Contribution from the Departments of Chemistry, Queen Mary College, London E1, England, and Princeton University, Princeton, New Jersey 08540

Hexakis(dimethylamido)tungsten(VI)

D. C. BRADLEY,*1a M. H. CHISHOLM,*1b and M. W. EXTINE1b

Received July 26, 1976

AIC60523P

 $W(NMe_2)_6$ has been characterized by a number of physicochemical studies, including single-crystal x-ray diffraction studies, infrared and Raman spectroscopy, NMR spectroscopy, and mass spectroscopy.

Introduction

Homoleptic compounds ML_n where L = R (alkyl),^{2,3} NR_2 ,⁴ and OR^5 are now known for all of the group 4–6 transition metals for certain values of *n*. This work arises from our continuing interest in the chemistry of these compounds. We report our characterization of $W(NMe_2)_6$ which is the first compound of formula ML_6 to be characterized for the dialkylamido series ($L = NR_2$). Preliminary reports of this work have been published.^{6,7} Wilkinson and his co-workers^{8,9} have recently reported the preparation of WMe_6 . The alkoxides $W(OR)_6$ are also known.^{10,11} Thus for tungsten there exists a series of homoleptic compounds WL_6 , where L = Me, NMe_2 , and OR, in addition to a series of dinuclear compounds W_2L_6 , where $L = CH_2SiMe_3$, ¹² NR_2 ,⁷ and OBu'.¹³ The latter series contain tungsten-to-tungsten triple bonds unsupported by bridging ligands.

Results and Discussion

Syntheses. Metathetic reactions involving early transition metal halides and $LiNR_2$ (n equiv) have in general been successful in the preparation of $M(NR_2)_n$ compounds.⁴ With the intent of preparing $W(NMe_2)_6$ we undertook a study of the reaction between WCl₆ and LiNMe₂ (6 equiv) in hexane/ether/THF solvent mixtures. From these reactions we obtained $W(NMe_2)_6$ as a red crystalline compound. Although the authenticity of $W(NMe_2)_6$ was verified by a single-crystal x-ray study,⁶ subsequent work showed⁷ that the bulk samples of W(NMe₂)₆ prepared from WCl₆ were always contaminated with $W_2(NMe_2)_6$. It was not possible to separate these two compounds by either fractional crystallization or sublimation because of their very similar physical properties. Further x-ray studies showed⁷ that $W_2(NMe_2)_6$ and $W(NMe_2)_6$ cocrystallize. The unit cell contained two molecules of the dinuclear compound and one molecule of the mononuclear species: 2 $W_2(NMe_2)_6 + 1 W(NMe_2)_6$. Although physical techniques employing sublimation, crystallization, and chromatography were unsuccessful in separating these two compounds, pure $W(NMe_2)_6$ can be isolated from such mixtures at the expense of destroying the $W_2(NMe_2)_6$.

 $W_2(NMe_2)_6$ reacts smoothly at room temperature with *t*-BuOH to give $W_2(OBu')_6$ which is very soluble in hydrocarbon solvents.¹³ $W(NMe_2)_6$ on the other hand does not react with *t*-BuOH at room temperature.¹¹ Thus $W(NMe_2)_6$ may be isolated from mixtures of $W(NMe_2)_6$ and $W_2(NMe_2)_6$ by crystallization from *t*-BuOH/benzene solutions.

We have now investigated a number of reactions involving tungsten halides and LiNMe₂. The characterized products obtained from these reactions were $W(NMe_2)_6$, $W_2(NMe_2)_6$, or mixtures of the two compounds depending on the choice of the tungsten halide. The products obtained from these reactions were quite unpredictable though reproducible results were obtained.⁷ The most efficient syntheses of $W(NMe_2)_6$ which are based on tungsten and are free from $W_2(NMe_2)_6$ have been from (i) WBr₅ and LiNMe₂ (5 equiv) and (ii) WOCl₄ and LiNMe₂ (6 equiv).⁷ The dimethylamides were obtained in only low yields in these metathetic reactions and the overall reaction between WCl_n and LiNMe₂ (*n* equiv) is clearly complex and at the present time is not understood. These reactions do, however, seem to have some parallel to the work of Wilkinson and his co-workers, who found that WMe₆ could be obtained from the reaction between WCl₆ and MeLi (3 equiv) in the presence of adventitous molecular oxygen.^{8,9} We have not wittingly used molecular oxygen, but the finding that we can obtain $W(NMe_2)_6$ from reactions employing WBr₅ or WCl₄(THF)₂ clearly indicates that redox processes are involved.

