Contribution from the Department of Chemistry, University of Arizona, Tucson, Arizona 85721

Iron–Sulfur Complexes of NO. 2. Synthesis and Exchange Studies of Fe(NO)X[S₂CN(CH₃)₂]₂. Crystal and Molecular Structure of cis-Fe(NO)(NO₂)(S₂CN(C₂H₅)₂)₂¹

OLIVER A. ILEPERUMA and ROBERT D. FELTHAM*

Received February 9, 1977

AIC70101V

The synthesis of several new complexes including *trans*-[FeNO(S₂CN(CH₃)₂)₂(CH₃CN)][BF₄], *trans*-FeNO(S₂CN(CH₃)₂)₂NO₂, *trans*-FeNO(S₂CN(CH₃)₂)₂NCS, *cis*-FeNO(S₂CN(CH₃)₂)₂NO₂, *cis*-FeNO(S₂CN(CH₃)₂)₂Br, *cis*-FeNO(S₂CN(CH₃)₂)₂I, *cis*-FeNO(S₂CN(CH₃)₂)₂C(H₃CN)][BF₄], and *cis*-FeNO(S₂CN(CH₃)₂)₂Cl is reported. The complex *trans*-[FeNO(S₂CN(CH₃)₂)₂(CH₃CN)][BF₄] resulted from the reaction of NOBF₄ with Fe(S₂CN(CH₃)₂)₂ in acetonitrile and served as a useful reaction intermediate from which the other complexes were prepared. These same isomers also resulted from oxidation of FeNO(S₂CN(CH₃)₂)₂ at -78 °C produced *trans*-FeNO(S₂CN(CH₃)₂)₂NO₂. The exchange of NO with the five-coordinate complex FeNO(S₂CN(CH₃)₂)₂ (fast) and the six-coordinate complex *cis*-FeNO(S₂CN(CH₃)₂)₂ I (slow) was investigated. The structure of *cis*-FeNO(S₂CN(C₂H₃)₂)₂ (fast) and the six-coordinate complex *cis*-FeNO(S₂CN(CH₃)₂)₂ I (slow) distingtion space group C_{2h}⁵-P2₁/c with four molecules per unit cell of dimensions *a* = 10.323 (4) Å, *b* = 16.178 (6) Å, *c* = 11.356 (4) Å, and β = 101.5 (1)°. Full-matrix least-squares refinement using 2908 data having $F_0^2 > 3\sigma(F_0^2)$ angle of 91.3 (2)°. The Fe–S bond trans to the NO group is normal (2.308 (2) Å) for low-spin iron(II) complexes, but the Fe–S bond trans to the NO₂ group is lengthened (2.321 (2) Å) due to the structural trans effect of the NO₂ group. The chemical reactivity and stereochemistry of these complexes are discussed in relation to their bonding.

Introduction

Sulfur ligands are known to stabilize numerous nitrosyl complexes. However, there have been few systematic investigations of the chemical reactions of these sulfur-containing metal nitrosyl complexes.²⁻⁴ The preparation of dithiocarbamate derivatives of the {FeNO}⁷ group⁵ FeNO(S₂CNR₂)₂ was first reported by Cambi and Cagnasso.⁶ Both five-coordinate complexes $FeNO(S_2CN(CH_3)_2)_2$ and $FeNO(S_2C N(C_2H_5)_2$ are paramagnetic and have square-pyramidal geometry with a nearly linear NO group in the axial position.⁷⁻⁹ Spectroscopic investigations of these dithiocarbamate complexes by IR,¹⁰ EPR,¹¹⁻¹³ vis-UV,¹⁴ and XPS¹⁵ place the unpaired electron in an antibonding orbital which is predominantly $d_{z^2}(Fe)$ and $\sigma^*(NO)$. Consequently, it was surprising that oxidation of $FeNO(S_2CNR_2)_2$ complexes appeared to consistently result in the formation of six-coordinated complexes of the $\{FeNO\}^6$ group $FeNO(S_2CNR_2)_2X$ which have cis geometry.¹ Cis geometry was unexpected for two reasons. First, examination of the literature shows that only trans isomers have been reported for most {MNO}⁶ complexes. Second, both the geometry and electronic ground state of $FeNO(S_2CNR_2)_2$ favor formation of the trans isomers. The preparative studies described below were directed toward the isolation of the kinetic and thermodynamic products from these reactions. Both the kinetic (trans) and thermodynamic (cis) products were isolated for $FeNO(S_2CNR_2)_2NO_2$ and consequently an x-ray structural study of cis-FeNO(S₂CN- $(C_2H_5)_2$ NO₂ was initiated. Concurrently, it was also found that the adjacent NO and NO₂ groups of cis-FeNO(S₂CN- $(CH_3)_2)_2NO_2$ undergo a novel intramolecular exchange reaction,⁴ so that its structural features assumed additional importance. The results of these structural and preparative studies are outlined below.

