Notes

carbamate) complex and a variety of tris(dithiocarbamate) complexes display similar geometries, intermediate between the trigonal prism and the pseudooctahedron. This intermediate geometry clearly cannot be ascribed to the presence of the FeS_6 core. Despite this close geometrical resemblance, tris(thiocarbamato)iron(III) and **tris(dithiocarbamato)iron(III)** differ in their magnetic properties, with the thiocarbamate complex showing a simple high-spin state⁴ while the dithiocarbamate complex lies at the crossover between high-spin and low-spin states.⁹ Whether or not the rearrangement mechanisms are also different is yet to be determined.

This research was supported by UNESCO. **J.A.** acknowledges with thanks receipt of a UNESCO Fellowship. We are indebted to Professor Toshio Tanaka for supplying the crystals. **Acknowledgment.**

Registry No. Fe(SOCN(CH₃)₂)₃, 61375-77-7.

Supplementary Material Available: Table 11, the positions of the H atoms; Table 111, the root-mean-square amplitudes of vibration; and Table **IV,** a listing of observed and calculated structure amplitudes (25 pages). Ordering information is given on any current masthead page.

References and Notes

- L. H. Pignolet, *Top. Curr. Chem.,* **56,** 91 (1975).
- E. L. Muetterties and L. J. Guggenberger, *J. Am. Chem. SOC.,* **96,** 1748 (2) (1974).
- C. G. Pierpont, **R.** C. Dickinson, and B. **J.** McCormick, *Inorg. Chem.,* (3) **13,** 1674 (1974).
- H. Nakajima, T. Tanaka, H. Kobayashi, and **I.** Tsujikawa, *Inorg. Nucl. Chem. Lett.,* **12,** 689 (1976).
- (5) **See,** for example, P. **R.** Hoffman, T. Yoshida, T. Okano, **S.** Otsuka, and J. **A.** Ibers. *Inora. Chem.,* **15.** 2462 (1976).
- Supplementary material.
- J. G. Leipoldt and P. Coppens, *Inorg. Chem.,* **12,** 2269 (1973). (8)
- (9)
- L. H. Pignolet, *Inorg. Chem.,* **13,** 2051 (1974). **A.** H. White, E. Kokot, **R.** Roper, H. Waterman, and **R.** *L.* Martin, *Aust. J. Chem.,* **17,** 294 (1964); **A.** H. Ewald, **R.** L. Martin, E. Sinn, and **A.** H. White, *Inorg. Chem.,* **8,** 1837 (1969).

Contribution from Rocketdyne, A Division of Rockwell International, Canoga Park, California 91 304

Synthesis and Characterization of NF4BiF6 and Some Properties of NF4SbF6

Karl **0.** Christe,' Richard D. Wilson, and Carl **J.** Schack

Received March 9, *1976* AIC60186K

Perfluoroammonium salts are known' of the following anions: PF_6^- , AsF_6^- , SbF_6^- , SbF_6 , $nSbF_5^-$, BF_4^- , GeF_5^- , and GeF $_6^2$. Very recently, the synthesis and chemistry of NF₄⁺ salts have received considerable attention owing to their potential for solid propellant NF_3-F_2 gas generators for chemical DF lasers. The concept of such a gas generator was conceived² and to a large extent developed at Rocketdyne. Originally, the fluorine gas generators were aimed at the direct generation of F atoms by burning a highly overoxidized grain, consisting mainly of an NF_4 ⁺ salt, with a small amount of fuel, such as Teflon powder, according to

$$
NF_{4}MF_{6} + (CF_{2})_{n} \rightarrow CF_{4} + NF_{3} + MF_{5} + Q
$$

\n
$$
NF_{4}MF_{6} \xrightarrow{+Q} NF_{3} + F_{2} + MF_{5}
$$

\n
$$
2NF_{3} + F_{2} \xrightarrow{+Q} N_{2} + 8F
$$

The heat of reaction *(Q)* generated in such a system is sufficient to pyrolyze the remaining NF_4MF_6 and to dissociate most of the NF₃ and F₂ to F atoms. For an NF₃-F₂ gas generator, the underlying principle is quite similar, except for keeping the burning temperature lower since dissociation of NF_3 and F_2 to F atoms is not required.

