Canada for financial support of this work and Dr. J. A. Gibson for some experimental assistance and helpful discussion. We are also indebted to Dr. T. Nakashima, Mr. T. Brisbane, and Mrs. L. Wong for assistance with NMR spectroscopic studies and we thank Dr. J. S. Martin for the use of NUMARIT.³⁶

Registry No. (CF3)3P(OCH3)2, 51874-39-6; (CF3)3P(F)OCH3, 59888-71-0; (CF₃)₃P(F)SCH₃, 51874-42-1; (CF₃)₃P[N(CH₃)₂]₂, 51874-38-5; (CF₃)₃P(F)[N(CH₃)₂], 51874-41-0; (CF₃)₃-P(Cl)[N(CH₃)₂], 51874-40-9; (CF₃)₃P(F)OSi(CH₃)₃, 59888-72-1; (CF3)3PCl2, 420-72-4; (CH3)3SiN(CH3)2, 2083-91-2; dimethylamine, 34285-60-4; (CF₃)₃PF₂, 661-45-0; (CH₃)₃SiOCH₃, 1825-61-2; [(CH₃)₃Si]₂O, 107-46-0; (CH₃)₃SiSCH₃, 3908-55-2; ³¹P, 7723-14-0.

References and Notes

- (1) D. D. Poulin and R. G. Cavell, Inorg. Chem., 13, 2324 (1974); erratum, ibid., 14, 2022 (1975).
- D. D. Poulin and R. G. Cavell, Inorg. Chem., 13, 3012 (1974). W. Mahler, Inorg. Chem., 2, 230 (1963).
- (3)
- (4) F. W. Bennett, H. J. Emeleus, and R. N. Haszeldine, J. Chem. Soc., 1565 (1953).
- (5) (a) I. Ugi, D. Marquarding, H. Klusacek, P. Gillespie, and F. Ramirez, Acc. Chem. Res., 4, 288 (1971); (b) R. S. Berry, J. Chem. Phys., 32, 933 (1960)
- (6) R. G. Cavell, D. D. Poulin, K. I. The, and A. J. Tomlinson, J. Chem. (a) R. G. Cavell, C. D. Leary, and A. J. Tominison, J. Chem. Soc., Chem. Commun., 19 (1974).
 (7) R. G. Cavell, R. D. Leary, and A. J. Tominison, Inorg. Chem., 11, 2578
- (1972).
- We reserve the term phosphorane for a five-coordinate compound of (8) phosphorus which is formally a derivative of PH5.
- R. G. Cavell, J. Chem. Soc., 1992 (1964).
- (a) R. Schmutzler, J. Chem. Soc., Dalton Trans., 2687 (1973); (b) R. (10)Schmutzler, Angew Chem., Int. Ed. Engl., 11, 753 (1964).

- (11) (a) S. C. Peake and R. Schmutzler, Chem. Commun., 665 (1968); (b) S. C. Peake and R. Schmutzler, J. Chem. Soc. A, 1049 (1970).
- (12) D. D. Poulin, M.Sc. Thesis, The University of Alberta, 1973.
 (13) A. A. Pinkerton and R. G. Cavell, *Inorg. Chem.*, 10, 2720 (1971).
- (14) T. A. Blazer, R. Schmutzler, and I. K. Gregor, Z. Naturforsch., B, 24, 1081 (1969).