Experimental Section

All reactions were carried out in an inert atmosphere using standard Schlenk-tube techniques. The solvents and reagents were carefully dried and stored under nitrogen. The infrared spectra were obtained using Perkin-Elmer 337 or 137 or Beckman IR-12 spectrophotometers. The ¹H NMR spectra were recorded on a Varian T-60 spectrometer using TMS as an internal standard. The elemental analyses (Table I) were obtained from Chemalytics Inc., Tempe, Ariz., and Huffman Laboratories, Wheatridge, Colo. The experiments involving ¹⁵NO (95% enriched) were carried out in an all-glass vacuum line. Cylinders of NO and NO₂ were purchased from the Matheson Co. NO was purified by trap-to-trap distillation (CO₂/acetone baths) in a vacuum line. Traces of NO present in NO₂ were converted to NO₂ by reaction with excess oxygen. Pure NO₂ obtained by this procedure is a white solid at -78 °C. The solvents used were freshly distilled, purged with nitrogen at their boiling points, and allowed to cool under nitrogen. The solutions were further degassed on the vacuum line by freeze-thaw techniques.

The solution IR cells from Barnes Engineering were modified for use with air-sensitive samples by using neoprene gaskets. Solution IR spectra were obtained at controlled temperatures using a Barnes Engineering variable-temperature chamber. All reactions were carried out in the dark unless otherwise stated. Infrared spectra for kinetic studies were recorded on the Beckman IR-12 spectrophotometer. Solutions studied by IR spectroscopy were syringed directly into an IR cell with strict exclusion of air. The spectra were recorded in the nitrosyl region ($1650-1900 \text{ cm}^{-1}$) vs. a reference cell containing the pure solvent. In some cases the exchange reactions were studied by quenching techniques in which aliquots of solutions were treated with an excess of a nonsolvent, and the resultant solids were separated and examined by IR spectroscopy.

Preparation of Compounds. The compounds described below were thoroughly characterized by elemental analyses (Table I) and IR, NMR, and EPR spectroscopy.

Bis(diethyldithiocarbamato)nitrosyliron. This compound was prepared as previously described.¹⁶ However, satisfactory analyses could be obtained only from material recrystallized by slow evaporation from benzene.

Bis(dimethyldithiocarbamato)nitrosyliron. A solution of 5.56 g (20 mmol) of FeSO₄·7H₂O in 100 mL of distilled deoxygenated water was cooled to 0 °C in an ice bath. This solution was saturated with purified nitric oxide. A degassed solution of 7.2 g (50 mmol) of sodium dimethyldithiocarbamate in 75 mL of water was then added dropwise. The resultant dark green precipitate was filtered, dried, and recrystallized by slow evaporation from benzene: yield 6.1 g (93% based on the ligand); ν_{NO} 1724 (CHCl₃), 1691 cm⁻¹ (KBr). **Bis(diphenyldithiocarbamato)nitrosyliron.** This complex was

Bis(diphenyldithiocarbamato)nitrosyliron. This complex was prepared as described above using 3.63 g (10 mmol) of Fe(Cl- O_4)₂·6H₂O dissolved in 50 mL of methanol and 5.34 g (20 mmol) of sodium diphenyldithiocarbamate dissolved in 30 mL of methanol. The green precipitate was removed by filtration, dried, and recrystallized from acetone: yield 3.3 g (57% based on the ligand); ν_{NO} 1707 cm⁻¹ (KBr).