In view of the above developments, we were interested in the synthesis of new NF_4 ⁺ salts and in the characterization of new and known NF4+ salts. **In** this paper, we report on the synthesis of the new salt NF_4BF_6 and on some properties of the known NF_4SbF_6 . Since these two salts can be readily prepared in high yields, they are important starting materials for the syntheses of other NF_4^+ salts used in NF_3-F_2 gas generator compositions.

Experimental Section

Materials and Apparatus. The equipment and handling procedures used in this work were identical with those' recently described. The NF4BF4 starting material was prepared by low-temperature UV photolysis¹ and did not contain any detectable impurities. The α -BiF_S was purchased from Ozark Mahoning Co. and did not contain any impurities detectable by Raman spectroscopy. The $NF_4Sb_2F_{11}$ was prepared as described.³

Synthesis **of** NF4BiF6 by Displacement Reaction without Solvent. Pure NF_4BF_4 (10.1 mmol) and α -BiF₅ (10.1 mmol) were powdered, mixed, and placed in a prepassivated (with CIF_3) 95-mL Monel cylinder. The cylinder was heated to $180 °C$ for 1.5 h. Products, volatile at 20 \textdegree C, were removed by pumping and separated by fractional condensation. They consisted of 7.8 mmol of BF_3 in addition to a small amount of material noncondensable at -196 °C. The amount of BF_3 evolution was confirmed by the weight loss of the solid-containing cylinder. The conversion of NF_4BF_4 to NF_4BF_6 was further confirmed by Raman spectroscopy of the solid. The solid was removed from the cylinder, finely powdered, returned to the cylinder, and heated to 175 °C for an additional 18 h. This resulted in the evolution of an additional 2.3 mmol of BF_3 , in excellent agreement with the observed weight loss. The complete conversion of NF_4BF_4 to NF_4BF_6 was confirmed by infrared and Raman spectroscopy and elemental analysis. Anal. Calcd for NF_4BF_6 : NF_3 , 17.15; BiF_3 , 64.49. Found: NF_3 , 16.9; BiF_3 , 60.0 An explanation for the low $BiF₃$ value is given below.

Synthesis **of** NF4BiF6 by Displacement Reaction in HF. Dry HF (5 mL of liquid) was added at -78 °C to a Teflon-FEP ampule containing \overline{NF}_4BF_4 and \overline{BIF}_5 (9.9 mmol of each). The mixture was agitated at 20 \degree C for several hours and gas evolution was observed. The volatile products were pumped off at $20 °C$ and the HF treatment was repeated. After removal of the volatile products from the second HF treatment, 4.075 g of a white, stable solid (weight calculated for 9.9 mmol of NF_4BF_6 4.089 g) was left behind which was shown by infrared and Raman spectroscopy to be identical with the analyzed product obtained from the above described thermal displacement reaction.

Direct Synthesis of NF₄BiF₆.nBiF₅. In a typical experiment, a mixture of NF₃ (238 mmol), F_2 (238 mmol), and BiF₅ (10.06 mmol) in a prepassivated 95-mL Monel cylinder was heated for 30 h to 175 $^{\circ}$ C under an autogenous pressure of 167 atm. Unreacted NF₃ and F_2 (\sim 463 mmol total) were pumped off at 20 °C leaving behind 3.75 g of a white, stable solid (weight calculated for 6.29 mmol of $NF_4BF_6.0.6BF_5$ 3.745 g). Anal. Calcd for $NF_4BF_6.0.6BF_5$: NF_3 , 11.92; BiF₃, 71.60. Found: NF₃, 11.9; BiF₃, 69.00.

