Spectral Properties of $(Et_4N)_2UI_6$ and $(Et_4N)_2UF_6$

L. York, *ibid.,* **10,** 840 (1971); H. B. Gray, *Adv. Chem. Ser.,* **No. 100,**

- 365 (1971); J. W. Dawson et al., *Biochemistry,* **11,** 461 (1972). (3) J. San Filippo, Jr., R. L. Grayson, and H. J. Sniadoch, *Inorg. Chem.,*
- **15,** 269 (1976). (4)
-
- (a) W. Kiefer and H. J. Bernstein, *Appl. Spectrosc.*, **25**, 500 (1971);
(b) *ibid.*, **25**, 609 (1971).
R. Colton and G. G. Rose, *Aust. J. Chem.*, **21**, 883 (1968).
(a) J. L. Woodhead and J. H. Fletcher, A.E.R.E. Report,
- ratashvili, *Russ. J. Inorg. Chem. (Engl. Transl.*), 18, 250 (1973).
R. E. Hester, "Raman Spectroscopy", H. A. Symanski, Ed., Plenum Press,
New York, N.Y., 1967, Chapter 4.
- The molecular symmetry of the $M_2OX_{10}^{4-}$ ion is D_{4h} . In this point group the totally symmetric vibrations (A_{1g}) have scattering tensors with diagonal the totally symmetric vibrations (A_{1g}) have scattering tensors with diagonal
elements only: α'_{xy} , α'_{yy} , α'_{zz} . Under such circumstances the depolarization
ratio can be shown' to have the form
 $(\alpha'_{xx})^2 + (\alpha'_{yy})$

$$
(\alpha'_{xx})^2 + (\alpha'_{yy})^2 + (\alpha'_{zz})^2 - \alpha'_{xx}\alpha_{yy} -\alpha'_{xx}\alpha'_{zz} - \alpha'_{yy}\alpha'_{zz} \n= 1/s \frac{(\alpha'_{xx})^2 + (\alpha'_{yy})^2 + (\alpha'_{zz})^2 + 2/s\alpha'_{yy}\alpha'_{zz} + 2/s\alpha'_{xx}\alpha'_{zz} + 2/s\alpha'_{yy}\alpha'_{zz} \n+ 2/s\alpha'_{xx}\alpha'_{zz} + 2/s\alpha'_{yy}\alpha'_{zz}
$$

When one element is dominant, this reduces to $\rho_1 \simeq \frac{1}{3}$.

- R. **S.** Chao, R. K. Khanna, and E. R. Lippincott, *J. Raman Spectrosc.,* **3,** 121 (1975).
- (10) It has been suggested⁹ that when discussing solid-state resonance Raman data, it may actually be preferable to employ the maximum in the excitation profile determined from solid-state Raman intensity data as the effective electronic frequency, ν_e , rather than the value traditionally
- obtained from the solution UV-vis spectrum. Following the completion of our earlier study (ref 3) an investigation detailing the crystal structure of $K_4W_2OCl_{10}$ and its isostructural re-
lationship to $K_4Re_2OCl_{10}$, $K_4Ru_2OCl_{10}$ and Cs $_4Os_2OCl_{10}$ appeared: T. Glowiak, **M.** Sabat, and B. Jezowska-Trzebiatowska, *Acfa Crystallogr., Sect. B,* **31,** 1783 (1975).
-

ρ

- E. Kbnig, *Inorg. Chem.,* **8,** 1278 (1969). M. **E.** Lines, A. **P.** Ginsberg, and F. J. Di Salvo, *J. Chem. Phys.,* **61,** 2095 (1974).
-
- A. P. Ginsberg, *Inorg. Chim. Acta*, *Rev.*, 5, 45 (1971).
At 110 K the g value for solid K₄W₂OCl₁₀ as determined by ESR is 1.778.
A similar value (g = 1.76 at 25 °C) was previously reported by R. Colton and **G. G.** Rose, *Aust. J. Chem.,* **21,883** (1968).

