(Grant No. MPS 73-05016) for support of this work at Princeton University and the National Science Foundation (Grant No. CHE 75-05509) for support at Texas A&M University.

Registry No. W₂Br₂(NEt₂)₄, 60803-45-4; W₂(NEt₂)₄I₂, 60803-46-5; $W_2(NEt_2)_4(CH_2SiMe_3)_2$, 60828-76-4; $W_2(NEt_2)_4Cl_2$, 57088-63-8; ¹³C, 14762-74-4.

Supplementary Material Available: Listings of structure factor amplitudes (21 pages). Ordering information is given on any current masthead page.

References and Notes

- 1) (a) Princeton University. (b) Texas A&M University.

- (a) Princeton University. (b) Texas A&M University.
 (c) F. A. Cotton, B. R. Stults, J. M. Troup, M. H. Chisholm, and M. Extine, J. Am. Chem. Soc., 97, 1242 (1975); M. H. Chisholm, F. A. Cotton, M. Extine, and B. R. Stults, *ibid.*, 98, 4477 (1976).
 (d) M. H. Chisholm, F. A. Cotton, M. Extine, M. Millar, and B. R. Stults, J. Am. Chem. Soc., 98, 4486 (1976).
 (e) M. H. Chisholm, F. A. Cotton, M. Extine, M. Millar, and B. R. Stults, Inorg. Chem., 15, 2244 (1976).
 (f) W. Mowat, A. J. Shortland, G. Yagupsky, M. Yagupsky, N. J. Hill, and G. Wilkinson, J. Chem. Soc., Dalton Trans., 533 (1972); F. Huq, W. Mowat, A. Shortland, A. C. Skapski, and G. Wilkinson, Chem. Commun. 1079 (1971). Commun., 1079 (1971).
- (6) M. H. Chisholm, F. A. Cotton, M. Extine, and B. R. Stults, Inorg. Chem., 15, 2252 (1976).
- (7) M. H. Chisholm, F. A. Cotton, M. Extine, and B. R. Stults, J. Am. Chem. Soc., 98, 5683 (1976).

- (8) K. Mislow, Acc. Chem. Res., 9, 26 (1976).
- P. Finocchiaro, W. D. Hounshell, and K. Mislow, J. Am. Chem. Soc., (9) 98, 4952 (1976).
- (10) T. G. Appleton, H. C. Clark, and L. E. Manzer, Coord. Chem. Rev., 10, 335 (1973).
- (11) In a previous study³ the presence of only anti-W₂Cl₂(NEt₂)₄ was deduced from variable-temperature ¹H NMR spectra and computer simulations.
- (12) For a discussion of the significance of N to M π bonding in transition metal dialkylamides see D. C. Bradley and M. H. Chisholm, Acc. Chem. Res., 9, 273 (1976).
- (13) F. Basolo and R. G. Pearson in "Mechanisms of Inorganic Reactions", Wiley, New York, N.Y., 1968, Chapter 3.
 M. H. Chisholm and M. W. Extine, J. Am. Chem. Soc., 97, 5625 (1975).
- (15) If the a ≓ g equilibrium favors anti-W₂Cl₂(NEt₂)₄, as was suggested previously,³ but isomerization is rapid at 40 °C, and if the gauche rotamer were kinetically more labile to substitution than the anti rotamer, then "significant" concentrations of gauche-W2(CH2SiMe3)2(NEt2)4 would be formed initially.
- (16) F. A. Cotton, B. A. Frenz, G. Deganello, and A. Shaver, J. Organomet. Chem., 50, 227 (1973).
- "International Tables for X-Ray Crystallography", Vol. III, Kynoch Press, (17)Birmingham, England, 1965
- (18) The computer programs used for the structural solution and refinement were those of the Enraf-Nonius Structure Determination Package. The programs were used on a PDP 11/45 computer at the Molecular Structure
- Corp., College Station, Tex.
 (19) D. T. Cromer and J. T. Waber, "International Tables for X-Ray Crystallography", Vol. IV, Kynoch Press, Birmingham, England, 1974, Table 2.3.1.
- (20) D. T. Cromer and D. Liberman, J. Chem. Phys., 53, 1891 (1970). (21) Supplementary material.