- R. G. Cavell and R. C. Dobbie, Inorg. Chem., 7, 101 (1968).
 D. E. C. Corbridge, Top. Phosphorus Chem., 6, 235 (1971).
 K. W. Hansen and L. S. Bartell, Inorg. Chem., 4, 1775 (1965); L. S. Bartell and K. W. Hansen, *ibid.*, 4, 1777 (1965); W. S. Sheldrick, J. Chem. Soc., Dalton Trans., 2301 (1973).
 B. Schmuther, Adv. Elucian Chem. 6, 21 (1965).
- (18) R. Schmutzler, Adv. Fluorine Chem., 5, 31 (1965).
 (19) E. L. Muetterties, W. Mahler, and R. Schmutzler, Inorg. Chem., 2, 613 (1963)
- (20) R. R. Holmes, Acc. Chem. Res., 5, 296 (1972); R. R. Holmes, R. P. Carter Jr., and G. E. Peterson, Inorg. Chem., 3, 1748 1964); J. E. Griffiths, R. P. Carter Jr., and R. R. Homes, J. Chem. Phys., 41, 863 (1964); J. F. Carter Jr., and R. R. Homes, J. Chem. Phys., 41, 863 (1964); J. E. Griffiths, R. P. Carter Jr., and R. R. Homes, J. Chem. Phys., 41, 863 (1964); J. E. Griffiths, R. P. Carter Jr., and R. R. Homes, J. Chem. Phys., 41, 863 (1964); J. E. Griffiths, R. P. Carter Jr., and R. R. Homes, J. Chem. Phys., 41, 863 (1964); J. E. Griffiths, R. P. Carter Jr., and R. R. Homes, J. Chem. Phys., 41, 863 (1964); J. E. Griffiths, R. P. Carter Jr., and R. R. Homes, J. Chem. Phys., 41, 863 (1964); J. E. Griffiths, R. P. Carter Jr., and R. R. Homes, J. Chem. Phys., 41, 863 (1964); J. E. Griffiths, R. P. Carter Jr., and R. R. Homes, J. Chem. Phys., 41, 863 (1964); J. E. Griffiths, R. P. Carter Jr., and R. R. Homes, J. Chem. Phys., 41, 863 (1964); J. E. Griffiths, R. P. Carter Jr., and R. R. Homes, J. Chem. Phys., 41, 863 (1964); J. E. Griffiths, R. P. Carter Jr., and R. R. Homes, J. Chem. Phys., 41, 863 (1964); J. E. Griffiths, R. P. Carter Jr., and R. R. Homes, J. Chem. Phys., 41, 863 (1964); J. E. Griffiths, R. P. Carter Jr., and R. R. Homes, J. Chem. Phys., 41, 863 (1964); J. E. Griffiths, R. P. Carter Jr., and R. R. Homes, J. Chem. Phys., 41, 863 (1964); J. E. Griffiths, R. P. Carter Jr., and R. P. Carter E. Griffiths, *ibid.*, **41**, 3510 (1964); **44**, 2826 (1966); **49**, 1307 (1968); J. E. Griffiths and A. L. Beach, *Inorg. Chem.*, **2**, 613 (1963); A. J. Downs and R. Schmutzler, Spectrochim. Acta, Part A, 21, 1927 (1965); 23, 681 (1967).
- (21) J. A. Howard, D. R. Russell, and S. Trippett, J. Chem. Soc., Chem. Commun., 856 (1973); H. Wunderlich, D. Mootz, R. Schmutzler, and M. Weiber, Z. Naturforsch., **B**, **29**, 32 (1974); H. Wunderlich, Acta Crystallogr., Sect. B, **30**, 939 (1974); S. Bone, S. Trippett, and P. J. Whittle, J. Chem. Soc., Perkin Trans. 1, 2125 (1974).