Inorganic Chemistry, Vol. 16, No. 5, 1997 **1021**

- (16) **B.** Jezowska-Trzebiatowska, J. Hanuza, and W. Wojciechowski, *J. Inorg. Nucl. Chem.,* **28,** 2701 (1966).
- (17) These observations compare favorably with the solution absorption spectrum of $(NH_4)_{4}[Os_2OCl_{10}]$ reported in ref 16. In addition, these authors also report the appearance of a broad band in the near-IR region, centered at 1050 nm **(e** 240).
- (18) The reflectance spectrum of $(NH₄)₄Os₂OCl₁₀$ was too diffuse and illdefined to permit a meaningful comparison to the solution spectrum.
-
-
- (19) J. San Filippo, Jr., *Inorg. Chem.*, 11, 3140 (1972).
(20) J. D. Dunitz and L. E. Orgel, J. *Chem. Soc.*, 2594 (1953).
(21) See also W. Klemm and K. H. Raddatz, *Z. Anorg. Allg. Chem.*, **25**0,
207 (1942); B. N. Figgis
- (22) Transitions involving electrons from the *u* framework are likely to **occur** at much higher energies than the resonating electronic transition observed in the present study and for this reason are not considered in the present discussion.
- (23) This statement follows from a consideration of the magnitude of the transition dipole moment, μ , in the approximate expansion of the relevant MO in terms of atomic orbitals localized **on** MI, Mz, and 0.

$$
\mu_{e_{g}} \to e_{u}^{a} = \langle d_{xz}(M_{1})\mu d_{xz}(M_{1})\rangle - \langle d_{xz}(M_{2})\mu d_{xz}(M_{2})\rangle
$$

$$
- \langle d_{xz}(M_{2})\mu p_{x}(O)\rangle + \langle d_{xz}(M_{2})\mu p_{x}(O)\rangle
$$

$$
= -2\langle d_{xz}(M_{2})\mu d_{xz}(M_{2})\rangle
$$

which reduces to $\mu_{\alpha_2 \to \alpha_1^*} = -2R_{M-O}$, where R_{M-O} is the length of the metal oxygen bond. However, at the same level of approximation

$$
\mu_{b_{2g}} \to e_{u}^{a} = \langle d_{xy}(M_1)\mu d_{xz}(M_1)\rangle + \langle d_{xy}(M_2)\mu d_{xz}(M_2)\rangle
$$

-
$$
d_{xy}(M_1)\mu_{p_x}(O) \rangle - \langle d_{xy}(M_2)\mu_{p_x}(O)\rangle = 0
$$

We conclude, therefore, that only the $e_g \rightarrow e_u^a$ transition can be expected
to have an appreciable intensity. Moreover, it can be shown by local

- symmetry arguments that this transition will have **z** polarization. (24) R. Shandles, E. 0. Schlemper, and R. K. Murmann, *Inorg. Chem.,* **10,** 2785 (1971).
- (25) D. L. Toppen and R. K. Murmann, *Inorg. Nucl. Chem. Lett.,* **6,** 139 (1970).
- (26) **S.** J. Lippard, **14.** J. Schugar, and C. Walling, *Inorg. Chem.,* **6,** 1825 (1967).
- (27) H. J. Schugar, **G.** R. Rossman, C. **G.** Barraclough, and H. B. Gray, *J. Am. Chem. Soc.,* **94,** 2683 (1972).

Contribution from the Materials and Molecular Research Division, Lawrence Berkeley Laboratory, Berkeley, California **94720,** and the Chemistry Division, Atomic Energy Research Establishment, Harwell, England

Spectral Properties of $(Et_4N)_2UI_6$ and $(Et_4N)_2UF_6$

W. WAGNER,^{1a} N. EDELSTEIN,^{*1a} B. WHITTAKER,^{1b} and D. BROWN^{*1b}

Received November 23, *1976* AIC60845T

The optical spectra of $(NEt_4)_2UI_6$ and $(NEt_4)_2UF_6$ are presented and analyzed. With these data the electrostatic, spin-orbit, and crystalline field parameters have been obtained for the series of octahedral compounds UX_6^{2-} ($X = F$, Cl, Br, I). The Slater parameter F^2 diminishes approximately 20% as the halide ion changes from F^- to I⁻. The crystalline (or ligand) field parameters for comparable PaX_6^2 and UX_6^2 compounds vary markedly.