Pyrolysis of $NF_4BiF_6nBiF_5$ **.** A sample (3.29 mmol) of $NF_4Bi F_6$.1.46BiF₅, prepared as described above expept for using a significantly shorter reaction time, was subjected to vacuum pyrolysis at 280 °C for 1.5 h. The white crystalline residue (1.13 g) was identified by vibrational spectroscopy and its x-ray diffraction powder pattern to be mainly NF_4BF_6 (weight calculated for 3.29 mmol of NF_4BF_6 1.36 g) corresponding to a yield of 83%.

Synthesis of NF_4SbF_6 **.** The thermal reaction⁴ of $NF_3-F_2-SbF_5$ at 115 °C, followed by vacuum pyrolysis at 200 °C, produces³ a product of the approximate composition $NF_4Sb_2F_{11}$. This product can be converted to NF_4SbF_6 by vacuum pyrolysis at higher temperature; however, this SbF₅ removal is accompanied by a competing reaction, i.e., the thermal decomposition of some of the desired NF_4SbF_6 . Pyrolysis at 250-260 °C for 1-1.5 h under dynamic vacuum resulted in complete conversion to NF_4SbF_6 . Measurement of the NF_3 evolved during this pyrolysis showed that less than 3% of the NF_4SbF_6 had undergone decomposition. When the pyrolysis was carried out at 275-300 $^{\circ}$ C, even for relatively short periods of time, significantly higher losses of NF_4SbF_6 due to thermal decomposition occurred.

In a typical experiment, $NF_4Sb_2F_{11}$ (31.0 mmol) in a 95-mL Monel cylinder was pyrolyzed under dynamic vacuum at 255 °C for 80 min. The evolved SbF_5 was condensed in a Teflon-FEP U-trap kept at -196 °C. The white solid residue consisted of 30.4 mmol of NF_4SbF_6 (98 mol % yield based on NF_4^+). Anal. Calcd for NF_4SBF_6 : NF_3 , 21.80; Sb, 37.38. Found: NF₃, 21.72; Sb, 37.41; Ni, 0.08; Cu, 0.03.

Elemental Analyses. For the elemental analyses, a weighed amount (several mmol) of the NF_4 ⁺ salt was placed in the bottom of a Teflon-FEP U-trap, which was closed off by valves. The trap was cooled to -196 °C and several milliliters of distilled water was frozen out in the upper section of the U-trap. The frozen water was shaken down into the cold bottom section of the U-tube and the ice and the NF_4 ⁺ salt were mixed while being cold. This mixing procedure was found important to avoid violent reactions between solid NF_4 ⁺ salts and isolated droplets of liquid water, which sometimes were encountered when thawing the ice in the upper part of the tube and allowing the liquid water to run down onto the NF_4^+ salt. The mixture of ice and NF_4 ⁺ salt was warmed to 20 °C for 30 min. Upon melting of the ice, gas evolution occurred. The contents of the trap were cooled and the evolved O_2 and NF_3 were distilled off at -196 and -126 °C, respectively, and were measured volumetrically. For NF_4SbF_6 , the aqueous hydrolysate was analyzed for Sb by x-ray fluorescence spectroscopy. For the $BiF₅$ salts, a white, water-insoluble precipitate formed on hydrolysis. This precipitate was filtered off at 0 °C, washed with a small amount of cold, distilled water, dried at 103 °C, and weighed. It was identified by its x-ray powder diffraction pattern⁴ and by electron microprobe x-ray analysis as BiF_3 . Anal. Calcd for BiF3: Bi, 78.57; F, 21.43; 0, 0. Found: Bi, 78.6; F, 21.3; 0, 0. Although 93-97% of the B_iF_3 could be isolated in this manner, the solubility of B_iF_3 , particularly in the presence of HF, is not low enough⁵ to permit a quantitative precipitation of BiF_3 .