Bis(methylphenyldithiocarbamato)nitrosyliron. The ammonium salt of methylphenyldithiocarbamic acid was prepared as described elsewhere.¹⁷ A degassed solution containing 5.56 g of FeSO₄·7H₂O

Iron-Sulfur Complexes of NO

Table I. Elemental Analyses

	% C		% H		% N		% O	
Compd	Calcd	Found	Calcd	Found	Calcd	Found	Calcd	Found
FeNO(S ₂ CN(C ₂ H ₂) ₂) ₂	31.41	31.78	5.23	4.97	10.99	10.80		
FeNO(S, CN(CH,),)	22.08	22.34	3.68	3.88	12.88	12.78	4.91	5.61
$FeNO(S, CN(CH_{2})(C, H_{2}))$	42.66	42.49	3.58	3.53	9.33	9.26		
$FeNO(S_CN(C_cH_c)_{a})$	54.36	53.80	3.50	3.40	7.31	7.05		
cis-FeNO(S, CN(CH ₂) ₂) ₂ I	15.89	16.12	2.65	2.71	9.27	9.18		
cis-FeNO(S, CN(CH ₂),), Br	17.73	17.66	2.96	2.99	10.34	10.12		
cis-FeNO(S, CN(CH ₂), NO ₂	19.35	19.66	3.25	3.28	15.05	14.89		
trans-FeNO(S, CN(CH ₂) ₂) ₂ CH ₂ CN ⁺ BF ₄ ⁻	21.15	21.16	3.33	3.25	12.33	11.90		
cis-FeNO(S, CN(CH ₂) ₂) ₂ CH ₂ NC ⁺ BF ₂	21.15	21.19	3.33	3.45	12.33	12.07		
trans-FeNO(S, CN(CH ₂),), SCN	21.87	21.98	3.15	3.01	14.58	14.17		
trans-FeNO(S, CN(CH ₁),), CH ₂ CN ⁺ PF ₂	18.75	18.81	2.92	2.81	10.94	10.88		
trans-FeNO(S ₂ CN(CH ₃) ₂) ₂ NO ₂ ·CHCl ₃	16.73	16.78	2.59	2.76	11.15	10.95		

(20 mmol) in 100 mL of water was treated with NO for 10 min (0 °C), and 8.0 g (40 mmol) of ammonium methylphenyldithiocarbamate in 65 mL of deoxygenated water was added. After a green solid had formed, the NO was displaced with nitrogen. The dark green solid was collected, dried, and recrystallized from acetone/pentane at -78 °C: yield 4.3 g (48% based on the ligand); ν_{NO} 1714 cm⁻¹ (KBr).

cis-Bis(dimethyldithiocarbamato) (iodo)nitrosyliron. Method I. A solution of 0.14 g (1.1 mmol) of iodine in 8 mL of CHCl₃ was added dropwise to a solution of 0.326 g (1 mmol) of FeNO(S₂CNMe₂)₂ in 6 mL of CHCl₃ over a 15-min period. After stirring of the mixture for 1 h the solvent was removed by evaporation under vacuum, and the brown solid was collected, washed with ether, dried, and recrystallized from chloroform/pentane: yield 0.387 g (76% based on Fe); v_{NO} 1815 cm⁻¹ (KBr); ¹H NMR τ 6.63, 6.70, 6.80, 6.87 (1:1:1:1).

Method II. A solution of 0.512 g (1 mmol) of [FeNO- $(S_2CNMe_2)_2CH_3CN$] [PF₆] in 20.0 mL of acetone was treated with a solution of 0.134 g (1 mmol) of LiI in 10.0 mL of acetone. After filtration the solution was evaporated to dryness; yield 0.380 g (84% based on Fe). The resultant brown solid had properties identical with those of the complex obtained using method I.

trans-Bis(dimethyldithiocarbamato)(acetonitrile)nitrosyliron Hexafluorophosphate. Method I. A solution of AgPF₆ (0.252 g, 1 mmol) in 6.0 mL of CH₃CN was added to a solution of 0.453 g (1 mmol) of cis-FeNO(S₂CNMe₂)₂I. After removal of AgI by filtration the dark solution was evaporated to dryness giving a black solid: $\nu_{\rm NO}$ 1825 cm⁻¹; ¹H NMR τ 6.75, 7.97 (4:1).

Method II. The same compound was prepared from the reaction between 0.350 g (2 mmol) of NOPF₆ dissolved in 8.0 mL of CH₃CN and 0.592 g (2 mmol) of Fe(S₂CNMe₂)₂. During the reaction gas was evolved and the solution turned black. Evaporation of the solution to dryness resulted in a black solid with properties identical with those described above.

trans-Bis(dimethyldithiocarbamato)(acetonitrile)nitrosyliron Tetrafluoroborate. A solution of 1.17 g of NOBF₄ (10 mmol) in 20.0 mL of CH₃CN was added slowly to 2.96 g (10 mmol) of solid Fe-(S₂CNMe₂)₂. During the reaction gas was evolved. The black solution which resulted was warmed and filtered and the filtrate was evaporated to dryness. The dark brown compound thus obtained was recrystallized from a minimum amount of acetonitrile/ether: yield 3.10 g (68% based on Fe); ν_{CH_3CN} 2240, ν_{NO} 1830 cm⁻¹ (KBr); ¹H NMR τ 6.73, 8.03 (4:1).