Introduction

The preparation and spectral properties of octahedral compounds of the type $(NE_{t_4})_2 PaX_6$ (X = F, Cl, Br, I) have recently been investigated. 2.3 The trends in the ligand field parameters θ and Δ for these 5f¹ complexes were explained qualitatively in terms of molecular orbital theory by large variations in σ bonding dominating the total ligand field splitting and changing markedly as the halide ion varied. This same trend was also found for salts of the hexahalogenouranates **(V). As** part of the above program the corresponding $(NEt_4)_2UX_6$ (X = F, Cl, Br, I) salts were prepared and their optical spectra obtained at 77 K.^{2b,3} The most thorough analyses of the octahedral UX_6^2 spectra $(X = CI, Br)$ have been given by Satten and eo-workers from data obtained at $4 K$ on U^{4+} diluted in single crystals.^{4–6} We report in this paper the analyses of the spectra of $(NEt_4)_2UX_6$ $(X = I, F)$ and

compare the trends in the parameters obtained for the U4+ series $(5f²)$ as the halide ion is varied, with the corresponding parameters in the 5f' series.

Experimental Section and Calculations

The preparation of $(NEt_4)_2UI_6$ and $(NEt_4)_2UF_6$ and the recording of their spectra at room temperature and **77** K have been described $previously.^{2,3,7}$

Calculated energies were obtained by the simultaneous diagonalization of the combined electrostatic, spin-orbit, and crystalline field matrices which were constructed by the tensor operator methods described by Judd⁸ and Wybourne.⁹ These matrices were factored by the crystal quantum number, μ , into a 25 \times 25 matrix (μ = 0, Γ_1) and Γ_2 states), a 24 **X** 24 matrix ($\mu = 2$, Γ_3 and Γ_4 states), and two 21×21 matrices ($\mu = 1$, a doubly degenerate Γ_5 state). Matrices of these ranks can be easily diagonalized by existing computer programs *so* no further factoring was necessary. Experimental energies were compared with calculated energies and the parameters of the

Figure 1. Spectra obtained for various $UX_6^2 - (X = CI, Br, I)$ compounds at ~ 77 K. The lines at ~ 1.7 *µ* are from the NEt₄⁺ cation.

above interactions were adjusted to provide the best fit. Our computer program was checked by reproducing the energy levels for $Cs₂UBr₆$ and Cs₂UCl₆ given by Satten et al.⁴ using their parameters.

The crystal field Hamiltonian for octahedral symmetry was defined as

$$
\mathcal{H}_{\mathbf{c}} = B_0^4 [C_0^{(4)} + (5/14)^{1/2} (C_{-4}^{(4)} + C_4^{(4)})] + B_0^6 [C_0^{(6)} - (7/2)^{1/2} (C_{-4}^{(6)} + C_4^{(6)})]
$$

following the nomenclature given by Wybourne.⁹ For our calculations we set the ratios of $F^4/F^2 = 0.74$ and $F^6/F^2 = 0.55^{10,11}$ These ratios were obtained from a review of the data available from spectra of free ions and trivalent 4f and 5f ions in the solid state and were found to be constant for a wide range of measurements. 12

Results

Figure 1 shows the spectra obtained for $(NEt_4)_2UX_6$ (X = Cl, Br, I) and for $Cs₂UCl₆$. As can be seen immediately the general features of these spectra are very similar, the $UI₆²$ spectrum showing shifts to lower energies when compared to the UBr₆²⁻ and UCl₆²⁻ spectra. The situation for $(NE_{t_4})_2UF_6$ is quite different as shown in Figure 2. This spectrum shows almost no similarity to the other UX_6^2 spectra and the peaks are strongly shifted to higher energies.

High-resolution optical spectra of UCl_6^{2-} and UBr_6^{2-} have been studied in great detail by Satten and co-workers.⁴⁻⁶ These spectra are dominated by vibronic transitions which appear at regularly spaced intervals on either side of the pure electronic transitions. For O_h symmetry the pure electronic dipole transition within an l^n configuration is forbidden; however, vibrations of ungerade character break the inversion symmetry and are observed superimposed upon the pure electronic transition. In some instances the pure electronic transitions are not observed but are deduced from the vibronic assignments. Satten and co-workers have interpreted in this fashion the spectra of UCl_6^{2-} and UBr_6^{2-} . We make use of their assignments and similarly assign the $UI₆²⁻ spectrum.$

The vibrational frequencies for UBr_6^{2-} and UCl_6^{2-} have been values for UI_6^{2-} by use of the equation³ studied extensively^{4-6,13-15} and we estimate the corresponding

$$
\nu_i(I) = \left[\frac{M(C \text{1 or Br})}{M(I)}\right]^{1/2} (\nu_i(C \text{1 or Br}))
$$
(1)

where ν_i is the frequency of the halide atom-metal vibration and M is the mass of the halide atom, and the data reported by Brown et al.¹⁶ The calculated values are given in Table I and compared with the available measurements.