Results and Discussion

from NF_4BF_4 and BiF_5 by the displacement reaction **Syntheses.** The new NF_4 ⁺ salt NF_4BF_6 was prepared either

$$
NF_4BF_4 + Bir_5 \rightarrow NF_4BiF_6 + BF_3
$$

or directly by the elevated temperature-pressure method⁶ followed by vacuum pyrolysis

Synthesis. The new NF₄⁺ salt NF₄BiF₆ was
from NF₄BF₄ and BiF₅ by the displacement
NF₄BF₄ + BiF₅
$$
\rightarrow
$$
 NF₄BiF₆ + BF₃
or directly by the elevated temperature–pr
followed by vacuum pyrolysis
NF₃ + F₂ + (*n* + 1)BiF₅ $\xrightarrow{175^\circ \text{C}} \text{NF}_4 \text{BiF}_6 \cdot n \text{BiF}_5$
NF₄BiF₆ $\cdot n \text{BiF}_5 \xrightarrow{280^\circ \text{C}} \text{NF}_4 \text{BiF}_6 + n \text{BiF}_5$
The displacement reaction can be carried out

The displacement reaction can be carried out either at **25** "C in HF solution or in the absence of a solvent at elevated temperature.

The synthesis of NF_4BF_6 is more difficult than that of NF_4SbF_6 owing to the fact that at ambient temperature α -BiF₅ is a nonvolatile, polymeric, trans-fluorine-bridged solid. Consequently, temperatures above the melting point (151.4) ^oC) of BiF₅ are required for both the displacement reaction and the elevated temperature-pressure method. Since removal of excess B_iF_5 is inconvenient, the displacement reactions are best carried out with stoichiometric amounts of starting materials. As for SbF_5 ⁶ the direct synthesis of the perfluoroammonium perfluorobismuthate salt at elevated temperature and pressure tends to produce polyanions (mainly $Bi_2F_{11}^{-}$).⁷ The feasibility of converting these salts to NF_4BiF_6 by vacuum pyrolysis was demonstrated, but no effort was made to maximize the reaction conditions.

The pyrolysis of $NF_4Sb_2F_{11}$ to NF_4SbF_6 and SbF_5 was briefly investigated, when we discovered that the reaction conditions (200 $^{\circ}$ C) previously recommended⁸ for the pyrolysis were not suitable for obtaining pure NF_4SbF_6 . In our experience, a significantly higher pyrolysis temperature of about 250 "C was required for the production of essentially pure NF_4SbF_6 . At this temperature, little or no decomposition of the NF_4SbF_6 itself took place. On the basis of the results obtained in our laboratory, the thermal reaction between approximately equimolar amounts of NF_3 , F_2 , and SbF_5 at temperatures ranging from 11 *5* to 200 "C and autogenous

Figure 1. Vibrational spectra of NF_4BF_6 , NF_4BF_6 -0.6Bi F_5 , and NF_4SbF_6 : traces A, C, and E, infrared spectra of the solids in silver chloride disks, the absorptions below 300 cm^{-1} (broken lines) being due to the AgCl windows; traces B, D, and F, Raman spectra of the solids recorded at different sensitivities, the spectral slit width used at the lower sensitivity levels being 2 cm^{-1} .

pressures of about 200 atm produces a product of the composition $NF_4SbF_6 \cdot nSbF_5$ with *n* ranging from 2.1 to 3.2 depending on the exact reaction conditions. Vacuum pyrolysis of these products,at 200 *OC* reduces *n* to a level ranging from 0.8 to 1.1. Pyrolysis at 260 **OC** reduces the value of *n* to zero.

Properties. The composition of the NF_4 ⁺ salts was established by both the observed material balances and elemental analyses. The NF_4BiF_6 salt is a white crystalline solid melting in a sealed glass capillary at about 341 °C. The x-ray powder diffraction pattern of the sample prepared by pyrolysis of

Table I. Crystallographic Data of NF_4SbF_6 and NF_4BiF_6 Compared to Those of NF_4PF_6 and NF_4AsF_6

^{*a*} Reference 1. ^{*b*} Reference 7.