trans-Bis(dimethyldithiocarbamato)(isothiocyanato)nitrosyliron. Method I. To a solution of 0.326 g (1 mmol) of FeNO(S₂CNMe₂)₂ in 10.0 mL of CHCl₃ was added 10.0 mL of 0.1 N thiocyanogen¹⁸ in CHCl₃ dropwise with stirring (15 min). The resultant dark brown solution was stirred for 1 h and evaporated to dryness. The dark brown solid was washed with ether, dried, and recrystallized from CHCl₃/ethanol (1:1); yield 0.289 g (75% based on Fe).

Method II. A solution of 0.256 g (0.5 mmol) of [FeNO- $(S_2CNMe_2)_2CH_3CN$][PF₆] in 10.0 mL of acetone was mixed with 0.049 g (0.5 mmol) of KSCN in 15.0 mL of acetone. The resultant mixture was filtered to remove KPF₆ and unreacted KSCN. Evaporation of the filtrate produced a brown solid: yield 0.16 g (82% based on Fe); ¹H NMR τ 6.62; ν_{NO} 1835, ν_{NCS} 2090 cm⁻¹.

cis-Bis(dimethyldithiocarbamato)(bromo)nitrosyliron. Method I. To a solution of 0.163 g (0.5 mmol) of FeNO(S_2CNMe_2)₂ in 15.0 mL of CHCl₃ was added a solution of 0.52 mmol of Br₂ in 15.0 mL of CHCl₃ dropwise with stirring over a period of 15 min. The solution was stirred for another 15 min and filtered and the filtrate was evaporated to dryness. The resultant brown oil was digested with 5.0 mL of ethanol and filtered, leaving a dark brown solid: ν_{NO} 1825 cm⁻¹; ¹H NMR τ 6.66, 6.73, 6.79, 6.87 (1:1:1:1).

Method II. A solution of 0.151 g (0.33 mmol) of [FeNO- $(S_2CNMe_2)_2CH_3CN$][BF₄] in 10.0 mL of acetone was treated with 0.082 g (0.67 mmol) of LiBr·2H₂O in 10.0 mL of acetone. After stirring of the mixture for 1 h the solid was removed by filtration and the filtrate was evaporated to dryness. Recrystallization from benzene/ether gave a black product with properties identical with those of the product from method I.

cis-Bis(dimethyldithiocarbamato)(nitro)nitrosyliron. Method I. A solution of 1.1 mmol of NO₂ in 10.0 mL of nitromethane was added dropwise with stirring over a period of 15 min to a solution of 0.326 g (1 mmol) of FeNO(S_2 CNMe₂)₂ in 5.0 mL of nitromethane. The mixture was stirred for another 15 min and the solvent was removed under vacuum. The resultant brown solid was recrystallized from dichloromethane/heptane and had properties identical with those of the compound described below.

Method II. A solution of 0.454 g (1 mmol) of [FeNO- $(S_2CNMe_2)_2CH_3CN$][BF₄] in 20.0 mL of acetone was treated with a solution of 0.176 g of $(C_2H_3)_4$ NNO₂ in 8.0 mL of acetone. After stirring of the solution for 30 min the black solution which formed was filtered and the filtrate was evaporated to dryness. The solid was recrystallized from benzene/ether: ν_{NO} 1835, ν_{NO_2} 1382, 1305, δ_{NO_2} 812 cm⁻¹; ¹H NMR τ 6.67, 6.72, 6.78 (2:1:1).

Method III. This complex was also prepared from cis-FeNO- $(S_2CNMe_2)_2I$. A solution of 0.151 g (0.33 mmol) of cis-FeNO- $(S_2CNMe_2)_2I$ in 20.0 mL of acetonitrile was treated with a solution of 0.051 g (0.33 mmol) of AgNO₂ in 5.0 mL of CH₃CN. The solution was stirred for 15 min and the yellow precipitate which formed was removed by filtration. The filtrate was evaporated to dryness and the brown solid collected on a frit, washed with 5.0 mL of ethanol, and dried in vacuo; yield 0.076 g (62% based on Fe). The product from this reaction had properties identical with those of the materials prepared by methods I and II.