From the estimated and measured vibrational frequencies and by comparison with other $UX_6^{2-}(X = Cl, Br)$ spectra we assigned eight electronic levels as shown in Table 11. The vibrational frequencies observed do not fit well with the values expected for v_3 and v_4 . The discrepancies could be due to errors in choosing the centers of overlapping peaks and/or the possibility of other normal modes or combinations of normal modes falling in these ranges also. However, the assignments

Figure 2. Spectrum of $(NEt_4)_2UF_6$ at 77 K. The lines at \sim 1.7 μ are from the NEt₄⁺ cation.

Spectral Properties of $(Et_4N)_2UI_6$ and $(Et_4N)_2UF_6$

Table I. Estimated Vibrational Frequencies (cm⁻¹) for $(Et_4N)_2UF_6$ and $(Et_4N)_2UI_6$

^a Reference 15. ^{*b*} References 5, 13. ^{*c*} Reference 2b. ^{*d*} Reference 3.

Table 11. Observed Electronic and Vibronic Lines **(crn-l)** and Assignments

	$(NEt_4)UI_6$			$(NEt_4)_2UF_6$				
Vi- bronic lines	Vibra- tional freq	Elec- tronic transi- tion	As- sign- ment	Vŀ bronic lines	Vibra- tional freq	Elec- tronic transi- tion	As- sign- ment	
4596 4680 4753	-41 0 $+43$ $+116$	4637	г,	5 1 8 1 5 3 4 8 6094	-457 -290 0 +456	5638	$\Gamma_{\mathfrak{s}}$.	
4769 6112 6143	0 -72 -41	4769	$\Gamma_{\rm a}$	6006 6.215 6 3 0 9	+665 -456 -362	6671		
6184 6250 6285	0 +66 $+101$	6184	Γ_{4}	7 032 7087 7342	0 +361 $+416$ $+671$		Γ_{1}	
6549 6640 6734	-91 0 +94	6640	г,	6 6 0 5 6821	-412 -196 0	7017	Γ_{a}	
7092 7169 7262	-77 0 +93	7169	Γ_4	7 189 7 452 7 692	$+184$ +435 +675			
7570 7663 7782	-93 0 +119	7663	Γ_{3}	7849 7930 8 651	-441 -360 0 +361	8290	Γ_{4}	
8643 8741 8842	-98 0 $+101$	8741 -	г,	8 787 8945 7981	+497 $+655$ -596			
9606 9671 9747	-114 -49 0 $+27$	9720	Γ_{4}	8 1 3 7 8210 8945	-- 440 -367 0 $+368$	8577	$\Gamma_{\rm s}$	
9852	+132			9225 9901 10 1 1 1	$+648$ -661 -451			
				11 013 11 274	0 +451 $+712$	10562	$\Gamma_{\rm s}$	
				11587 11 655	-448 -380 0	12035	Γ_4	
				12 330 12484	+295 +449			

shown in Table IV and the energy levels given in Figure 3.

were primarily made on the basis of the similarities with other UX_6^{2-} (X = Cl, Br) spectra.

By comparing the experimental energies with the calculated spectrum we were able to make three more assignments as shown in Table 111. This table also shows the calculated and experimental energy levels. The parameters obtained by the "best fit" are given in Table IV. We also observed a small shift in the spectra of $(NEt_4)_2UX_6$ $(X = Br, Cl)$ from that found by Satten et al. for the Cs_2UX_6 $(X = Ci, Br)$. We assigned these spectra and obtained the "best fit" parameters