 $NF_4BiF_6 \cdot nBiF_5$ is given as supplementary material. It could readily be indexed for a tetragonal unit cell, analogous to those of NF_4PF_6 ,¹ NF_4AsF_6 ,⁹ and NF_4SbF_6 (see Table I). Several weak lines of variable intensity could not be indexed for a tetragonal unit cell, and corresponding lines had not been observed for the other isotypic NF_4MF_6 salts. Consequently, these extra lines are attributed to impurities, such as polyanion salts, and have not been included in the listing.

The NF_4SbF_6 salt melts at about 318 °C. Its x-ray powder diffraction pattern is given as supplementary material. All of the observed lines could be indexed for a tetragonal unit cell, analogous to those observed for the other NF_4MF_6 salts (see Table I). **As** expected, the unit cell dimensions and calculated densities increase in the order $PF_6^- < \text{AsF}_6^- < \text{SbF}_6^ <$ BiF₆.

The hydrolyses of NF_4SbF_6 and NF_4BiF_6 showed a distinct difference as far as the amount of oxygen evolution is concerned. The NF_4SbF_6 behaved as the previously studied¹ NF_4^+ salts and generated O₂ according to

 $NF_4^+ + H_2O \rightarrow NF_3 + H_2F^+ + \frac{1}{2}O_2$

This reaction, however, is not quantitative owing to a com-

peting reaction¹ involving the formation of some H_2O_2 . Thus, for NF4SbF6, only **0.45** mol of *O2* was observed per mole of NF₃. For NF₄BiF₆, however, 0.86 mol of O₂ was obtained per mole of NF₃. Furthermore, no evidence for the formation of brown $Bi₂O₅$ (generated when $BiF₅$ is hydrolyzed) was observed, but white BiF_3 was precipitated. This oxidation of H_2O by BiF_6^- according to

$$
\text{BiF}_6^+ + \text{H}_2\text{O} \rightarrow \text{BiF}_3 + \text{HF}_2^+ + \text{HF} + \frac{1}{2}\text{O}_2
$$

can account for the additional O_2 evolution, which by analogy¹ with NF_4 ⁺ might not be quantitative owing to the formation of some H_2O_2 .

The oxygen evolution during the hydrolysis of the closely related O_2^+ salts has recently been studied.¹⁰ In agreement with our findings for NF_4 ⁺ salts, the observed O_2 evolution was generally lower than the calculated values. However, for O_2BiF_6 , no evidence for the reduction of pentavalent bismuth was reported. Furthermore, the given explanation, i.e., that the low observed O₂ values are due to samples which had undergone partial decomposition according to

$$
2O_2MF_6 \rightarrow O_2M_2F_{11} + O_2 + \frac{1}{2}F_2
$$

cannot account for the low O_2 value found for salts, such as O_2AsF_6 , which contain a volatile Lewis acid and do not form a stable $M_2F_{11}^-$ anion. Therefore, some of the conclusions, such as *"all* dioxygenyl salts prepared so far are intrinsically unstable at room temperature", which are based on the low observed oxygen values, are open to question. Obviously, competing side reactions, such as those observed for the NF_4^+ salts, might play an important role and give rise to low oxygen values.

Vibrational Spectra. The vibrational spectra of NF_4BF_6 , $NF_4BiF_6.0.6BiF_5$, and NF_4SbF_6 are shown in Figure 1. The

Table II. Vibrational Spectra of Solid NF_4BiF_6 , NF_4BiF_6 [.]0.6BiF₅, and NF_4SbF_6