cis-Bis(dimethyldithiocarbamato)(methyl isocyanide)nitrosyliron Tetrafluoroborate. A solution of 0.151 g (0.33 mol) of trans-[FeNO(S₂CNMe₂)₂CH₃CN][BF₄] in 10.0 mL of CHCl₃ was treated with 0.015 mL (0.33 mmol) of methyl isocyanide. The solution was stirred for 30 min and filtered. The filtrate was evaporated to dryness giving a light brown solid which was recrystallized from methanol: ν_{NO} 1870, ν_{NC} 2265 cm⁻¹; ¹H NMR τ 6.49 (CH₃NC) (1) and 6.73, 6.76, 6.79, 6.82 (1:1:1).

trans-Bis(dimethyldithiocarbamato) (pyridine) nitrosyliron Tetrafluoroborate. Pyridine (0.33 mmol) was added to a solution of 0.151 g (0.33 mmol) of trans-[FeNO(S₂CNMe₂)₂CH₃CN][BF₄] in 15.0 mL of CHCl₃. After stirring of the solution for 1 h the green precipitate was removed by filtration, washed with ether, and dried. Recrystallization from chloroform/ether gave a green solid: ν_{NO} 1830 cm⁻¹; ¹H NMR τ 6.73.

Attempted Preparation of Chloride and Azide Derivatives. trans-[FeNO(S_2CNMe_2)₂CH₃CN][BF₄] was treated with both Cl⁻ and N₃⁻ in various solvents. Although dark intermediates were observed in solution, the final product from each of these reactions was FeNO(S_2CNMe_2)₂. The reaction with N₃⁻ produced considerable amounts of N₂. The fate of chlorine from the reaction with chloride ion was not established.

trans-Bis(dimethyldithiocarbamato) (nitro) nitrosyliron. A solution of 0.326 g of FeNO $(S_2CNMe_2)_2$ in 20.0 mL of CHCl₃ was treated

Table II. Experimental Data for X-Ray Diffraction Studies of cis-Fe(NO)(NO₂)(S₂CN(C₂H₅)₂)₂

		Crystal Parameters	
Crystal system	Monoclinic	Z	4
Space group	$P2_1/c$	Temp, °C	23 (2)
a, ^a Å	10.323 (4)	Mol wt	428.399
b, A	16.178 (6)	ρ (calcd), g cm ⁻³	1.530
<i>c</i> , A	11.356 (4)	ρ (obsd), g cm ⁻³	$1.519(5)^{b}$
β, deg	101.5 (1)	Absorption coeff, cm ⁻¹	12.76
<i>V</i> , A ³	1858.5 (7)	Transmission factors (min-max) ^c	0.682-0.730
		Data Collection	
Radiation	Μο Κα	Scan speed, deg/min	2.0
Attenuators	Cu foil; used if $I > 10^4$ counts/s	Scan range, deg	From $(2\theta(K\alpha_1) - 0.6)$ to $(2\theta(K\alpha_2) + 0.7)$
Detector aperture, mm	4.0×4.0	Background time, s	20
Takeoff angle, deg	2.0	2θ (max), deg	50
Crystal-detector dist, mm	240	Unique reflections collected	3606
Scan type	θ (crystal)-2 θ (counter)	-	•

^a Unit cell parameters are derived from a least-squares fit of 14 reflections $(25^{\circ} < 2\theta < 40^{\circ})$. ^b Flotation in ZnBr₂(aq). ^c No absorption correction was made.

with 1 mmol of NO₂ at -78 °C. The mixture was allowed to warm to 0 °C in an ice bath and was stirred for 1 h. Ether (50.0 mL) was added and the brown solid which formed was filtered and dried in vacuo: $\nu_{\rm NO}$ 1840, $\nu_{\rm NO_2}$ 1386, 1275, $\delta_{\rm NO_2}$ 760 (KBr), $\nu_{\rm NO}$ 1866 cm⁻¹ (CHCl₃ solution).

Isomerization of *trans*-Bis(dimethyldithiocarbamato)(nitro)nitrosyliron to *cis*-Bis(dimethyldithiocarbamato)(nitro)nitrosyliron. A solution of 0.0386 g (0.1 mmol) of *trans*-FeNO(S₂CNMe₂)₂NO₂ in 10.0 mL of CHCl₃ was stirred for 0.5 h at 22 °C. The solvent was removed under vacuum producing a brown solid. The IR spectrum of this solid was identical with that of *cis*-FeNO(S₂CNMe₂)₂NO₂ (vide supra). In solution the trans complex (ν_{NO} 1866 cm⁻¹ in CHCl₃) completely isomerized to the cis complex (ν_{NO} 1857 cm⁻¹ in CHCl₃) in ca. 20 min.