Shortland and Wilkinson reported⁸ that WMe₆ reacted with HNMe₂ to give W(NMe₂)₆ and that reaction with HN(*i*-Pr)₂ gave the corresponding tungsten dialkylamide. We have been unable to verify this claim.

Attempts to prepare $W(NR_2)_6$ compounds where R is other than methyl failed. This is not altogether surprising since such species would be exceedingly crowded. For example, although it is possible to fit five NEt₂ ligands around a third-row transition metal, e.g.,⁴ as in Ta(NEt₂)₅, molecular models suggest it would not be possible to fit six NEt₂ ligands.

Reactions involving WCl_6 and $LiNEt_2$ (6 equiv) gave a mixture of products including $W_2(NEt_2)_6$.⁷ Volatile mononuclear species were also formed and a pale yellow distillable liquid (60 °C (10⁻⁴ cmHg)) which we formulate as W-(NEt)₂(NEt₂)₂ has been partially characterized from these reactions (see later). Formation of the nitrene or imido ligand has precedent in the chemistry of tantalum.¹⁴ Reactions involving TaCl₅ and LiNR₂ (5 equiv) gave Ta(NR)(NR₂)₃ compounds when R = Et, Prⁿ, Bu^{n.14} The mechanism of the formation of the nitrene ligand in these reactions is not known. However, an interesting parallel is found in metal alkyl chemistry, for while it has been possible to synthesize TaMe₅, more sterically demanding alkyl ligands give rise to carbene complexes, e.g.,¹⁵ Ta(CHR)(CH₂R)₃ where R = CMe₃.

Characterization. $W(NMe_2)_6$ is a red crystalline compound of considerable thermal stability. It readily sublimes under high vacuum (100 °C (10^{-4} cm Hg)) and decomposes under nitrogen without melting at temperatures above 200 °C. It is only slightly soluble in hexane, benzene, and other hydrocarbon solvents. Its solubility in benzene at 25 °C is ca. 1 g/100 mL. Crystals of $W(NMe_2)_6$ are remarkably hydrolytically stable compared to those of other metal dimethylamides. Indeed crystalline W(NMe2)6 decomposes only over a period of hours in the atmosphere. In solution W- $(NMe_2)_6$ is more sensitive toward hydrolysis. A cryoscopic molecular weight determination comfirmed its monomeric nature in benzene: calcd, 448; found, 428 ± 20 . The ¹H NMR spectrum of $W(NMe_2)_6$ recorded in toluene- d_8 showed a single resonance at δ 3.33 ppm (relative to hexamethyldisiloxane) which was independent of temperature in the range of +80to -80 °C. The ¹³C NMR spectrum also showed a single resonance, δ 53.2 ppm (relative to TMS). These NMR observations are entirely consistent with the structure of W- $(NMe_2)_6$ found in the crystalline state.

Molecular Structure and Bonding. The molecular structure of $W(NMe_2)_6$ has now been determined by two independent single-crystal x-ray studies: (i) on a crystal of pure W- $(NMe_2)_6^6$ and (ii) on a crystal containing two dinuclear

Figure 1. Molecular structure of W(NMe₂)₆ deduced from single-crystal x-ray studies. W-N = 2.017 (6) Å,⁷ 2.032 (25) Å,⁶ N-C = 1.515 (15) Å;⁷ α = 104 (1)^{°,6,7} The molecule has T_h symmetry.

molecules, $W_2(NMe_2)_6$, and one mononuclear molecule, $W(NMe_2)_6$, per unit cell.⁷ The geometry of the $W(NC_2)_6$ moiety is shown in Figure 1. The $W(NC_2)_6$ moiety thus belongs to the symmetry point group T_h , which is a symmetry point group shared by few other molecules.¹⁶

The CNC angles, ca. 103°, are significantly smaller than those found in other M–NMe₂ containing compounds. For example, the CNC angles in $W_2(NMe_2)_6^7$ and Ti(NMe₂)₂-(O₂CNMe₂)₂¹⁷ are 111 and 112°, respectively. The small CNC angle in $W(NMe_2)_6$ probably reflects the severe steric congestion in the molecule.