Contribution from the Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamadakami, Suita-Shi, Osaka-Fu, 565 Japan

Preparation and Properties of New Perovskite Type Oxides Containing Divalent Europium

KAZUNAO SATO,* HIROSHI KIYOKAWA, GIN-YA ADACHI,* and JIRO SHIOKAWA*

Received May 25, 1976

AIC603899

New mixed europium(II) oxides of the type $EuM_2M'O_{5.5}$ and $Eu_2MM'O_{5.5}$ (M = Ca, Sr, Ba; M' = Nb, Ta) were prepared by the reaction of europium sesquioxide, alkaline earth oxide, tantalum (or niobium) metal, and tantalum (or niobium) pentoxide at 1250-1350 °C under vacuum. The oxides obtained have an ordered cubic perovskite structure with oxygen deficiency. Divalent europium ions in the oxides occupy both 12-fold A sites and 6-fold B sites. The emission spectra of the divalent europium ions confirm the distribution of the divalent europium ions in these oxides.

Introduction

There are many perovskite type oxides of the divalent europium ion. McCarthy and Greedan¹ have proposed guidelines for the prediction of new perovskite type oxides $Eu(M,M')O_3$. One of them is a well-known Sr^{2+} analogue. An analogue of Sr_3WO_6 , "Eu₃WO₆", is not a stable phase.² Brixner³ reported the first defect perovskites $Ba_3TaO_{5.5}$ and $Sr_{3}TaO_{5.5}$. An analogue of $Sr_{3}TaO_{5.5}$, "Eu₃TaO_{5.5}", is not a stable phase as well as "Eu₃WO₆".⁴ If the hypothetical oxide did exist, it would have the ordered perovskite $(NH_4)_3FeF_6$ structure type and one Eu^{2+} would have to occupy the 6-fold B sites. In previously known phases, Eu²⁺ occupies a site with a coordination number higher than 6 and this suggests that Eu^{2+} prefers a higher than 6-fold coordination number site in mixed oxides. Consequently, it seemed that Eu²⁺ would not be able to occupy the 6-fold B sites in the perovskite type oxides and would occupy only the 12-fold A sites.

In this study, we have discussed with the aid of crystal data and emission spectra whether Eu²⁺ would occupy the 6-fold B sites in some new prepared perovskite type oxides.

Experimental Section

Reagents. Europium sesquioxide was obtained from Shin-etsu Chemical Corp., in minimum purity of 99.9%. Niobium metal, niobium pentoxide, tantalum metal, tantalum pentoxide, and strontium oxide were purchased from Wako Chemical Industries, Ltd., in purity of 99.7%, 99.9%, 99.9%, 99.8%, and 99.0%, respectively. Calcium oxide (99.0%) and barium oxide (97.0%) were available from Kanto Chemical Corp. and Merck Corp., respectively. Alkaline earth oxides were calcined at 1200 °C for several hours under vacuum ($\sim 10^{-2}$ mmHg) before used in the preparation.

Preparation of EuM2M'O5.5. Starting mixtures were ground together in an agate mortar and pressed into pellets at 2400 kg/cm² and fired on a molybdenum plate at 1250-1350 °C under vacuum $(\sim 10^{-4} \text{ mmHg})$. Several conditions of starting mixture ratios and heating time were used in the preparation. The sample obtained from the starting mixture having the stoichiometric ratio always indicated lower Eu^{II} content than that expected regardless of heating time. The mixtures were heated for 24 h to improve homogenization, but the samples obtained also had lower Eu^{II} content. These phenomena are probably caused both by the volatilization of europium from Eu^{II} mixed oxides and by the effect of oxygen leakage into the furnace during the heating period.⁵ Consequently, the most appropriate starting mixture ratio and heating time are Eu_2O_3 :MO:M':M'₂O₅ = 1:4:0.6:0.7 (M=Ca, Sr, Ba; M' = Nb, Ta) and 3 h. The surface of each pellet heated was removed, and the residue was used as a sample for subsequent experiments.

