Notes

- R. D. Shannon, *Solid State Commun.,* **4,** 629 (1966).
- A. N. Christensen, N. C. Broch, 0. v. Heidenstam, and A. **Nilsson,** *Acta Chem. Scand.,* **21,** 1046 (1967). C. T. Prewitt, R. D. Shannon, D. B. Rogers, and A. W. Sleight, *Inorg.*
- (5) *Chem., 8,* 1985 (1969).
- (6) A. N. Christensen, R. Gronbaek, and *S.* E. Rasmussen, *Acta Chem. Scand.,* **18,** 1261 (1964).
- B. D. Cullity, "Elements of X-Ray Diffraction", Addison-Wesley, Reading, Mass.
- (8) M. B. Varfolomeev, A. *S.* Mironova, F. Kh. Chibirova, and V. E. Plyushchev, *Inorg. Mater. (Engl. Trawl.),* **11,** 1926 (1975); *Izu. Akad.*
- The tin concentrations of the precipitates were checked by x-ray fluorescence analysis after annealing. (9)

Contribution from the Department of Chemistry, Indiana University, Bloomington, Indiana 47401

Organogold(II1) Complexes. Structure of Monomethy ldibromogold

S. Komiya, **J.** C. Huffman, and J. K. Kochi'

Received December 13, *1976* AIC608901

Organogold complexes' are valuable probes for the study of reductive elimination of organometallic intermediates in catalytic reactions.² Thus, trimethyl- and dimethyl(aniono)gold complexes with the formulations $(CH₃)₃AuL$ and $(CH₃)₂$ XAuL, respectively $[L =$ phosphines], afford only the homonuclear CH_3 -CH₃ on reductive elimination.^{1,3} We sought to examine the heteronuclear elimination of $CH₃-X$ from the corresponding monomethyl analogues, $CH₃(X)₂AuL$. However, despite a number of efforts to synthesize such monoalkylgold(II1) complexes, there are no unambiguous examples extant,⁴ and it is generally concluded that they are unstable. $6,7$ Attempts to prepare monoalkyldibromogold by electrophilic brominolysis of the dimeric dialkylbromogold according to eq 1 indeed led to compound $I [R = ethy]$, *n*- $[R_2AuBr]_2 + 2Br_2 \rightarrow [RAuBr_2]_2 + 2RBr$ (1)

$$
f_{\rm{max}}
$$

I

propyl] with the correct empirical formula.⁶ Although it was recognized that two structures, the symmetric I1 (trans and

cis) as well as the unsymmetric 111, were possible, they could not be distinguished on the basis of chemical studies and dipole measurements.⁶ Since these efforts represent a potentially valuable route to the desired monoalkylgold(II1) complexes, we examined the structure of the methyl analogue of I in detail.

Experimental Section

Materials. The gold complexes, $[(CH₃)₂AuBr]₂, (CH₃)₂XAuPPh₃$ **[X** = Br, I], BrAuPPh,, CH3AuPPh3, were prepared using published procedures.^{3,8} The halogenophospines, $X\overline{XPPh_3}^+$ $[X = Br, I]$, were synthesized from X_2 and PPh₃.⁹ A colorless solution of $[(CH_3)_2AuBr]_2$ (25.0 mg) in CCl₄ (1.0 ml) was treated with bromine (5.5 μ L) to give a red solution which gradually deepened and then lightened on standing for 3 days at room temperature as dark red crystals of IV separated from solution. During this change the singlet $(\delta 1.40)$ in the ¹H NMR spectrum of $[(CH₃)₂AuBr]₂$ decreased concomitantly with an increase in that due to $CH₃Br$ (δ 2.55) which was finally formed in 75% yield. The solution on further standing at room temperature gradually evolved ethane. Compound IV forms transparent dark red crystals when freshly prepared, but gradually changes in solution or in the solid state

Figure **1. ORTEP** drawing of the molecule showing bonded distances and angles. Primed atoms are related to nonprimed atoms by a twofold axis which passes through the two gold atoms. Thermal ellipsoids are drawn at the 50% probability level. The gold-gold distance is 3.705 (1) **A,** where the number in parentheses represents the error in the least significant digits.

to an opaque black solid within a week. All 'H NMR spectra were recorded on a Varian EM360 spectrometer using external TMS standards.