Exchange Reactions. The exchange of ¹⁴NO with several nitrosyl complexes isotopically labeled with ¹⁵NO was studied using IR spectroscopy.

 $Fe^{15}NO(S_2CNMe_2)_2$ with ¹⁴NO. A solution of 0.163 g (0.5 mmol) of Fe¹⁵NO(S_2CNMe_2) (95% ¹⁵N) in 20.0 mL of CHCl₃ was treated with 0.5 mmol of ¹⁴NO at 77 K. The solution was allowed to thaw and an aliquot of solution was syringed into an IR cell. The solution IR spectrum between 1650 and 1760 cm⁻¹ was obtained in approximately 2 min.

cis-Fe¹⁵NO(S₂CNMe₂)₂I with ¹⁴NO. A solution of 0.0090 g of cis-Fe¹⁵NO(S₂CNMe₂)₂I in 7.5 mL of CHCl₃ was treated with 0.02 mmol of ¹⁴NO. The reaction vessel was maintained at 5 °C, protected from light, and examined by IR spectroscopy. The intensity of the ¹⁴NO band of cis-Fe¹⁴NO(S₂CNMe₂)₂I at 1848 cm⁻¹ increased with time at the expense of the ¹³NO band of cis-Fe¹⁵NO(S₂CNMe₂)₂I at 1810 cm⁻¹ (Figure 4).

Structure Determination of cis-Fe(NO)(NO₂)(S₂CNEt₂)₂. Single crystals of cis-Fe(NO)(NO₂)(S₂CNEt₂)₂ prepared by the method of Büttner and Feltham¹ were obtained by dissolving the compound in ethyl acetate, adding an equal amount of hexane, and allowing the mixture to stand overnight at 0 °C. For data collection, one of the air-stable black crystals of approximate dimensions $0.4 \times 0.3 \times 0.3$ mm was mounted on a glass fiber and oriented with its c axis approximately collinear with the ϕ axis of the Picker FACS-I diffractometer. The mosaicity of the crystal (ω scans, takeoff angle 0.7°) gave peak widths of 0.15° or less. During data collection the intensities of three reflections. The intensity of one of the standards dropped approximately 6%, but the maximum variation of the other two standards was <4%. The other experimental details are set out in Table II. The data were reduced to F^2 and $\sigma(F^2)$ by procedures similar to those previously described.^{19,20}

The polarization correction used was $P = 0.5(\cos^2 2\theta_m + \cos^2 2\theta)$ where θ_m is the Bragg angle of the monochromator crystal and θ is the Bragg angle of the reflection being observed. Standard deviations were assigned to the intensities by the formula

$$\sigma(I) = [\text{CT} + 0.25(t_{\rm c}/t_{\rm b})^2(B_1 + B_2) + (pI)^2]^{1/2}$$

where CT is the total integrated peak count obtained in time t_c and B_1 and B_2 are the background counts each obtained in time t_b , *I* is the intensity, and *p* was taken as 0.04. In the refinement the wavelength of Mo K α radiation was taken as 0.71070 Å.

Figure 1. Perspective view of the *cis*-Fe(NO)(NO₂)($S_2CN(C_2H_5)_2$)₂ molecule. The hydrogen atoms have been omitted for clarity.

Solution and Refinement of the Structure. Positions of the Fe and two S atoms were located from a Patterson map computed from the corrected intensities. A series of structure factor calculations, least squares refinements and electron density difference maps revealed all the nonhydrogen atoms of the formula unit.

Refinement of the structure based upon F was begun²⁰ by minimizing $\sum w(|F_o| - |F_c|)^2$ with the weights, w, taken as $4F_o^2/\sigma^2(F_o)^2$. The atomic scattering factors for Fe, S, C, N, and O were obtained from Cromer and Waber.²¹ The hydrogen scattering factors were from the calculations of Stewart, Davidson, and Simpson.²² The effects of anomalous dispersion were included²³ in F_c . The values of $\Delta f'$ and $\Delta f''$ calculated by Cromer²⁴ were used for Fe and S.