Preparation of Eu₂MM'O_{5.5}. Starting mixtures (Eu₂O₃:MO: $M':M'_{2}O_{5} = 1:1:0.6:0.2$) were treated as described in the preparation of EuM2M'O55

Analytical Methods. The sample obtained was treated with hot concentrated hydrochloric acid. Europium ion dissolved as trivalent ion in the solution, and the alkaline earth ion also dissolved. The residue corresponded to M'₂O₅, from which the content of tantalum

Table I.	Analytical	Data for	Samples	Obtained
----------	------------	----------	---------	----------

•			-		
	% c	alcd	% fc	ound	
Compd	M'a	Eu	M'a	Eu	Color
EuCa, NbO,	22.5	36.8	23.5	36.4	Dark brown
Eu CaNbO	17.7	57.9	16.9	56.9	Dark brown
EuSr NbO	18.3	29.9	18.9	29.4	Brown
Eu SrNbO	16.2	16.5	16.5	52.2	Dark brown
EuBa, NbO,	15.3	25.0	15.7	24.3	Dark brown
Eu BaNbO.	14.9	48.8	15.4	48.2	Brown
EuCa, TaO,	36.1	30.3	36.4	30.0	Reddish brown
Eu CaTaO,	29.5	49.6	30.2	48.8	Brown
EuSr, TaO	30.4	25.5	30.9	25.1	Yellow brown
Eu Sr TaO	27.4	46.0	27.7	45.3	Dark brown
EuBa, TaO,	26.0	21.8	26.2	21.4	Dark purple
Eu ₂ BaTaO _{5.5}	25.5	42.8	26.2	42.1	Dark brown

^a M' = Nb for the oxides containing niobium ion; M' = Ta for the oxides containing tantalum ion.

metal and niobium metal in the sample was calculated. Europium in the solution was determined by polarography. The analytical results are summarized in Table I with the color of the sample obtained.

X-Ray Diffraction Technique. The phase purity and structure type of the resulting materials were characterized by x-ray powder data, using a Rigaku-Denki "Rota-flex" diffractometer with a scintillation detector and Cu K α radiation (λ 1.5418 Å). Silicon of 99.999% purity (a = 5.4301 Å) was employed as an internal standard. Precision cell constants were determined by a least-squares computer refinement of unambiguously indexed reflections.

Magnetic Susceptibility Measurements. The magnetic susceptibility data of the resulting materials were obtained with a Shimadzu MB-11 magnetic balance in the temperature range of 77-300 K.

TGA and DTA Measurements. The differential thermal analysis (DTA) and thermogravimetric analysis (TGA) were made in air at

Table II. Powder Diffraction Data for EuBa₂NbO_{5.5} and Eu₂BaTaO_{5.5}

25-700 °C. The heating curve was recorded on a Rigaku-Denki DTA "Thermoflex", and the heating rate used was 10 °C/min.

Spectral Measurements. The emission spectra for 254-nm excitation were measured on a Shimadzu recording spectrofluorophotometer equipped with a double monochromator. The excitation source was a 500-W xenon lamp. The excitation slit and emission slit were routinely set at 19 and 7.5 nm, respectively. For measurements at 77 K the sample was placed in a quartz tube of 4-mm i.d. and immersed in a Dewar flask which had a quartz tail and was filled with liquid nitrogen. For measurements at room temperature, the same system was used except for the absence of the liquid nitrogen, and a system where the sample was exposed directly to the excitation light was also employed.

Results and Discussion

X-Ray Data. Table II summarizes the x-ray diffraction data for EuBa₂NbO_{5.5} and Eu₂BaTaO_{5.5}. Their x-ray data could be indexed on a cube with lattice constants of 8.490 and 8.394 Å, respectively. X-ray diffraction patterns for the other oxides contained are very similar to those for EuBa₂NbO₅₅ and Eu₂BaTaO_{5.5}. Both EuM₂M'O_{5.5} and Eu₂MM'O_{5.5} crystallize in space group O_h^5 -Fm3m, which may be expected in analogy to Sr^{2+} .