X-Ray Crystallographic **Study** *of* IV. A crystal of dimensions 0.70 **X** 0.078 **X** 0.064 mm was placed in a gaseous nitrogen cold stream on the goniostat and maintained at -160 ± 5 °C throughout characterization and data collection. The diffractometer used consisted of a Picker four-circle goniostat with a graphite monochromator (002 plane), and a Texas Instruments T1980B minicomputer. The goniostat was controlled by stepping motors using locally designed interfaces and programs.

The crystal was characterized on the goniostat and found to be *cl/c* with *a* = 12.202 (2) **A,** *b* = 10.722 (2) **A,** *c* = 7.673 (2) **A,** and β = 94.19 (1)[°] at -160 ^oC as determined by a least-squares fit of angular data from 12 centered reflections. The calculated density for $Z = 4$ is 4.93 g/cm³. Redundant intensity data were collected by 2 θ scan techniques (4^o/min) to a maximum of $2\theta = 55^\circ$. The intensity data were reduced in the usual manner,¹⁰ corrected for Lorentz-polarization terms and absorption (μ 449.3 for λ (Mo K α) 0.71069 Å), and reduced to the 1152 unique structure amplitudes. The 1125 structure amplitudes with $F_0^2 > \sigma(F_0^2)$ were considered "observed" and **used** in all calculations. An ignorance factor of 0.06 was used in the data reduction formula.

The structure, which possesses crystallographic twofold symmetry, was solved by a combination of direct and Patterson techniques and refined anisotropically by full-matrix least-squares.¹¹ The function minimized was $\sum w(|F_0| - |F_c|)^2$ in which *w* is $4F_0^2/\sigma^2(F_0^2)$. The final residuals were $R(F) = 0.058$ and $R_v(F) = 0.050$, where $R(F)$ and $R_w(F)$ are defined as $\sum ||F_0| - |F_c|| / \sum |F_0|$ and $[\sum w([F_0] - [F_c])^2 / \sum wF_0^2]^{1/2}$. The "goodness of fit" for the last cycle was 1.68, and the largest Δ/σ was 0.03. A final difference Fourier synthesis was featureless except for peaks of 2.2 and 2.1 e/\mathring{A}^3 remaining in the location of the gold atoms.

Results and Discussion

Treatment of dimethylbromogold with an equimolar amount of bromine in carbon tetrachloride solution at room temperature afforded high yields of methyl bromide, and methyldibromogold (IV) separated from solution as dark red crystals according to *eq* **2.**

$$
[(CH3)2BrAu]2 + 2Br2 \rightarrow 2CH3(Br2)Au + 2CH3Br
$$
 (2)

To avoid decomposition, the diffraction data were collected on a freshly prepared transparent crystal of IV held at -160 ^oC. The molecular structure of IV in Figure 1 is planar and consists of discrete dimeric units of two gold atoms, each in a square-planar configuration and held with two bridging bromine atoms. Importantly, both methyl groups in the dimer are bonded to the same gold atom. The bond distances and bond angles in Figure **1** and Table I are comparable to those found in the binuclear structure in $[(CH_3CH_2)_2AuBr]_2$.¹²

	Atom	x		ν		
	0.00000^a Au(1)		0.91842(7)		$0.250~00^a$	
	Au(2)	$0.000~00^a$		0.26396(8)	0.25000^a	
	Br(1)	0.13210(12)		0.08140(14)	0.34581(22)	
	Br(2)	0.36886(14)		0.26054(16)	0.15666(25)	
	C(1)		0.112.4(13)		0.3414(23)	
Atom	b_{11}	D_{22}	b_{33}	b_{12}	b_{13}	σ_{23}
Au(1)	0.00335(5)	0.00425(7)	0.01032(15)	$0.000~00^a$	0.00035(7)	$0.000~00^a$
Au(2)	0.00382(6)	0.004 13 (7)	0.01251(18)	$0.000\ 00^a$	0.00081(8)	$0.000~00^a$
Br(1)	0.00373(10)	0.00520(13)	0.015 43 (32)	$-0.00030(9)$	$-0.00107(14)$	$-0.00031(16)$
Br(2)	0.00552(12)	0.006 14 (16)	0.01969(39)	$-0.00159(10)$	0.00096(17)	$-0.00257(19)$
C(1)	0.0055(11)	0.0035(13)	0.0172(33)	$-0.0026(9)$	0.0003(15)	$-0.00038(17)$