One cycle of isotropic refinement with all nonhydrogen atoms gave $R_1 = \sum ||F_0| - |F_c||/(\sum |F_0|) = 0.154$ and $R_2 = [\sum w(F_0 - F_c)^2/\sum wF_0^2]^{1/2} = 0.200$ for 2908 reflections with $F_0^2 \ge 3\sigma(F_0^2)$. Two more cycles of isotropic refinement gave $R_1 = 0.096$ and $R_2 = 0.146$. After two cycles of refinement with anisotropic thermal parameters for all atoms, the discrepancy indices were $R_1 = 0.063$ and $R_2 = 0.105$. A difference electron density map revealed reasonable positions for six H atoms. Positions were calculated for the remaining H atoms and all H atoms were included as fixed contributors in subsequent calculations.²¹ Two final cycles of least-squares refinement (199 variables) gave $R_1 = 0.059$ and $R_2 = 0.101$. The largest peak in the final difference map $(0.97 e/Å^3)$ was assigned to residual electron density of the Fe atom. All other peaks were less than 0.90 $e/Å^3$. The standard deviation of an observation of unit weight was 3.97. An analysis of the weighting scheme as a function of $(\sin \theta)/\lambda$ and F_0 showed that the low-angle reflections were slightly overweighted. The final atomic parameters appear in Table III.

Results and Discussion

Structure of cis-Fe(NO)(NO₂)(S₂CN(C₂H₅)₂)₂. The iron atom is six-coordinate with the NO group and the NO₂ group occupying adjacent coordination sites (Figure 1). Although the N3-Fe-N4 angle is 91.3°, the coordination sphere of the iron atom is distorted from octahedral geometry because of the small bite angle of the dithiocarbamate ligand. This distortion is reflected in the inter- and intraligand bond angles which range from 74.9 (S3-Fe-S4) to 98.4° (N4-Fe-S3)