The planarity of the trans $C_2N-W-NC_2$ units suggests delocalized nitrogen to tungsten $(p_{\pi}-d_{\pi}) \pi$ bonding. If we assume that σ interactions are more important than π interactions, then the bonding in W(NMe₂)₆ may be depicted schematically by the molecular orbital diagram shown in Figure 2. Tungsten attains a share of 18 valence-shell electrons and the W-N bond order may approach 1.5. Structural evidence in support of nitrogen to tungsten π bonding in W₂Me₂(NEt₂)₄ has been presented.¹⁸

Support for the bonding scheme described in Figure 2 may be seen in the He I photoelectron spectrum of $W(NMe_2)_6$ recently reported by Lappert and co-workers.¹⁹ The first band in the PE spectrum occurred at 6.74 eV and was assigned to ionization from the T_u nonbonding π molecular orbital. The second band at 7.92 eV was attributed to ionization from the π bonding T_g molecular orbital.

The red color of W(NMe₂)₆ is due to a tailing into the visible region of the electronic spectrum of an intense band at 30 000–33 000 cm⁻¹. According to the molecular orbital diagram shown in Figure 2 this may be assigned to the transition $t_g^* \leftarrow t_u$, which is equivalent to a single electron transfer from a nitrogen p_{π} orbital to a tungsten d orbital (d_{xy}, d_{xz}, or d_{yz}) on a simple crystal field basis.

Mass Spectrum. $W(NMe_2)_6$ gives a weak molecular ion, $W(NMe_2)_6^+$ in the mass spectrometer, and a base peak corresponding to $W(NMe_2)_5^+$. This is typical of WL_6 compounds (L = Me,⁸ OMe¹¹). Table I reports mass spectral data for $W(NMe_2)_6$ together with a number of prominent metastable reactions. The prominent mode of fragmentation involves loss of $\cdot NMe_2$, HNMe₂, and $\cdot Me$, which is charac-

Figure 2. Schematic molecular orbital energy level diagram for $W(NMe_2)_6$.

Hexakis(dimethylamido)tungsten(VI)

Inorganic Chemistry, Vol. 16, No. 7, 1977 1793

Table I. Mass Spectral Data for W(NMe₂)₆ Obtained at 90 °C, 1.8×10^{-6} cmHg, and 70 eV