Table I. Fractional Coordinates and Thermal Parameters for $Au_2Br_4(CH_3)_2$

a Parameters fixed by symmetry. The form of the anisotropic thermal parameter is: $exp[-(h^2b_{11} + \ldots + 2hk b_{12} + \ldots)].$

Methyldibromogold (IV) is thus a mixed binuclear species with the general structure III, in which one gold moiety consists of dimethylbromogold(II1) and the other is tribromogold (III) .¹³ In accord with structure III, reductive elimination at 70 °C for 3 days produced ethane in high yields (and only traces of methyl bromide), together with a black opaque solid, which we formulate as $AuBrAuBr₃$ (eq 3) since

$$
CH_3 \downarrow H_3 \downarrow H_4 \downarrow H_5 \rightarrow CH_3 CH_3 + Au^{\text{Br}} \downarrow H_4 \downarrow H_5 \downarrow H_5 \downarrow H_6 \downarrow H_7 \downarrow H_7 \downarrow H_7 \downarrow H_7 \downarrow H_7 \downarrow H_8 \downarrow H_7 \downarrow H_8 \downarrow H_8 \downarrow H_9 \downarrow H_8 \downarrow H_9 \downarrow H_8 \downarrow H_9 \
$$

it affords bromine and aurous bromide (AuBr) on further heating above 200 $^{\circ}$ C.¹⁴

The complex IV is sparingly soluble in chloroform ['H NMR: AuCH3 *6* 1.60 ppm (singlet)]. When the purple solution is treated with 2 equiv of triphenylphosphine, the expected ¹H NMR spectrum [cis CH₃ δ 1.03, J_{HP} = 8 Hz; trans CH₃ δ 1.50, J_{HP} = 9 Hz] due to the known³ $(CH₃)₂BrAuPPh₃$ could not be detected, but only a singlet at 1.3 ppm was observed. The ³¹P ^{{1}H} NMR spectrum showed two singlets in a 1:l ratio at 52.0 and 35.6 ppm relative to external H_3PO_4 . The resonance at 52.0 ppm is assigned to $BrPPh₃$ ⁺ by comparison with an authenic sample of $Br^{-}BrPPh_3^+$ (51.9 ppm) and that at 35.6 ppm is assigned to BrAuPPh₃.

When a colorless solution of cis- $(CH_3)_2BrAuPPh_3$ in CDCl₃ was treated with a stoichiometric amount of bromine, no methyl bromide was observed, and the ¹H NMR spectrum (δ) 1.3 singlet) and ³¹P {¹H} NMR spectrum (δ 51.3 singlet) of the yellow solution indicated that the same species as that described above was formed. Similarly, the singlet resonance in the ¹H NMR spectrum of $[(CH₃)₂AuBr]₂$ in CDCl₃ was shifted from 1.40 ppm to 1.30 ppm when an equimolar amount of Br⁻BrPPh₃⁺ was added. Since cleavage of a CH₃-Au bond does not occur and the NMR spectra are common, we propose the formation of the same dimethylgold(III) species, $V¹⁵$ in all three reactions described above.

 $IV + 2PPh₃$

The singular absence of any stable monomethylgold(II1) species in these studies¹⁶ suggests that they are less stable than the dimethylgold(II1) precursors. This conclusion is supported by the failure to oxidize the methylgold(1) complex, $CH₃AuPPh₃$, by iodine to a monomethyliodogold(III) species according to

$$
CH3AuIPPh3 + I2 \rightarrow CH3(I)2AuIIIPPh3
$$
 (4)

Instead, the H NMR spectrum of the CDCl₃ solution indicated the presence of a mixture of the known together with CH₃I [δ 2.23 (s)] and $(CH_3)_2AuI_2^{-1}PPh_3^{+}$ [δ 1.60 (s)] **.I7** The latter can also be isolated as a red oil from benzene when $(CH_3)_2$ IAuPPh₃ is treated with iodine, and on standing it liberates CH_3-CH_3 by reductive elimination. $(CH_3)_2$ IAuPPh₃ [δ 1.20, $J_{\text{PH}} = 8$ Hz; δ 1.67, $J_{\text{PH}} = 9$ Hz]

Acknowledgment. We wish to thank the National Science Foundation for financial support and Mr. Kevin Rollick for the ³¹P NMR spectra.