The interpretation of the spectrum of $(NEt_4)_2UF_6$ posed a more difficult problem. The vibrational frequencies expected were calculated by use of *eq* **1** and are given in Table I along with the reported values obtained from the vibronic spectrum of Pa F_6^2 and IR measurements on UF_6^2 ^{-2b,17} The vibrational frequencies for UF_6^{2-} are much higher than for the other halides **so** they were well resolved in the spectrum. The most consistent vibrational frequency was observed at \sim 360 cm⁻¹. This value corresponds with that calculated for ν_3 (see Table I) but disagrees with the assignment obtained from the IR spectrum.² The energy levels for UF_6^{2-} were shifted strongly to higher energies but the same general ordering was expected as found for the other UX_6^2 complexes. On this basis the assignments given in Table I1 were made. For levels above

	$UF62- a$	UCl_{ϵ}^{2-a}	UBr_6^2 ^{- a}	UI ₆ ² a	UCl_{6}^{2-b}	$UBr62-b$	$PaF62 - c$	$PaCl62-c$	$PaBr2 - c$	PaL^{2-c}
F^2	49 699 ±465	43 1 70 ±2181	40 867 ±2739	38 188 ±2422	42 606	41 4 25				
۲	1970 ±10	1774 ±35	1756 ±41	1724 ±39	1800	1792	1508	1523	1535	1542
B_0^4	10 067 ±113	7463 ±432	6946 ±609	6338 ±676	7211	6593	14 7 36	6666	5413	4191
$B_0^{\,6}$	22 ±72	992 ±258	999 ±252	941 ±289	1367	1195	1423	394	-68	-282
$\Delta_{\rm rms}^{}^{}d$ Δ_{med}^e	67 39	168 76	176 95	188 106						

a med
^a This work. ^b Reference 4. ^c Reference 3. ^d Root-mean-square deviation. ^{*e*} Mean energy deviation.

12000 cm⁻¹ the assignments were determined by the proximity It can be seen from Figure 3 that several pairs of energy of the calculated and observed levels. The parameters are levels for UF_6^2 are interchanged when co of the calculated and observed levels. The parameters are levels for UF_6^{2-} are interchanged when compared to the energy given in Table IV and the energy levels are shown in Figure levels of the other halide complexes. given in Table IV and the energy levels are shown in Figure levels of the other halide complexes. This change in order was

3. necessary to obtain good agreement between the calculated

Spectral Properties of $(Et_4N)_2UI_6$ and $(Et_4N)_2UF_6$

.

Table V. Ligand Field Parameters (cm⁻¹) for UX₆²⁻ and PaX₆²⁻

^{*a*} Total ligand field splitting = $\Delta + \theta$. (See ref 2a for definitions.) **b** Reference 3. **c** Reference 5.

and observed levels. In one case this changeover can be directly traced from the spectra. The spectrum of $(NEt_4)_2UI_6$ shows well-resolved lines at 6640 cm⁻¹ (Γ_5) and 7169 cm⁻¹ (Γ_4) . For the UBr₆²⁻ complex these two lines come closer and for UCl_6^{2-} we observe only a broad line with unresolved structure. Finally in $(NEt_4)_2UF_6$ we find again two well-resolved levels with the inverse order (8290 cm⁻¹, Γ_4 ; 8577 cm⁻¹, Γ_5). f

Discussion

The electrostatic, spin-orbit, and crystalline field parameters obtained from our analyses and from Satten et al.⁴ are tabulated in Table IV. One trend is immediately evident. All parameters except B_0^6 increase as the halide ion is changed from I^- to F^- . The change is most abrupt from CI^- to F^- as expected from the spectra. The crystalline field parameters for the analogous $PaX₆²⁻$ and $UX₆²⁻$ compounds were expected to be similar, with the Pa parameters larger due to the greater magnitude of the radial expectation values *(r").* The effects due to the larger radial values for $Pa⁴⁺$ would be offset to a degree by the smaller ionic radius of U^{4+} . In fact, except for the fluoride complexes, the crystalline field parameters given in Table IV show none of the expected trends.

The difference between PaX_6^{2-} and UX_6^{2-} arises from the addition of a 5f electron so that in the $5f²$ case we have the additional electrostatic parameters F^2 , F^4 , and F^6 . Our calculations were performed with fixed ratios for F^4/F^2 and F^6/F^2 so we discuss only F^2 . One of the surprising results of our analysis is the great change in F^2 as the halide ion is varied, of the order of **20%.** In order to check this result we have also calculated the effect of fixed values for the configuration interaction parameters α , β , and γ (obtained from the results of the analysis of Np^{3+} diluted in $LaCl₃¹⁸$) and found no significant change in the fit of experimental and calculated levels nor in the empirical parameters.