	m/e (¹⁸⁴ W)	Ion	Abundance
	448	$W(NMe_2)_6^+$	5
	404	$W(NMe_2)_{5}^{+}$	100
	360	$W(NMe_2)_4^+$	46
	359	$W(NMe_2)_3NCH_2Me^+$	21
	345	$W(NMe_2)_3NMe^2$	88
	310	$W(NMe_2)_3$ $W(NMe_3)$ HNMe ⁺	15
	302	$W(NM_{e_2})_{2}$	16
	298	$W(NMe_1) NC^+$	16
	296	$W(NCH_{a}Me), NC^{+}$	39
	286	WNMe ₂ (NMe) ₂ ⁺	5
	284	WNMe ₂ NMeNCH ⁺	5
	282	$WNMe_2(NCH_2)_2^+$	5
	273	$WNMe(HNMe)_2^+$	10
	269	$WNMe(NCH_2)_2^+$	10
	267	$W(NCH_2)_2NCH^{\tau}$	10
	259	$WNMe_2H_2NMe$	10
	257	WNMe NCH ⁺	13
	253	WNCH MeCN ⁺	13
	243	WNMeHNMe ⁺	10
	239	WNMeCN ⁺	5
	228	WNMe ^{,+}	5
	214	WHNMe ⁺	Trace
	202	$W(NMe_2)_{s}^{2+}$	0.5
	197	WNC ⁺	Trace
	196	WC ⁺ ·	Trace
	180	$W(NMe_2)_4^{2r}$	33
	1/2	$W(NMe_2)_3 NCH_2^{-1}$ $W(NMe_3)_3 (NMe_3)^{2+1}$	2
	158.5	$WH(NMe_2)_2(1000)_2$	2
	157.5	$W(NMe_a)_a NCH_a Me^{2+a}$	3
	156.5	W(NMe ₂), NCMe ²⁺	3
	155.5	$W(NMe_2)_2 NCH^{2+}$	3
	154.5	WNMe ₂ NCH ₂ MeNC ²⁺	2
	149.5	$W(NMe_2)_2NCH^{2+}$	5
	148.5	WNMe ₂ NCH ₂ MeNC ²⁺	10
	147.5	WNMe ₂ NCMeNC ²⁺	5
	141.5	WNCMANCH NC ²⁺	2
	133.5	WNMeNCH NC ²⁺	2
	100.0		-
		Metastable Reactions	
1.	W(NMe.).+.	$\xrightarrow{\text{le}_2 N} W(\text{NMe}_1)_1^+$	
	$m = m^{-1}$	364.3	
	M	e Ni	
2.	$W(NMe_2)_5^+$	\longrightarrow W(NMe ₂) ⁺ .	
	<i>m</i> =	320.8	
	-Me	NH	
3.	$W(NMe_2)_5^+$	\longrightarrow W(NMe ₂) ₃ NCH ₂ Me ⁺	
	m = 3	319.0	
	-1	Me∙	
4.	$W(NMe_2)_4^+ \cdot $	$\longrightarrow W(NMe_2)_3NMe^+$	
	<i>m</i> =	330.6	
_	Me	2 N.	
5.	$W(NMe)_4^+ \cdot $	W(NMe ₂) ₃ ⁺	
	<i>m</i> – 2	277.4	
r	WANA A MAG	-Me ₂ NH	
5.	w(NMe ₂) ₃ NMe ⁻	$\rightarrow \qquad \qquad$	
7	W(NMe) HNM	$H^+ \xrightarrow{-H_2} W(NMe) NCH^+$	
		m = 298.0	
		-H.	
8.	W(NMe ₂) ₂ NCH,	$+ \xrightarrow{2} W(NMe_2)_2 NC^+$	
	*	<i>m</i> = 296.0	
_		-HCN	
9.	$W(NMe_2)_2NC^+$ -	\rightarrow WN Me ₂ NCH ₂ Me ⁺	
	m	440.4	

teristic of the behavior of early transition metal dimethylamides in the mass spectrometer.

Vibrational Spectra. Infrared spectral studies have been reported for a number of metal dimethylamides and assign-

Table II.	Vibrational Data for $W[N(CH_3)_2]_6$ and $W[N(CD_3)_2]_6$						
in the Region below 1000 cm ⁻¹							
	-						

Infr	Infrared ^a		1an ^b
H ₃₆	D36	H ₃₆	D ₃₆
322 m	285 m		
364 e	333 °	335.s (d)	300 s (d)
50+3	5553	357 s (p)	317 s (p)
420 w	379 w	550	492
545 vs	466 vs	559 vs (p)	482 VS (P)
		959 vs (d)	824 (d)
942 vvs	812 vvs	985 s (p)	830 (p)

^a Nujol mull; CsI plates. ^b THF as solvent; spinning cell.

ments have been suggested.²⁰⁻²² These earlier studies should form a basis for an assignment of the vibrational spectra of $W(NMe_2)_6$. However such assignments do not appear justifiable in the light of the following observations.

Table II contains infrared and Raman data, including polarization measurements, for $W[N(CH_3)_2]_6$ and $W[N(CD_3)_2]_6$ in the range below 1000 cm⁻¹. For a molecule with a center of inversion the selection rules predict that no band should be both infrared and Raman active. For W- $(NMe_2)_6$ this situation is met. For the WN₆ octahedral moiety we expect six normal modes: ν_1 (A_{1g}), ν_2 (E_g), and ν_5 (T_{2g}) are Raman active; v_3 (T_{1u}) and v_4 (T_{1u}) are infrared active. The strong infrared-active band at 545 cm⁻¹ could readily be assigned to ν_3 , the antisymmetric W-N stretching mode. However, on deuteration this band shifts to 466 cm^{-1} . A shift of 79 cm⁻¹ cannot be attributed to mass effects on v_{str} [W- $N(CH_3)_2$] and $v_{str}[W-N(CD_3)_2]$. Similarly in the Raman spectrum the very strong polarized band at 559 cm⁻¹ might readily be assigned to v_1 , the totally symmetric W-N stretching vibration, if it were not known that on deuteration this band shifted to 482 cm^{-1} . Again a shift of 77 cm⁻¹ is not reconcilable with the assignment of this band to a simple W-N stretching mode.