Obsd freq, cm^{-1} , and rel intens ^a								
NF_4BiF_6		$NF_4BiF_6.0.6BiF_5$		NF ₄ SbF ₆		Assignments (point group)		
IR	Raman	IR	Raman	IR	Raman	$NF_4^+(T_d)$	$\mathrm{MF}_6\hat{O}_h$	M_2F_{11}
2320 vw		2320 vw		2320 vw		$2\nu_3$ (A ₁ + E + F ₂)		
2010 w		2010 w		2010 w		$\nu_1 + \nu_3$ (F ₂)		
1768 vw		1768 vw		1768 vw		$\nu_3 + \nu_4 (A_1 + E + F_2)$		
1462 vw		1462 vw		1460 vw		$\nu_1 + \nu_4$ (F ₂)		
1228 mw		1228 mw		1227 mw		$2\nu_4 (A_1 + E + F_2)$		
1175 sh				1177 sh				
1160 vs	1159 (0.15)	1160 vs	1156(0.13)	1162 vs	1160(0.6)	$\nu_{_3}$ $(\rm{F}_{_2})$		
1145 sh	1150 sh	1145 sh		1145 sh	1150(0.2)			
				1323 vw			$v_1 + v_3$ (F ₁ u)	
1056 vw		1056 vw		1056 vw		878 (0.2) $v_2 + v_4$ (F ₁ + F ₂) 878 (0.2) $2v_2$ (A ₁ + A ₂ + E)		
	$878(0+)$		$875(0+)$					
	844(1.8)		844(1.5)		843 (7.0) v_1 (A ₁)			
				763 vw			$v_2 + v_6$ (F ₁₁₁ + F ₂₁₁)	
730 vw							$\nu_2 + \nu_4$ (F _{1u} + F _{2u})	
		600 vs.	602(2)					BiF str
		618 m						
610 m	608(1)			609 m		604 (3.9) $\left\{ \nu_{4}$ (F ₂)		
			602(2)					
	580 (10)		580 (10)		648 (10)		$\frac{\nu_1}{\lambda}$ (A_{1g})	
				675 vs				
576 vs		575 sh		665 vs	655(1)		v_3 (F ₁ u)	
			548 (0.5)	655 sh				BiF str
529 w	529 sh	531 sh		576 w				
	521 (0.8)		521 (0.25)		569 (0.9)		$\frac{1}{2} \nu_2$ (Eg)	
			475 (0.13)					
		452 m						BiFBi str
	438 (0.35)		436 (0.25)		437(1.5)	ν_{2} (E)		
	228(2.1)		230(1.4)		275(3.8)		v_s (F _{2g})	
			211(0.4)					
			175(0.9)					$\sum_{i=1}^{n}$
			150 sh					
	$115(0+)$ br		95(0.1)			Lattice vib		
	^a Uncorrected Raman intensities.							

observed frequencies and their assignments are summarized in Table 11. The spectra are in excellent agreement with those previously reported for the NF_4^+ cation¹ and the BiF₆^{-7,11,12} and $SbF₆^{-7,12-15}$ anions, thus confirming the ionic nature of these adducts. By analogy with the previously studied¹ NF_4^+ salts, the degeneracy of some of the modes is lifted and crystal field splittings are observed. For example, the antisymmetric NF_4^+ stretching mode ν_3 (F₂) is split into three components, and the ν_3 (F_{1u}) and the ν_2 (E_g) modes of SbF₆⁻ show a splitting into three and two components, respectively. The presence of polyanions, such as $Bi_2F_{11}^{\frown}$,⁷ in the NF₄BiF₆.nBiF₅ adducts is apparent from the appearance of a medium intense infrared band at 452 cm^{-1} , which is attributed to the stretching mode of the Bi-F-Bi bridge. Furthermore, additional bands were observed in the region of the BiF stretching and deformation modes. The maximum of the most intense BiF stretching infrared band was found to vary somewhat from sample to sample and varied from 575 to 605 cm^{-1} . In addition, some of the pyrolysis products showed weak infrared bands at 475 and 400 cm⁻¹. A comparison of the spectra of NF_4BiF_6 and $NF_4BiF_6 \cdot nBiF_5$ with those of NF_4SbF_6 and $NF_4Sb_2F_{11}$ ¹ shows a similar pattern for both when going from MF_6^- to $M_2F_{11}^-$.