We compare in Table V the values of Δ and θ , the parameters obtained from ligand field theory, for the $PaX₆²⁻$ and UF_6^{2-} complexes. The value of Δ , the parameter which depends only on π bonding, is the same for the UF₆²⁻ and PaF₆²⁻ complexes; but although it is diminished for the other UX_{6}^{2-} complexes relative to the PaX_6^2 -complexes, it is approximately constant. However, θ , which depends on both π and σ bonding, is relatively constant for the entire UX_6^2 series, in striking contrast to the $PaX₆²⁻$ which shows a substantial lowering as the halide ion is changed from **F** to I-. The spin-orbit coupling constant *l* also changes more markedly for the UX_6^2 series than for the $PaX₆²⁻$ series.

Let us consider only the electrostatic and spin-orbit parameters. For the PaX_6^2 -complexes the spin-orbit parameters are approximately equal is
UIX²⁻ complexes there rameter between UF_6^2 and the other compounds. Qualitatively, we can attribute a reduction i to covalency effects, which would then appear to be significant in the chloride, bromide, and iodide complexes and in PaF_6^2 , but not in the UF_6^{2-} complex. Again, the difference between the Pa F_6^2 and UF_6^2 complex may be attributed to the greater *Inorganic Chemistry, Vol. 16, No. 5, 1977* **1025**

Figure 4. Differences in ligand field parameters for UX_6^2 and PaX_6^2 vs. F^2 for UX_6^2 ⁻.

radial extent of the 5f wave function for $Pa⁴⁺$. Judd¹⁹ has pointed out that the observed values of F^2 for the UX₄²⁻ compounds correlate in a roughly linear way with the polarizability of the halide ion, and a qualitative calculation has shown that a nearby polarizable atom or ion will always reduce the effective Coulombic interaction in a second ion.²⁰ However, these qualitative models suggest larger values for the crystalline field parameters for the Pa complexes, contrary to the observed trends of the chloride, bromide, and iodide compounds.

Another way of interpreting the change in F^2 in this series of complexes is by use of the nephelauxetic effect.²¹ We would then expect the electron cloud about the metal ion to expand toward the ligands with the effect to be largest for I⁻ and smallest for \overline{F} . If we define β' as the ratio F^2 (complex)/ F^2 (free ion) and assume $\beta' = 1$ for UF_6^{2-} , then we find $\beta' = 0.87$ for Ul_6^{2-} , $\beta = 0.82$ for UB_6^{2-} , and $\beta' = 0.77$ for Ul_6^{2-} . This trend follows that found in the d transition series²¹ and will explain the changes in F^2 . However, it does not explain the large differences between the ligand field parameters of the Pa X_6^{2-} and UX_6^{2-} complexes.

Let us assume the crystal field parameters for the $PaX₆²$ complexes should be valid for the UX_6^2 complexes and then consider the differences in the crystal field defined as

$$
\Delta CF = CF(U) - CF(Pa)
$$
 (2)

where $CF = \theta + \Delta$. As can be seen from Tables IV and V the crystal (or ligand) field in the series of ligands (I-Br-Cl-F) increases much more rapidly for the $PaX₆²$ complexes than for the UX₆²⁻ complexes. There will be a point where CF(U) = CF(Pa) (Δ CF = 0) for a hypothetical ligand at a certain bond distance. We call this point "equilibrium" and consider the value found for F^2 at this point as the "correct" value. Figure 4 shows a plot of ΔCF vs. F^2 . Qualitatively ΔCF decreases from the iodide to the fluoride as the value of *F2* increases. From this definition of "equilibrium" the value of F^2 appears to be too large for UF_6^{2-} and too small for other members of the UX_6^2 series.

This work shows that the parameters obtained in the usual method for analyzing optical data of 4f and **5f** series may not have the same meaning for free-ion spectra and solid-state spectra. Our studies suggest the Slater parameter F^2 is strongly affected by the type of ligand in the complex and may absorb some of the effects of the ligand field. Such effects have been predicted by theoretical calculations.^{22,23} This is also true to a lesser degree for the spin-orbit coupling constant. If $F²$ and ζ are affected by the ligands, then the values found for the ligand field parameters may also not be the **"correct"** values.