The lattice constants and the densities of the samples obtained are listed in Table III as well as the lattice constants of Sr^{2+} compounds for comparison. The density measurements confirmed the presence of four formula units of $EuM_2M'O_{5.5}$ or $Eu_2MM'O_{5.5}$ in a unit cell.

An intensity calculation was made assuming that the oxides obtained have the perovskite type structure with oxygen deficiency arranged at random (Figure 1). Three values of the oxygen parameters, u = 0.20, u = 0.225, and u = 0.25, were used in the calculation for all cases. The agreement index

$EuBa_2NbO_{5,5}^{e}$ [a = 8.490 Å, $u(O^{2-}) = 0.225$]						Eu ₂ BaTaO _{5.5} ^f [$a = 8.394$ A, $u(O^{2^-}) = 0.225$]							
	hkl	dobsd	d _{calcd}	Iobsd	I _A ^a	IB ^b	hkl	dobsd	dcalcd	Iobsd	I A ^C	$I_{\mathbf{B}}^{d}$	
	220	3.003	3.002	100	100	100	111	4.853	4.846	1.1	1.4	0.7	
	311	2.560	2.560	2	2	3	200	4.206	4.197	2.1	0.6	2.0	
	400	2.123	2.123	35	26	26	220	2.969	2.968	100	100	100	
	331	1.948	1.948	1	1	1	311	2.533	2.531	0.7	0.5		
	422	1.733	1.733	44	49	49	400	2.100	2.099	26.7	26.0	26.0	
	440	1.500	1.501	19	15	15	420	1.874	1.877	0.7		0.8	
	620	1.3422	1.3424	20	19	19	422	1.714	1.713	40.5	52.6	52.6	
	444	1.2255	1.2254	7	5	5	440	1.4839	1.4839	13.3	16.0	16.0	
	642	1.1338	1.1345	21	24	24	531	1.4194	1.4188	0.9	1.3	0.9	
	800	1.0610	1.0613	4	3	3	600 442	1.3986	1.3990	0.5		0.6	
							620	1.3272	1.3272	14.7	18.1	18.1	
							444	1.2117	1.2116	4.1	5.1	5.1	
							642	1.1218	1.1217	15.9	24.7	24.7	
							800	1.0493	1.0493	2.0	2.7	2.7	

^a Calculated relative intensity assuming that Eu²⁺ occupies the 12-fold A sites. ^b Calculated relative intensity assuming that Eu²⁺ occupies the 6-fold B sites. ^c Calculated relative intensity assuming that two Eu²⁺ occupy the 12-fold A sites. ^d Calculated relative intensity assuming that one Eu²⁺ occupies the B sites. ^e Agreement factors: $R_A = 0.075$; $R_B = 0.079$. ^f Agreement factors: $R_A = 0.152$; $R_B = 0.140$.

Table III.	Lattice	Constants.	unff. and	Densities	for	Perovskite Oxides
------------	---------	------------	-----------	-----------	-----	-------------------

			Density	, g/cm ³		
Europium oxide	a_0, A	$\mu_{\rm eff}({\rm obsd}),^a \mu_{\rm B}$	Found	Calcd ^b	Strontium oxide	<i>a</i> ₀ , A
EuCa, NbO,	8.131	7.94	5.07	5.11		
Eu CaNbO	8.200	7.55	6.17	6.32	Sr ₂ CaNbO ₅ , c	8.20
EuSr, NbO	8.292	6.67	5.87	5.92	Sr ₃ NbO ₅ [°]	8.34
Eu, SrNbO	8.290	7.30	6.63	6.68		
EuBa, NbO,	8.490	5.28	6.25	6.60	$\mathrm{SrBa}_{2}\mathrm{NbO}_{5,5}^{d}$	8.54
Eu, BaNbO	8.396	6.80	6.93	6.98		
EuČa, TaO,	8.133	8.01	6.14	6.19		
Eu ₂ CaTaO	8.205	7.62	7.31	7.37		
EuSr, TaO	8.308	6.87	6.94	6.95	Sr ₃ TaO _{5,5} ^c	8.34
Eu Sr TaO	8.299	7.21	7.57	7.68		
EuBa, TaO,	8.483	6.68	7.37	7.57	•	
Eu BaTaO	8.394	6.88	7.98	7.98		

Figure 1. Atomic arrangement in a perovskite type oxide containing divalent europium. One of 12 oxygen ions is missing in this oxide.