Registry No. IV, 61886-04-2; V, 61886-07-5; $[(CH_3)_2AuBr]_2$ **,** 30626-28-9; cis -(CH₃)₂BrAuPPh₃, 34275-47-3; (CH₃)₂IAuPPh₃, $34275-48-4$; $(CH_3)_2AuI_2^-IPPh_3^+$, 61886-06-4.

Supplementary Material Available: Tables listing structure factor amplitudes and atomic parameters for compound IV (11 pages). Ordering information **is** given on any current masthead page.

References and Notes

- J. K. Kochi, *Acc. Chem. Res.,* 7,351 (1974), and references cited therein. B. Armer and H. Schmidbaur, *Angew. Chem., Int. Ed. Engl.,* 9, 101
- (1970). (3) (a) A. Tamaki and J. K. Kochi, *J. Organomet. Chem.*, **40**, C81 (1972); (b) A. Tamaki, **S.** A. Magennis, and J. K. Kochi, *J. Am. Chem. Soc.,* 96,6140 (1974); (c) S. Komiya and J. K. Kochi, *ibid.,* 98,7599 (1976); (d) **S.** Komiya, T. A. Albright, R. Hoffmann, and J. K. Kochi, *ibid.,*
- 98, 7255 (1976). For studies on monoarylgold(II1) complexes see ref 5.
- (a) K. **S.** Liddle and C. Parkin, *J. Chern.* Soc., *Chem. Commun.,* 26 (1972); (b) F. Calderazzo and D. Belli Dell'Amico, J. Organomet. Chem., 76, CS9 (1974); (c) L. G. Vaughan and W. A. Sheppard, J. Am. Chem., S_0c , 91, 6151 (1969); (d) R. Uson, A. Laguna, and J. Vicente, J. Organomet. Chem., 86,
-
- (b) M. S. Kharasch and T. M. Beck, *ibid.,* 56, 2057 (1934).
- (8) (a) G. E. Coates and C. Parkin, *J. Chem. Soc.,* 421 (1963); (b) H. Schmidbaur and A. Shiotani, *Chem. Ber.,* 104, 2821 (1971); (c) A. Tamaki and J. K. Kochi, *J. Chem. SOC. A,* 2620 (1973); *J. Organornet. Chem.,* 51, C39 (1973); (d) B. J. Gregory and C. K. Ingold, *J. Chem. SOC. B,* 276 (1969); (e) *S.* W. Krauhs, *G.* C. Stocco, and R. **S.** Tobias,
- *Inorg. Chem.,* 10, 1365 (1971). *G.* M. Kosolapoff and **L.** Maier, "Organic Phosphorus Compounds", (9) Val. 3, Wiley, New York, **N.Y.,** 1972, p 205. See also Vol. 2, 1972, **p** 210.
- M. 0. Vischer, J. C. Huffman, and W. E. Streib, *Inorg. Chem.,* 13,792 (1974).
- All computations were performed on a CDC 6600 computer using the Indiana University Molecular Structure Center XTEL interactive program library. The latter is based in part on A. C. Larson's least squares, Fourier, and symmetry code, and Germain, Main and Woolfson's LSAM. Scattering factors and anomalous dispension terms were from the "International Tables for X-ray Crystallography", **Vol.** IV, Kynoch Press, Birmingham, England, 1974, pp 99-101 and 149-150.
- A. Burawoy, C. **S.** Gibson, G. C. Hampson, and H. M. Powell, *J. Chem. Soc.*, 1690 (1937).
(13) Structure III for alkyldibromogold complexes also explains their ready
- reducibility in contrast to the dialkylbromogold analogues (see ref 6b and 6d).
- and 6d). (a) Cf. F. Ephraim, *Chem. Ber., 52,* 241 (1919), and J. **W.** Mellor, "A (14) Comprehensive Treatise on Inorganic and Theoretical Chemistry", 3, Longmans, Green and Co., London, 1923, **p** 606. (b) On the other ethyl bromide which was inferred from the weight loss.
- (a) V is written as an ion pair in analogy to $Br^- BrPPh₃⁺$ [see ref 9]. (15) (b) Stable salts of dimethyldihaloaurate(III) $[$ [']H NMR of Ph₄As⁺- $(CH₃)₂AuBr₂$: δ 1.21]. W. M. Scovell and R. S. Tobias, *Inorg. Chem.*, *9,* 945 (1970); see also G. C. Stocco and R. *S.* Tobias, *J. Am. Chem.*
- (16) Compound IV may be formed from I in eq 2 directly by brominolysis of two methyl groups on the same gold atoms. Alternatively, cleavage of two methyl groups on separate gold atoms in I could afford a metastable monomethyldibromogold dimer (i.e., II cis or trans) which then rearranges to IV.