Finally, we wish to point out that our analysis is consistent with the excellent studies of Satten et al.⁴⁻⁶ The 5f² optical

spectra observed in octahedral symmetry are dominated by the vibronic transitions. Furthermore, the electrostatic, spin-orbit, and crystalline field parameters increase as the ligand changes from **I-** to **F.** In the 5f' series the crystalline field and spin-orbit parameters also increase with higher oxidation state on the metal ion. The reported analysis of the optical spectrum of CsNpF_{6}^{24} does not fit the above trends. We suggest this discrepancy should be studied further.

Conclusion

We have analyzed the optical spectra of $(NEt_4)_2UF_6$ and $(NEt₄)₂UI₆$. The electrostatic, spin-orbit, and crystal field parameters for the entire $UX_6^{2-}(X = F, Cl, Br, I)$ have been obtained and where applicable compared to corresponding parameters for PaX_6^2 . It was noted that the Slater parameter $F²$ changes by approximately 20% for the series and the crystal field parameters are dissimilar for the comparable PaX_6^{2-} and UX_6^2 ⁻ complexes.

Acknowledgment. We wish to thank Professor B. R. Judd and Dr. **K.** Rajnak for illuminating discussions. W. Wagner thanks the Deutscher Akademischer Austauschdienst for its financial support. This work was done with support from the **U.S.** Energy Research and Development Administration and from NATO Grant 1113.

 $Cs₂UCl₆, 17030-13-6; (NEt₄)₂UCl₆, 12081-51-5; (NEt₄)₂UBr₆$ **Registry No.** $(Et_4N)_2UF_6$, 42294-80-4; $(Et_4N)_2UI_6$, 56848-06-7; 12080-72-7.

Reberemces and Notes

Establishment. (I) (a) Lawrence Berkeley Laboratory. (b) Atomic Energy Research

- (2) (a) N. Edelstein, D. Brown, and B. Whittaker, *Inorg. Chem.,* 13, 563 (1974); (b) D. Brown, B. Whittaker, and N. Edelstein, *ibid.,* 13, 1805 (1974).
- (3) D. Brown, P. Lidster, B. Whittaker, and N. Edelstein, *Inorg. Chem.,* 15, 214 (1976). (4) D. R. Johnston, R. A. Satten, C. L. Schreiber, and E. Y. Wong, *J. Chem.*
- *Phys.,* 44, 3141 (1966). *(5)* R. A. Satten, C. L. Schreiber, and E. *Y.* Wong, *J. Chem. Phys.,* 42,162
- (1965).
- (6) R. A. Satten, D. Young, and D. M. Gruen, *J. Chem. Phys.,* 33, 1140 (1960).
- (7) D. Brown, B. Whittaker, and J. Edwards, Report AERE-R7480, Atomic Energy Research Establishment, 1973 (available from H. M. Stationary Office, London, W.C.l, England).
- (8) **B.** R. Judd, "Operator Techniques in Atomic Spectroscopy", McGraw-Hill, New York, **N.Y.,** 1963.
- (9) B. G. Wybourne, "Spectroscopic Properties of Rare Earths", Interscience, New York, N.Y., 1965.
- (10) In our calculations we have used as the electrostatic interaction parameters the Slater radial integrals *P*^{*k*} ($k = 2, 4, 6$). These integrals have been redefined by Condon and Shortley¹¹ as $F_2 = F^2/225$, $F_4 =$ redefined by Condon and Shortley¹¹ as $F_2 = F^2/225$, $F_4 = F^4/1089$, and $F_6 = F^6/7361.64$, for an fⁿ configuration. (11) E. U. Condon and G. H. Shortley, "The Theory of Atomic Spectra",
- Cambridge University **Press,** Cambridge, 1935.
-
-
- (12) K. Rajnak, *Phys. Rev. A*, **14**, 1979 (1976).
(13) W. von der Ohe, *J. Chem. Phys.*, **62**, 3933 (1975).
(14) J. Shamir and A. Silberstein, *J. Inorg. Nucl. Chem.*, 37, 1173 (1975).
(15) S. L. Chodos and R. A. Satten,
- (16) D. Brown, **B.** Whittaker, and P. E. Lidster, Report AERE-R8035, Atomic Energy Research Establishment, 1975 (available from H. M. Stationary Office, London, W.C.1, England).
- (17) J. L. Ryan, J. **M.** Cleveland, and *G.* H. Bryan, *Inorg. Chem.,* 13,214 (1974).
- (18) W. T. Carnall, private communication.
(19) B. R. Judd, private communication.
-
- (20) B. R. Judd, *Math. Proc. Cambridge Philos. Soc.*, in press.
- (21) C. E. Schaffer and C. K. Jdrgensen, *J. Inorg. Nucl. Chem.,* 8,143 (1958).
- (22) K. Rajnak and B. G. Wybourne, *J. Chem. Phys.,* 41, 565 (1964). (23) **S.** S. Bishton and D. J. Newman, *J. Phys.* C, *3,* 1753 (1970).
-
- (24) L. P. Varga, J. D. Brown, M. **J.** Reisfeld, and R. D. Cowan, *J. Chem. Phys.,* 52, 4233 (1970).