The shifts which accompany deuteration parallel those previously described⁷ for $M_2(NMe_2)_6$, where M = Mo and W, and demonstrate that W-N stretching modes are extensively coupled to other vibrational modes associated with the CH₃/CD₃ moieties. Simple vibrational assignments for W(NMe₂)₆ are clearly not possible.

Diethylamido Derivatives. From the reaction between WCl₆ and $LiNEt_2$ (6 equiv) we failed to isolate any pure compound. Mass spectral analysis indicated the presence of $W_2(NEt_2)_6^7$ in the residues which remained after vacuum distillation of an orange liquid. The orange liquid gave a very complicated ¹H NMR spectrum and the distillate is clearly composed of two or more compounds. The most volatile fraction of this distillate (60 °C (10^{-4} cmHg)) is an exceedingly air-sensitive pale yellow liquid which darkens with prolonged contact with glass. The ¹H NMR spectrum of this fraction was quite simple and consisted of two ethyl resonances in the integral ratio 2:1. In the ¹³C NMR spectrum two types of ethyl carbon resonances are found. We suggest that this fraction contains the nitrene compound $W(NEt)_2(NEt_2)_2$. Such a compound has precedent in the chemistry of tantalum, e.g., in the formation of Ta(NEt)(NEt₂)₃.^{14,20}

Experimental Section

Physical and Analytical Measurements. General procedures and the preparation of pure $W(NMe_2)_6$ from the reactions (i) between WBr₅ and LiNMe₂ (5 equiv) and (ii) between WOCl₄ and LiNMe₂ (6 equiv) have been described previously.⁷

From W(NMe₂)₆ and W₂(NMe₂)₆ Mixtures. A mixture of W-(NMe₂)₆ and W₂(NMe₂)₆, ca. 2 g, prepared from the reaction between WCl₆ and LiNMe₂ was dissolved in the *t*-BuOH/benzene azeotrope (100 mL). The solution was stirred vigorously for 1 h. Solvent was removed to yield a deep red solution (50 mL) which was cooled to 0 °C. Large red crystals, $W(NMe_2)_6$, ca. 0.6 g, were collected by filtration and dried under vacuum. Anal. Calcd for W(NMe₂)₆: C, 32.15; H, 8.03; N, 18.75. Found: C, 32.0; H, 8.12; N, 18.5.

 $WCl_6 + 6LiNEt_2$. WCl_6 (34.2 g, 86 mmol) was added slowly to a solution of LiNEt₂ (559 mmol) in hexane (250 mL) and THF (100 mL). The solution was stirred vigorously and cooled in an ice bath. This yielded a dark brown solution and off-white solids. The solution was warmed to room temperature, stirred for 12 h and finally heated to +60 °C for 1 h. The solvent was stripped yielding a black tar. This tar was heated in vacuo: a liquid distilled from 65 to 150 °C at 3×10^{-3} cmHg. The initial liquid was pale yellow and the higher boiling fraction was red; yield 4.39 g of distillate. This distillate was fractionally distilled using a piglet. The initial distillate at 70 °C (10^{-4} cmHg), ca. 1 mL, was collected. ¹H NMR and ¹³C NMR were recorded. Anal. Calcd for W(NEt₂)₂(NEt)₂: C, 34.79; H, 7.30; N, 13.53. Calcd for W(NEt₂)₄: C, 40.68; H, 8.54; N, 11.68. Calcd for W(NEt₂)₃(NEt): C, 37.94; H, 7.96; N, 12.64. Found: C, 39.35; H, 7.87; N, 12.08.