Summary

The new NF_4 ⁺ salt NF_4BF_6 was prepared by the reaction between equimolar amounts of NF_4BF_4 and BiF_5 either at 180 \degree C without solvent or at 20 \degree C in HF solution. A salt of the composition $NF_4BF_6 \cdot nBiF_5$ ($n = 0.6-1.5$) was prepared directly from NF_3 , F_2 , and BiF_5 at elevated temperature and pressure. It was converted to NF_4BiF_6 by vacuum pyrolysis at 280 °C. The salts were characterized by elemental analyses and vibrational spectroscopy, and their hydrolyses were studied. The pyrolysis of $NF_4SbF_6 \cdot nSbF_5$ to NF_4SbF_6 was briefly investigated, and the vibrational spectrum and x-ray powder pattern of NF_4SbF_6 are reported.

Acknowledgment. We are indebted to Dr. L. R. Grant for helpful discussions and to the Office of Naval Research for financial support.

Registry No. NF_4BF_6 , 61587-71-1; NF_4SbF_6 , 16871-76-4; α -BiF₅, 7787-62-4; $NF_4Sb_2F_{11}$, 58702-89-9.

Supplementary Material Available: Tables I11 and IV, listing the observed x-ray powder diffraction patterns of NF_4BF_6 and NF_4SBF_6 (2 pages). Ordering information is given on any current masthead page.

References and Notes

- (1) **K.** 0 Christe, C. J. Schack, and R. D. Wilson, *Inorg. Chem.,* **15,** ¹²⁷⁵ (1976).
- D. Philipovich, U.S. patent 3,963,542 (1976).
- (3) S. P. Mishra, M. C. R. Symons, K. 0. Christe, R. D. Wilson, and R. **I.** Wagner, *Inorg. Chem.,* **14,** 1103 (1975).
- (4) Powder Diffraction File, File No. 11-10 and 15-53, Joint Committee on Powder Diffraction Standards, Swarthmore, Pa.
- (5) I. G. Ryss, "The Chemistry of Fluorine and Its Inorganic Compounds", State Publishing House for Scientific, Technical and Chemical Literature, Moscow, 1956, US. Atomic Energy Commission Translation AECtr-3927, p 302.
- (6) W. E. Tolberg, R. T. Rewick, R. S. Stringham, and M. E. Hill, *Inorg. Chem., 6,* 1156 (1967).
- **(7)** J. E. Griffiths, W. A. Sunder, and W. E. Falconer, *Spectrochim. Acta, Parr A,* **31,** 1207 (1975).
-
- **(8)** W. E. Tolberg, private communication. (9) J. P. Guertin, **K.** 0. Christe, and **A.** E. Pavlath, *Inorg. Chem., 5,* ¹⁹²¹ (1966).
- (10) W. **A.** Sunder, A. E. Quinn, and J. E. Griffiths, *J. Fluorine Chem., 6,* 557 (1975).
- (1 1) T. Surles, L. A. Quarterman, and H. H. Hyman, *J. Inorg. Nucl. Chem., 35,* 670 (1973).
- (12) R. Bougon, T. B. Huy, **A.** Cadet, P. Charpin, and R. Rousson, *Inorg. Chem.,* **13,** 690 (1974).
- (13) G. M. Begun and **A.** C. Rutenberg, *Inorg. Chem., 6,* 2212 (1967).
- (14) A. M. Qureshi and F. Aubke, *Can. J. Chem.,* **48,** 3117 (1970). (15) K. 0. Christe and C. J. Schack, *Inorg. Chem.,* **9,** 2296 (1970).
-

Contribution from the Central Research and Development' and Polymer Intermediates Departments, E. I. du Pont de Nemours and Company, Experimental Station, Wilmington, Delaware 19898