Contribution from the Department of Chemistry, University of Rajasthan, Jaipur, India

Kinetics and Mechanism of the Oxidation of Arsenic(III) by Hexacyanoferrate(III) in Alkaline Medium

DEVENDRA MOHAN, DINESH GUPTA, and Y. K. GUPTA^{*}

Received June **4.** 1976 AIC60443L

Kinetics of **the** reaction between hexacyanoferrate(II1) and arsenic(II1) in alkaline medium has been reinvestigated to establish As^{III} and OH⁻ dependences. The rate depends on the ratio $[OH^-]/[As^{III}]$. The rate law for $[OH^-]/[As^{III}] > 1$ is $-d[Fe(CN)_6^3]/dt = [Fe(CN)_6^3][As^{III}](k_1K_1[OH^-] + k_2K_1K_2[OH^-]^2 + k_3K_1K_2K_3[OH^-]^3)/(1 + K_1[OH^-]^2 + K_1K_2[OH^-]^3)$.
 $+ K_1K_2K_3[OH^-]^3$. k_1, k_2 , and k_3K_3 were found to be (10 \pm 0.9) × 10⁻³ M⁻¹ s⁻¹, 0.35 \pm 0.02 M⁻² s⁻¹, s^{-1} , respectively, at 45^oC and $I = 2.0$ M. K_1 , K_2 , and K_3 are the equilibrium constants for the formation of H₂AsO₃⁻, $HAsO₃²$, and AsO₃^{3–} from H₃AsO₃ and OH⁻. E_a and $\Delta S[*]$ associated with k_1, k_2 , and k_3K_3 were found to be 11.8 \pm 0.5, 6.4 \pm 0.7, and 3.75 \pm 0.46 kcal mol⁻¹ and -32 \pm 2, -43 \pm 3, and -42 \pm 3 cal mol⁻¹ deg⁻¹, respectively.

Introduction

Krishna and $Singh¹$ and Mushran and co-workers² have investigated the kinetics of the oxidation of arsenic(II1) by hexacyanoferrate(III) ion in alkaline solutions. The effect of hexacyanoferrate(III) ion has been variously reported. A limited range **of** concentrations had been employed to study the arsenite and hydroxide ion dependences. The various equilibria involving arsenic(II1) and **OH-,** as reported by Mushran and co-workers,² clearly indicate that the arsenite and hydroxide ion dependences would depend on their ratios **but** they did not give quantitative treatment. These were some **of** the points which prompted us to reinvestigate the kinetics **0f** this reaction. Abut a 1000-fold variation in the concentration of **As"'** and about 500-fold variation in the concentration of NaOH have enabled us to characterize the various rate constants. The overall reaction is represented by

$$
AsIII + 2Fe(CN)63- \rightarrow AsV + 2Fe(CN)64-
$$

Experimental Section

The stock solution of 0.2 N arsenious acid was prepared by dissolving the requisite amount of arsenic trioxide, sufficient to give a little more than 0.20 N acid, in boiling water. After cooling, it was filtered and standardized against a standard permanganate solution. All other reagents used were BDH AnalaR. Doubly distilled water was used throughout (the second distillation being from the permanganate).

Reactions were carried out in a thermostated water bath at 45 \pm 0.1 \degree C unless mentioned otherwise. Measured quantities of As^{III} and sodium hydroxide solutions were mixed and kept in the water bath