 $R (=\sum |I_o - I_c| / \sum I_o)$ was minimized for all cases at u = 0.225 which seemed reasonable considering ionic radii and cell dimensions.

Three divalent ions exist in one formula unit cell of these oxides. One of these divalent ions would have to share the 6-fold B sites with M'^{5+} . The x-ray diffraction intensity was calculated in order to determine the site of Eu²⁺ in the perovskite, A or B (in EuM₂M'O_{5.5}), and A and B or only A (in $Eu_2MM'O_{5.5}$). For example, the results for $EuBa_2NbO_{5.5}$ and $Eu_2BaTaO_{5.5}$ are listed in Table II. The resulting agreement indexes of EuBa₂NbO_{5.5} were $R_A = 0.075$ and $R_B = 0.079$, and those of Eu₂BaTaO_{5.5} were $R_A = 0.152$ and $R_B = 0.140$. The tolerance factor of these oxides in which Eu²⁺ occupies the B sites is closer to 1.0 than that of these oxides in which Eu^{2+} occupies the A sites. This suggests that only the results for Eu₂BaTaO_{5.5} are reasonable. However, the structures of EuBa₂NbO_{5.5} and Eu₂BaTaO_{5.5} are not clearly determined because of small differences in the agreement indexes. The agreement indexes in the calculation for other oxides are also less than 0.2. Consequently, the site of Eu^{2+} in the oxides obtained could not be determined from the x-ray diffraction intensities alone.

TGA and DTA. The thermogravimetric analysis (TGA) and the differential thermal analysis (DTA) were carried out in air from room temperature to 700 °C to determine the europium(II) ion content in the oxides obtained. The results are illustrated in Figure 2. The weight gain ΔW_c is calculated assuming that Eu²⁺ in the oxides obtained is completely oxidized by the oxygen, and ΔW_o is the weight gain observed. The weight gain of each sample occurs in two steps and corresponding exothermic DTA peaks are observed. The ratio of total weight gain $\Delta W_o/\Delta W_c$ represents the europium(II) ion content.

The two-step oxidation for these oxides is relatively unknown. This phenomenon suggests that europium(II) ions occupy two different sites; that is, europium(II) ions distribute among the A sites and B sites. Because cations having a smaller ionic radius easily occupy the B sites⁶ (Ca²⁺ < Eu²⁺ \approx Sr²⁺ < Ba²⁺), europium(II) ions probably occupy the B sites in the oxides containing barium ions. The europium(II) ions

Figure 2. TGA and DTA curves for the oxides obtained and EuZrO₃. (a) Oxides containing tantalum ion: 1, EuCa₂TaO_{5.5}; 2, Eu₂CaTaO_{5.5}; 3, EuSr₂TaO_{5.5}; 4, Eu₂SrTaO_{5.5}; 5, EuBa₂TaO_{5.5}; 6, Eu₂BaTaO_{5.5}; (b) Oxides containing niobium ion: 1, EuCa₂NbO_{5.5}; 2, Eu₂CaNbO_{5.5}; 3, EuSr₂NbO_{5.5}; 4, Eu₂SrNbO_{5.5}; 5, EuBa₂NbO_{5.5}; 6, Eu₂BaNbO_{5.5}; 7, He weight gain ΔW_c is calculated according to the following reactions: EuM₂M'O_{5.5} + 0.25O₂ \rightarrow EuM₂M'O₆; Eu₂MM'O_{5.5} + 0.5O₂ \rightarrow Eu₂MM'O_{6.5}.

that occupy the A sites in $EuZrO_3^7$ are oxidized in one step corresponding to the peak at lower temperature. Therefore, it seems that the peaks at lower temperature and at higher temperature correspond to the oxidation of Eu^{2+} in the A sites and B sites, respectively. However, the two-step oxidation may be a result of the dissociation on heating in air of the perovskite into two phases which oxidize at different temperatures. This can be answered by more detailed investigation for the oxidation products.