¹H NMR data obtained at 35 °C, 60 HMz, in C₆D₆; δ in ppm downfield relative to TMS = 0: W=NCH₂CH₃, δ (CH₂) 4.22, quartet, $J_{\rm HH} = 7$ Hz, $\delta(\rm CH_3)$ 1.30, triplet, $J_{\rm HH} = 7$ Hz; WN(CH₂CH₃)₂, $\delta(CH_2) = 3.63$, quartet, $J_{HH} = 7$ Hz, $\delta(CH_3) = 1.21$, triplet, $J_{HH} = 7$ Hz. ¹³C NMR data obtained at 40 °C in C₆D₆; δ in ppm downfield relative to TMS = 0: W=NCH₂CH₃, δ (CH₂) 57.8, δ (CH₃) 20.6; WN(CH₂CH₃)₂, δ (CH₂) 55.3, δ (CH₃) 17.4. These NMR data may be compared to those found for Ta(NEt)(NEt₂)₃. ¹H NMR data obtained at 30 °C, 60 MHz, in C_6D_6 ; δ in ppm relative to TMS = 0: Ta=NCH₂CH₃, δ (CH₂) 4.22, quartet, $J_{HH} = 7$ Hz, δ (CH₃) 1.28, triplet, $J_{\text{HH}} = 7$ Hz; TaN(CH₂CH₃)₂, δ (CH₂) 3.37, quartet, $J_{\text{HH}} = 7$ Hz, δ (CH₃) 1.13, triplet, $J_{\text{HH}} = 7$ Hz. ¹³C NMR data, δ in ppm relative to TMS = 0: Ta=NCH₂CH₃, δ (CH₂) 56.2, δ (CH₃) 20.4; TaN(CH₂CH₃)₂, δ (CH₂) 47.8, δ (CH₃) 17.3.

Acknowledgment. We thank the Research Corp., the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the National Science Foundation (Grant MPS 73-05016) for support of this work at Princeton University and the Science Research Council for support at Queen Mary College. M.W.E. gratefully acknowledges the American Can Co. for a graduate fellowship, 1973-1975. We thank Professor T. G. Spiro for allowing us to use his Raman facility and Professor E. W. Randall for obtaining carbon-13 NMR spectra.

Registry No. $W(NMe_2)_6$, 24654-69-1; $W(NEt_2)_2(NEt)_2$, 62029-51-0; ¹³C, 14762-74-4; W[N(CD₃)₂]₆, 62029-52-1.

References and Notes

- (a) Queen Mary College. (b) Princeton University.
 (2) G. Wilkinson, Science, 185, 109 (1974).
- (3) P. J. Davidson, M. F. Lappert, and R. Pearce, Acc. Chem. Res., 7, 209 (1974).
- (4) D. C. Bradley and M. H. Chisholm, Acc. Chem. Res., 9, 273 (1976). (5) D. C. Bradley, Adv. Inorg. Chem., Radiochem., 15, 259 (1972); D. C. Bradley and K. J. Fisher, MTP Int. Rev. Sci.: Inorg. Chem., Ser. One,
- 5, 65 (1972). (6) D. C. Bradley, M. H. Chisholm, C. E. Heath, and M. B. Hursthouse,
- Chem. Commun., 1261. (1969)
- (7) M. H. Chisholm, F. A. Cotton, M. W. Extine, and B. R. Stults, J. Am. Chem. Soc., 98, 4477 (1976). (8)
- A. J. Shortland and G. Wilkinson, J. Chem. Soc., Dalton Trans., 872 (1973)
- (9) L. Gaylor, K. Mertis, and G. Wilkinson, J. Organomet. Chem., 85, C37 (1975)(10) L. B. Handley, K. G. Sharp, and F. E. Brinkman, Inorg. Chem., 11, 523
- (1972).
- (11) D. C. Bradley, M. H. Chisholm, M. Extine, and M. Stager, results to be submitted for publication.
 W. Mowat, A. J. Shortland, G. Yagupsky, N. J. Hill, M. Yagupsky,
- and G. Wilkinson, J. Chem. Soc., Dalton Trans., 533 (1973). (13) M. H. Chisholm and M. Extine, J. Am. Chem. Soc., **97**, 5625 (1975).
- D. C. Bradley and I. M. Thomas, Can. J. Chem., 40, 1355 (1962).
 R. R. Schrock, J. Am. Chem. Soc., 96, 6796 (1974).
- Another example of T_b symmetry is seen in the Co(NO₂) $_b^{3-}$ anion: I. Nakagawa, T. Shimanouchi, and K. Yamasaki, *Inorg. Chem.*, **3**, 772 (16)(1964); H. Elliott, B. J. Hathaway, and R. C. Slade, ibid., 5, 669 (1966).
- (17) M. H. Chisholm and M. W. Extine, J. Am. Chem. Soc., 99, 792 (1977).
 (18) M. H. Chisholm, F. A. Cotton, M. W. Extine, B. R. Stults, and M. Miller, Inorg. Chem., 15, 2244 (1976).
 (19) S. G. Gibbins, M. F. Lappert, J. B. Pedley, and G. J. Sharp, J. Chem. Soc. Delton Trans. 72 (1978).
- (15) S. G. Globally, and Y. Lipper, J. Soc., Dalton Trans., 72 (1975).
 (20) D. C. Bradley and M. H. Gitlitz, J. Chem. Soc. A., 980 (1969)
 Y. Gutta, J. Chem. Soc. A., 980 (1969)
- D. C. Bradley and M. H. Gitlitz, *Nature (London)*, **218**, 353 (1968).
 H. Burger, H. Stammreich, and Th. T. Sans, *Monatsh. Chem*, **97**, 1276 (21)(22) (1966).