Reactions of Cyanogen with Zerovalent Nickel Complexes

C. **A.** Tolman* and E. J. Lukosius

Received June **7,** *1976* .AIC604207

Earlier^{2a} we reported the reactions of HCN with $NiL₄$ complexes $(L =$ phosphorus ligand) by eq 1. We now wish

$$
HCN + NiL4 \Leftrightarrow HNiL3CN + L
$$
 (1)

to report the results of an analogous study of cyanogen reactions (eq 2), where C-C rather than C-H bond cleavage

$$
NCCN + Nil_{4} \Leftrightarrow Nil_{3}(CN)_{2} + L
$$
 (2)

is the major reaction.

There appear to be only four reports^{2b-5} in the literature on the reactions of cyanogen with transition metal complexes, with two brief reports involving Ni(O) **.4,5** Nickel dicyanide complexes are of course well-known, though they have usually been prepared from $Ni(CN)_2$. They have been extensively studied⁶⁻¹⁰ (usually by VIS-UV spectroscopy) mainly in order to define the factors which control equilibrium 3. No ^{31}P

$$
\text{Nil}_3(\text{CN})_2 \xrightarrow{K_3} \text{Nil}_2(\text{CN})_2 + \text{L}
$$
 (3)

NMR studies and only scattered IR data on nickel dicyanide complexes can be found in the literature. We began this study in order to see how changing the electronic¹¹ and steric¹² properties of L would affect the rates and products of the cyanogen reactions, for comparison with the HCN results.^{2a} By following IR and ${}^{31}P{}_{1}{}^{1}H{}_{1}$ NMR spectra with time we have also been able in some cases to observe unstable (NCCN)- $NiL₃¹³ complexes.$

In a typical reaction, 0.2 mmol of $Ni[P(OEt)₃]_4$ in 1.8 mL of toluene was allowed to react with 0.4 mmol of cyanogen in a 10-mm NMR tube. The solution gradually became yellow and the IR spectrum showed a new band growing in at 2115 cm⁻¹, assigned to v_{CN} in *trans*-Ni[P(OEt)₃]₃(CN)₂. ³¹P{¹H} spectra showed a decline of the $Ni[POEt]_3]_4$ resonance at -159.1 ppm and the appearance of a new broader resonance at -121.5 ppm, assigned the exchange average of free $P(OEt)$, and $Ni[POEt)_{3}]_{3}(CN)_{2}$. Figure 1a shows that cooling to -59 "C causes the product resonance to split into two in the expected 1:3 intensity ratio. Addition of free $P(OEt)$ ₃ simply enhances the intensity of the -136.6 -ppm resonance in the -59 °C spectrum. The fact that the width (\sim 90 Hz) of the -120 -ppm resonance in the -28 °C spectrum is unaffected by the addition shows that the exchange goes by dissociation of a ligand from $\text{Nil}_3(\text{CN})_2$ (eq 3), rather than by association.¹⁴

Though $\text{Ni}[\text{P}(\text{OEt})_3]_2(\text{CN})_2$ provides a pathway for ligand exchange, it is not present in solution to a spectroscopically significant extent. Thus the position of the average resonance at 25 "C before L addition (Table I) is in good agreement with that calculated from eq 4, where δ_1 and δ_3 are the chemical \overline{S}

$$
\delta_{\text{calcd}} = \frac{1}{4} \left[\delta_1 + 3 \delta_3 \right] \tag{4}
$$

shifts (in the low-temperature limit spectrum) of free L and $NiL₃(CN)₂$. The IR spectrum shows only bands of unreacted cyanogen (2150 cm⁻¹) and $Ni[P(OEt)₃]_{3}(CN)₂$.

Rapid exchange of free L with ligand in $NiL_3(CN)_2$ is observed in nearly all cases; Table I gives ³¹P chemical shifts

* To whom correspondence should **be** addressed at the Central Research and Development Department.