(17) (a) The ¹H NMR spectrum of $Ph_4As^+(CH_3)_2AuI_2^-$ shows the methyl
- (a) The 'H NMR spectrum of Ph4As+(CH3)2AuX₂
isinglet at 6 1.45 ppm *[see ref* 15b]. (b) A methylgold(III) species presented
in eq 4 may be an intermediate in the formation of dimethylgold(III) complexes since methyl transfer from CH₃AuPPh₃ can be facile,¹⁸ e.g., CH₃1₂AuPPh₃ + CH₃AuPPh₃ + CH₃AuPPh₃ + IAuPPh₃, etc. (a) A. Tamaki and J. K. Kochi, *J. Organomet. Chem.*, 40, C81 (1972);
- (18) (a) A. Tamaki and J. *K.* Kochi, *J. Organomet. Chem.,* **40,** C81 (1972); 64,411 (1974); (b) **G. W.** Rice and R. **S.** Tobias, *ibid.,* 86, C37 (1975).

Contribution from the Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712

Uranium(IV) Sulfite and Uranium(1V) Oxysulfite

George W. Watt' and Daniel **W.** Baugh, Jr.

Received December 28, 1976 AIC609144

Efforts to prepare sulfites of uranium have led to products of indefinite composition or have employed conditions that prevented the isolation of sulfites of uranium(1V). Rosenheim and Kelmy' reported the isolation of $(NH_4)_4[U(SO_3)_4]$ but this could not be confirmed during the present studies. Other early efforts to isolate sulfites of uranium(V1) demonstrated their existence in solutions from which only products of irreproducible composition could be isolated.^{$2,3$} Both Aloy and Auber⁴ and Yevteev and Petrzhak⁵ reduced uranyl salts with sodium dithionite and sodium formaldehyde sulfoxylate, respectively, but reoxidized the products to sulfates by recrystallization from sulfuric acid.

There are several cases in connection with the processing of uranium ores in which uranium(1V) sulfite was probably formed but not isolated because of the conditions employed.⁶ In a similar context precipitation of $uranim(IV)$ sulfite was precluded by the presence of fluoride ion^{9,10} and the preferential separation of $(NH_4)UF_5$. Other related actinide chemistry is concerned with sulfite complexes of neptuni $um(V)^{11}$ and with the use of sodium dithionite for the reduction of higher oxidation states of plutonium to plutonium(III).¹²

We report here the synthesis of uranium(1V) sulfite as the tetrahydrate, its characterization, and pyrolysis to high purity uranium(1V) oxide. Also included is a closely related product, $uranium(IV)$ oxysulfite-4-water.

Experimental Section

All experimental methods and physical measurements were made as described earlier.13 For cases in which, for example, x-ray diffraction, spectral, DTA, or TGA data are given here only in part, the complete data are available elsewhere.¹⁴

Uranium(IV) Sulfate-4-Water. In a typical experiment, a solution of 3.3780 g of $Na₂S₂O₄$ (2.5-fold in excess of a 1:1 mol ratio) in 100 ml of water was added with stirring to 3.7816 g of $UO_2(NO_3)_2.6H_2O$ in 100 ml of water. From the resulting deep red solution, a pale green precipitate separated immediately. After 10 min of stirring, the precipitate was filtered in an atmosphere of nitrogen and washed with six 50-ml portions of water. The product was then washed with three 25-ml portions of ethanol and dried by drawing dry nitrogen through the filter cake. Anal. Calcd for $U(SO₃)₂·4H₂O$: U, 50.64; *S*, 13.62; H, 1.70. Found: U, 50.73; *S,* 13.66; H, 1.76. X-ray diffraction data *(d* spacings in **A;** relative intensities in parentheses): 6.60 (l.O), 4.10 (0.8) , 3.99 (0.8) , 3.83 (0.7) , 3.31 (0.5) , 2.18 (0.5) . Crystallite size, 0.0400 μ m. The yield was essentially quantitative.