Contribution from the Departments of Chemistry, Princeton University, Princeton, New Jersey 08540, and Queen Mary College, London, E1, England

Some Reactions of Hexakis(dimethylamido)tungsten(VI)

D. C. BRADLEY,*1a M. H. CHISHOLM,*1b M. W. EXTINE,1b and M. E. STAGER1b

Received September 20, 1976

AIC60703Z

Hydrocarbon solutions of $W(NMe_2)_6$ react at room temperature with alcohols ROH to give alkoxides $W(OR)_6$ (R = Me, Et, n-Pr, i-Pr, and allyl) which have been characterized by a number of physicochemical studies, including infrared and Raman spectroscopy, ¹H and ¹³C NMR spectroscopy, and mass spectroscopy. Under similar conditions W(NMe₂)₆ does not react with the alcohols Me₃CCH₂OH, Me₃COH, or Et₃SiOH. In refluxing benzene W(NMe₂)₆ reacts with Me₃COH to give WO(O-t-Bu)₄. From the reaction between W(NMe₂)₆ and methanol at ca. 10 °C, W(NMe₂)₃(OMe)₃ has been isolated and characterized. Reactions with mercaptans RSH (R = Me and Ph) give mercaptides W(SR)₁. CO₂ and CS₂ give rise to insertion products. An amine-catalyzed mechanism leading to insertion is proposed and supported by the observation that in the presence of an amine trap, such as an alkyllithium reagent, no $W-NMe_2$ insertion occurs. $W(NMe_2)_6$ does not react with each of the following at room temperature and 1 atm: ethylene, carbon monoxide, allene, 1,3-butadiene, phenylacetylene, nitric oxide, and molecular oxygen. The reactions of W(NMe₂)₆ are compared with those reported for WMe₆ by other authors. The reactivity patterns of the two compounds differ quite strikingly: WMe₆ reacts via initial nucleophilic attack at tungsten whereas W(NMe2)6 reacts via electrophilic attack at a nitrogen lone pair.

Introduction

Homoleptic compounds ML_n , where L = R (alkyl),^{2,3} NR_2 ,⁴ and OR,⁵ are known for all of the group 4, 5, and 6 transition metals for certain values of n. These compounds afford the unique opportunity of comparing the bonding and reactivity of covalent metal-to-carbon, metal-to-nitrogen, and metalto-oxygen σ bonds within a series of closely related compounds. For tungsten there exist two known series: WL_6 , where L = Me,⁶ NMe₂,^{7,8} and OMe,⁷ and W₂L₆, where L =

 CH_2SiMe_3 ,^{9,10} NR₂,¹¹ and O-*t*-Bu.¹² This work arises from our continuing interest in the chemistry of these compounds.¹³ We report herein a number of reactions of $W(NMe_2)_6$, which, although by no means exhaustive, serve to define the common mode of reaction of the tungsten-to-nitrogen bond in W- $(NMe_2)_6$. These reactions may be compared with the reactions of WMe₆ reported by Shortland and Wilkinson.⁶

Results and Discussion

Aminolysis. A characteristic of metal dialkylamides is their