- (22) R. R. Holmes, J. Am. Chem. Soc., 96, 4143 (1974).
 (23) J. E. Huheey, J. Phys. Chem., 69, 3284 (1965); 70, 2086 (1966).
 (24) P. R. Wells, S. Ehrenson, and R. W. Taft, Prog. Phys. Org. Chem., 6 (1968).
- (25) R. G. Cavell, K. I. The, N. Yap, and J. A. Gibson, unpublished work.
 (26) (a) A. Stritch and A. Veillard, J. Am. Chem. Soc., 95, 5574 (1973);
 (b) A. Rauk, L. C. Allen, and K. Mislow, *ibid.*, 94, 3035 (1972); (c) R. Hoffmann, J. M. Howell, and E. L. Muetterties, ibid., 94, 3047 (1972); (d) J. B. Florey and L. C. Cusacs, ibid., 94, 3040 (1972).
- (27) O. Mjorne, Sven. Kem. Tidskr., 62, 1120 (1950); Chem. Abstr., 44, 9342c (1950)
- (28) A. P. Kreshkoh, L. V. Myshlyaeva, and L. M. Khananashvili, Zh. Obshch.
- (13) A. F. Kleshkoi, E. Y. Hyshryadva, and E. M. Klahalastvin, *2n. Ossich. Khim.*, 28, 2112 (1958); *Chem. Abstr.*, 53, 2074g 1959).
 (29) E. W. Abel, *J. Chem. Soc.*, 4406 (1960).
 (30) A. C. Chapman, J. Homer, D. J. Mowthorpe, and K. T. Jones, *Chem. Commun.*, 121 (1965). The chemical shift of 85% H₃PO₄ is +112 ppm vs. P₄O₆. (31) K. J. Packer, J. Chem. Soc., 960 (1963).

- (11) R. S. Chmutzler, J. Chem. Soc., 905 (1964).
 (23) R. Schmutzler, J. Chem. Soc., 4551 (1964).
 (23) S. S. Chan and C. J. Willis, Can. J. Chem., 46, 1237 (1968); E. O. Bishop, P. R. Carey, J. F. Nixon, and J. R. Swain, J. Chem. Soc. A, 1074 (1970).
- (34) R. G. Cavell, J. Chem. Soc., 5896 (1964). (35) F. A. Bovey, "Nuclear Magnetic Resonance Spectroscopy", Academic Press, New York, N.Y., 1969.
- Iterative NMR spectral analysis program NUMARIT, by J. S. Martin and K. Worvill, provided by J. S. Martin, University of Alberta. (36)

Contribution from the Department of Chemistry, Texas A&M University, College Station, Texas 77843

Thiourea Adducts of Dimethylhaloarsines. Cationic Trivalent Arsenic

PAUL H. JAVORA, EDWARD A. MEYERS, and RALPH A. ZINGARO*

Received March 22, 1976

The reaction of dimethylhaloarsines (Me_2AsX ; X = Cl, Br) with thiourea (tu) in aprotic solvents yields 1:1 and 1:2 addition compounds which are best formulated as Me₂As(tu)+X⁻ and Me₂As(tu)+X⁻tu. The cationic nature of the trivalent arsenic is evidenced by the ir and Raman spectra which show the presence of an As-S linkage but the absence of an As-X linkage. These adducts evolve dimethylhaloarsine when exposed to the atmosphere or when subjected to reduced pressure. The quantitative evolution of arsine was followed by differential thermal and thermogravimetric techniques (DTA, TGA). A stepwise loss of arsine is observed only from Me₂As(tu)⁺Br⁻. The enthalpy changes for the decomposition of adduct to yield tu and arsine are 19.1 and 18.0 kcal mol⁻¹ for the 1:2 chloro and bromo adducts and 14.7 and 15.5 kcal mol⁻¹ for the 1:1 chloro and bromo adducts.

Introduction

The interaction of thiocarbonyl compounds with trivalent arsenic halides has been studied to a very limited extent. Loh and Dehn¹ prepared the adduct (PhNH)₂CS·AsBr₃ which they obtained from a methyl ethyl ketone solution of arsenic tribromide and the substituted thiourea. Only elemental analyses were reported by these authors. From aqueous solution Walter² obtained a thiourea adduct with arsenic trichloride in which at least one As-Cl bond was replaced with an Asthiourea bond according to eq 1. Another report³ described

 $2(\mathrm{NH}_2)_2\mathrm{CS} + \mathrm{AsCl}_3 \xrightarrow{\mathrm{H}_2\mathrm{O}} [(\mathrm{NH})(\mathrm{NH}_2)\mathrm{CS}]_2\mathrm{AsCl}\cdot\mathrm{H}_2\mathrm{O} + 2\mathrm{HCl} \quad (1)$

AIC60227C