A 0.0024-g sample of $U(SO₃)₂$.4H₂O was placed in a furnace preheated to 650 "C in a dry nitrogen atmosphere and heated for 75 min. After cooling to 25 °C, the sample was found to have lost 0.0475 g or 42.26% of the original weight. The weight **loss** calculated for the elimination of $4H_2O$ and $2SO_2$ is 42.55%. Anal. Calcd for UO₂: U, 88.15. Found: U, 88.36; *S,* 0.02; Na, 0.07. X-ray diffraction data: 3.13 (l,O), 2.71 **(0.5),** 1.92 (0.6), 1.64 (0.5). Crystallitesize, 0.4270 prn.

Uranium(IV) Oxysulfite-4-Water. When the foregoing procedure for the synthesis of $U(SO_3)_{2}$. 4H₂O was changed *only* to the extent of conducting the filtration without protection from exposure to the atmosphere, the color of the precipitate changed from pale green to dark gray; this product was washed and dried as described above. The yield was quantitative; the product did not give an x-ray diffraction pattern. Anal. Calcd for UO(SO₃)-4H₂O: U, 58.62. Found: U, 58.36. When this product was dried at 10^{-2} Torr over P_2O_5 for 12 h, the color changed from dark gray to light gray. Anal. Calcd for UO(S03).2H20: U, 64.32; *S,* 8.65; H, 1.08. Found: U, 64.16; *S,* 8.65; H, 1.15; Na, 0.36 ppm. This product also did not give an x-ray diffraction pattern.

A 7.394-mg sample of the tetrahydrate was heated to 218 °C under dry nitrogen in a DTA sample holder. After cooling to 25 $^{\circ}$ C the weight loss was found to be 1.317 mg or 17.81%; that required for the loss of 4H20 is 17.73%. A larger sample (0.7292 **g)** was heated in a furnace at 600 °C for 90 min; the weight loss found was 0.2451 g or 33.61% as compared with 33.50% calculated for the loss of $4H₂O$ and *SO₂*. Anal. Calcd for UO₂: U, 88.15. Found: U, 87.96; *S*, 0.01; Na, 0.13. X-ray diffraction data: 3.10 (1.0), 2.69 (0.5), 1.91 (0.5), 1.63 (0.5). Crystallite size, $>0.5000 \mu$ m. When the decomposition was carried out at temperatures below 600 \degree C (e.g., at *550°)* the x-ray diffraction pattern included *d* spacings attributable to **U02** but also the following ones which are characteristic of UOS: 2.70 (0.4), 1.94 (l.O), 1.65 (0.8), 1.57 (0.4), 1.37 (0.2), 1.22 (0.3). Slower initial heating rates appeared to favor the formation of UOS.

Discussion

It should be emphasized at the outset that the synthesis of essentially pure $U(SO_3)_2$. $4H_2O$ is accomplished only by rigorous exclusion of atmospheric oxygen during both filtration and washing. Thereafter it can be stored indefinitely without decomposition in an inert atmosphere. As shown by DTA and TGA data,¹⁴ this salt is decomposed to $UO₂$ as follows. An endotherm at 75 °C corresponds to the loss of 3.08 mol of H₂O followed by a broad endotherm beginning at ca. 110 °C which coincides with the loss of 1.02 mol of H₂O. The decomposition of the anhydrous salt is characterized by three endotherms: 550 **OC** (-0.50 mol of **SO2),** 590-680 **OC** (-0.98 mol of **SOz),** and $690 °C$ (-0.52 mol of SO_2).

The pyrolysis of the product formulated above as UO(S- O_3) \cdot 4H₂O proceeded essentially the same as described above except for a sharp endotherm at 460 °C that corresponds to the loss of 0.93 mol of SO_2 . In the case of the dihydrate, an endotherm at 90 °C corresponds to loss of 2.03 mol of H₂O; at higher temperatures the data were less conclusive. An endotherm at 690 °C corresponds to the loss of 2.03 mol of HzO and correlates with a loss of 48 amu from the TGA data. Both results are compatible with the formation of UOS which, as noted above, was detected by x-ray diffraction data. Experiments conducted on a much larger scale, however, led to analytical data which showed that the oxysulfide was a minor component in all cases.

It should also be pointed out that the analytical data for $UO(SO₃)²H₂O$ are equally compatible with the formulation $U(OH)₂(SO₃)·H₂O$. The latter seems untenable, however, since it could arise only by hydrolysis of a dried salt that was formed in an aqueous medium. The product in question can be explained only on the basis of oxidation of the normal