The weight gains at higher temperature of $EuBa_2NbO_{5.5}$ and $EuBa_2TaO_{5.5}$ are large in comparison with those of the other oxides. The total weight gains of these two oxides are smaller than those of the other oxides. This suggests that europium(II) ions in $EuBa_2NbO_{5.5}$ and $EuBa_2TaO_{5.5}$ can easily occupy the B sites rather than the A sites, and that europium(II) ion content of $EuBa_2NbO_{5.5}$ and $EuBa_2TaO_{5.5}$ is less than that of the other oxides.

Magnetic Susceptibility. The magnetic susceptibility for all of the samples was measured in the temperature range of 77-300 K. The susceptibilities obeyed the Curie law in this range. Paramagnetic susceptibility data were collected up to 300 K. Analysis of the linear portion of the $1/\chi_{Eu}$ vs. T curve yields the values of μ_{eff} in Table III. The effective magnetic moments calculated for EuCa₂NbO_{5.5} and EuCa₂TaO_{5.5} are very close to the theoretical ones, and the effective magnetic moments for EuBa₂NbO_{5.5} and EuBa₂TaO_{5.5} are relatively smaller than those calculated. In EuCa₂NbO_{5.5} and Eu- $Ca_2TaO_{5.5}$, Eu^{2+} favors the A sites rather than the B sites because Eu^{2+} is the largest cation in these oxides. Therefore, Eu²⁺ easily occupies the A sites, and the effective magnetic moments for these oxides are close to the theoretical ones. On the other hand, Eu²⁺ in EuBa₂NbO_{5.5} and EuBa₂TaO_{5.5} occupies the B sites rather than the A sites. However, it has been known that it is difficult for Eu^{2+} to share the B sites in perovskite type oxides. The europium ion occupies the B sites more easily in the trivalent state than in the divalent state. For example, the trivalent compound $EuBa_2TaO_6$ in which the europium ion occupies the B sites in a trivalent state is structurally more stable than the divalent compound Eu-Ba₂TaO_{5.5}. Therefore, EuBa₂TaO_{5.5} is contaminated by small amounts of EuBa₂TaO₆, and μ_{eff} for EuBa₂TaO_{5.5} is smaller

Figure 3. Emission spectra of the oxides obtained and EuZrO3 at room temperature and at 77 K. A, EuZrO₃; b, oxides other than EuBa2M'O5.5 and Eu2BaM'O5.5; c, Eu2BaM'O5.5; d, EuBa2M'O5.5.

than the theoretical one. From the value of μ_{eff} for EuBa₂- $TaO_{5.5}$, this oxide obtained is represented by the formula $Eu^{II}_{0.8}Eu^{III}_{0.2}Ba_2TaO_{5.6}$. This is expected from the results of TGA and DTA experiments. As is shown in Table III, the lattice constants for the other oxides than $EuCa_2M'O_{5.5}$ and $Eu_2CaM'O_{5.5}$ are smaller than those for the corresponding Sr^{2+} compounds. This also suggests that oxides other than $EuCa_2M'O_{5.5}$ and $Eu_2CaM'O_{5.5}$ are contaminated by small amounts of Eu(III) phases.

The effective magnetic moment for EuBa₂NbO₅₅ is smaller than that for $EuBa_2TaO_{5.5}$. This may be associated with the existence of Nb⁴⁺.

For oxides other than $EuCa_2M'O_{5.5}$ and $EuBa_2M'O_{5.5}$, the values of μ_{eff} are intermediate between those for EuCa₂M'O_{5.5} and $EuBa_2M'O_{5.5}$, which would be consistent with the description above.

Emission Spectra. The results are illustrated in Figure 3. The emission spectra observed divide into three groups: (a) spectra for the oxides other than $EuBa_2M'O_{5.5}$ and $Eu_2BaM'O_{5.5}$, which consist of one broad band peaking at about 395 nm (peak A) at room temperature and show two band peaks at about 395 and 495 nm (peak B) at 77 K; (b) spectra for $Eu_2BaM'O_{5.5}$, which consist of a large peak A and a small peak B at room temperature and a peak A as large as peak B at 77 K; (c) spectra for $EuBa_2M'O_{5.5}$, which show a small peak A and a large peak B at room temperature and 77 K. In all cases, peak A and peak B were not shifted. Peak A did not grow large at 77 K, but peak B increased. Consequently, thermal quenching occurred only for peak B between room temperature and 77 K.

Peak A and peak B of the emission spectra are ascribed to 4f-5d transitions within the Eu^{2+} ions. As mentioned in the foregoing section these ions in the oxides obtained are assumed to occupy the A sites and B sites, which are surrounded by 12 oxygen ions with cubic symmetry and by 6 oxygen ions octahedrally, respectively. In comparison with the emission spectrum for a perovskite type compound, EuZrO₃, where Eu²⁺ occupies the A sites, peak A is attributed to the Eu²⁺ emission in the A sites and peak B to the B site emission. For cubic symmetry the 5d level of Eu^{2+} splits into a t_{2g} level and an e_g level, the former having the higher energy. For an octahedral symmetry the t_{2g} level is expected to be the lower one. These band peaks are attributed to the Eu²⁺ emission concerning the lower level splitting in each symmetry. Consequently, peak A and peak B are ascribed to $4f^65d_{c_g} \rightarrow 4f^7$ transitions and $4f^65d_{t_{2g}} \rightarrow 4f^7$ transitions, respectively, within the Eu²⁺ ions. The wavelength of peak B is longer than that of peak A because the splitting of the 5d level in the octahedral field is wider than that in the cubic field and the Stokes shift of the Eu²⁺ emission in the B sites is longer than that in the A sites.⁸ Thermal quenching occurs for peak B, which also indicates that peak B is the Eu^{2+} emission peak ascribed to the $4f^{6}5d_{1_{2e}}$ $\rightarrow 4\bar{f}^7$ transitions in the octahedral field (B sites).

Conclusion

From this investigation on new divalent europium oxides with the perovskite type structure it appears that europium(II) ions can occupy the B sites in the perovskite type oxides. This was supported by TGA and DTA experiments and the emission spectra measurements.

Registry No. EuCa2NbO55, 60920-49-2; Eu2CaNbO55, 60920-47-0; EuSr2NbO5.5, 60920-51-6; Eu2SrNbO5.5, 60920-53-8; EuBa2NbO5.5, 60920-45-8; Eu₂BaNbO_{5.5}, 60920-43-6; EuCa₂TaO_{5.5}, 60920-50-5; Eu2CaTaO5.5, 60920-48-1; EuSr2TaO5.5, 60920-52-7; Eu2SrTaO5.5, 60920-54-9; EuBa2TaO5.5, 60920-46-9; Eu2BaTaO5.5, 60920-44-7.

References and Notes

- G. J. McCarthy and J. E. Greedan, Inorg. Chem., 14, 772 (1975); J. E. Greedan, G. J. McCarthy, and C. Sipe, *ibid.*, 14, 775 (1975).
 M. W. Shafer, J. Appl. Phys., 36, 1145 (1965).
 L. H. Brixner, J. Am. Chem. Soc., 80, 3214 (1958).

- (4) K. Sato, G. Adachi, and J. Shiokawa, Mater. Res. Bull., 10, 113 (1975).
 (5) G. J. McCarthy, J. Am. Ceram. Soc., 57, 502 (1974). (6) K. Sato, G. Adachi, and J. Shiokawa, J. Inorg. Nucl. Chem., 38, 1287
- (1976).
- (7)H. Holzapfel and J. Sieler, Z. Anorg. Allg. Chem., 343, 174 (1966).
- J. L. Sommerdijk and A. Bril, J. Luminescence, 10, 145 (1975)
- Ì9 F. Galasso, L. Katz, and R. Ward, J. Am. Chem. Soc., 81, 820 (1959).
- (10) G. Galasso and W. Darby, J. Phys. Chem., 66, 131 (1962).