Table III. Final Atomic Parameters for FeNO(S₂CN(C₂H₅)₂)₂NO₂

Atom ^a	x	у	Z	$10^{3}\beta_{11}$	$10^{3}\beta_{22}$	$10^{3}\beta_{33}$	$10^{3}\beta_{12}$	$10^{3}\beta_{13}$	$10^{3}\beta_{23}$
Fe	0.2158 (1)	0.4904 (1)	0.2567 (1)	7.7 (1)	2.4 (1)	5.8 (1)	0.18 (1)	1.6 (1)	0.17 (1)
S 1	0.1845 (2)	0.4917 (1)	0.4515(1)	10.7 (2)	2.6 (1)	6.5 (1)	-0.36 (1)	2.9 (1)	-0.44 (1)
S2	0.1434 (2)	0.3580(1)	0.2883 (1)	10.6 (2)	2.6 (1)	6.4 (1)	-0.33 (1)	2.6 (1)	-0.41 (1)
S4	0.4300 (2)	0.4477 (1)	0.3296 (1)	8.5 (2)	4.1 (1)	6.2 (1)	0.65 (1)	0.11 (1)	0.0(1)
S3	0.2940 (2)	0.4488 (1)	0.0895 (1)	8.7 (2)	3.6 (1)	5.7 (1)	0.53 (8)	1.6 (1)	0.23 (7)
C1	0.1428 (5)	0.3890 (4)	0.4326 (5)	7.8 (6)	2.6 (2)	6,2 (5)	0.5 (3)	1.9 (4)	0.12 (30)
C2	0.4374 (6)	0.4197 (4)	0.1857 (5)	8.3 (6)	2.7 (2)	6.9 (5)	-0.1 (3)	2.7 (4)	0.06 (30)
N1	0.1148 (5)	0.1586 (3)	0.0177 (4)	11.4 (6)	2.9 (2)	7.0 (4)	-0.3 (3)	3.7 (4)	-0.24 (26)
N2	0.5337 (5)	0.3800 (3)	0.1524 (5)	8.1 (5)	3.2 (2)	9.0 (5)	0.33 (3)	2.3 (4)	0.01 (27)
N3	0.0697 (5)	0.5216 (3)	0.1807 (4)	9.5 (6)	3.3 (2)	6.1 (4)	-0.03 (30) 1.7 (4)	0.52 (25)
~⇒ 01	-0.0264 (5)	0.5427 (4)	0.1212 (5)	10.7 (6)	7.4 (3)	10.8 (5)	1.0 (4)	-0.9 (5)	1.4 (3)
N4	-0.2851 (6)	0.1067 (4)	0.2324 (5)	12.0 (7)	3.6 (3)	7.6 (5)	0.8 (3)	3.6 (5)	0.0 (30)
02	-0.3632 (7)	0.1324 (4)	0.2860 (6)	29.0 (12)	4.7 (3)	17.4 (8)	3.9 (5)	13.5 (9)	1.0 (4)
03	-0.2370 (8)	0.1544 (4)	0.1695 (8)	34.8 (14)	4.3 (3)	28.8 (12)	4.0 (5)	22.2 (11)	4.9 (5)
C3	0.0762 (7)	0.2531 (4)	0.4927 (6)	13.3 (8)	2.3 (2)	9.6 (6)	-0.1 (4)	3.2 (6)	0.5 (3)
C4	-0.0689 (9)	0.2392 (5)	0.4825 (9)	15.0 (10)	4.4 (4)	16.7 (10)	-1.8 (5)	1.6 (8)	-1.9 (5)
C5	0.1266 (7)	0.1295 (4)	0.1408 (5)	13.0 (8)	3.9 (3)	5.7 (5)	0.3 (4)	2.7 (5)	0.3 (3)
C6	0.2632 (8)	0.1424 (5)	0.2132 (7)	14.5 (10)	4.5 (4)	10.1 (7)	-0.2 (5)	0.0(7)	-0.7 (4)
C7	-0.4714 (7)	0.3572 (5)	0.0232 (6)	12.2 (8)	4.6 (4)	8.9 (6)	1.3 (4)	4.7 (6)	-0.5 (4)
C8	0.4772 (9)	0.2683 (6)	-0.0027 (8)	17.5 (12)	4.8 (4)	15.5 (10)	-0.1 (5)	3.4 (9)	-3.9 (5)
C9	-0.3462 (6)	0.3557 (4)	0.2400 (6)	8.1 (7)	4.0 (3)	10.0 (6)	0.5 (4)	1.3 (5)	0.6 (4)
C10	-0.2301 (7)	0.4094 (6)	0.2310 (8)	9.2 (8)	6.1 (4)	14.8 (9)	-0.8 (5)	1.5 (7)	0.2 (5)
At	om ^b	x	У	Z	Atom ^b	x		у	Z
. F	H1 0	.1050	0.3174	0.5126	H11	-0.541	.0 0).3953	-0.0373
- F	H2 0	.1369	0.2137	0.5611	H12	-0.529	0 0	0.3201	0.0781
H	H3 -0	.0800	0.2400	0.5600	H13	0.400	0 (0.2600	0.0300
F	H4 -0	.1286	0.2875	0.4318	H14	0.511	.3 (0.2265	-0.0629
F	H5 –0	.1011	0.1793	0.4427	H15	0.555	0 0	0.3113	0.0361
F	H6 0	.1024	0.0625	0.1387	H16	-0.378	1 (0.3409	0.3250
H	H7 0	.0542	0.1609	0.1841	H17	-0.431	.0 0	0.3440	0.1664
H	H8 0	.2800	0.1200	0.3000	H18	-0.200	0 0). 42 00	0.1500
H	19 0	.3365	0.1127	0.1669	H19	-0.252	22	0.4719	0.2624
H	H10 0	.2866	0.2091	0.2174	H20	-0.144	6 (0.3856	0.2929

^a x, y, z are in fractional coordinates. Anisotropic thermal parameters are in the form $\exp[-(h^2\beta_{11} + k^2\beta_{22} + l^2\beta_{33} + 2hk\beta_{12} + 2hl\beta_{13} + 2kl\beta_{23})]$. The standard deviation of the last significant figure is given in parentheses. ^b An isotropic thermal parameter, B, of 7.0 Å² was assigned to each of the hydrogen atoms.

Table IV. Selected Interatomic Distances (Å) and Angles (deg) in $FeNO(S_2CN(C_2H_s)_2)_2NO_2$

	Dist	ances	
Fe-N3	1.659 (5)	S4-C2	1.712 (6)
Fe-N4	2.008 (6)	C1-N1	1.314 (7)
Fe-S1	2.299 (2)	C2-N2	1.301 (7)
Fe-S2	2.321 (2)	N1-C3	1.495 (8)
Fe-S3	2.306 (2)	N1-C5	1.457 (8)
Fe-S4	2.308 (2)	N2-C7	1.503 (8)
N3-01	1.136 (6)	N2-C9	1.480 (8)
N4-02	1.178 (7)	C3-C4	1.496 (11)
N4-03	1.222 (8)	C5-C6	1.498 (10)
S1-C1	1.718 (6)	C7-C8	1.540 (12)
S2-C1	1.714 (6)	C9-C10	1.501 (10)
S3-C2	1.721 (6)		
	An	gles	
N3-Fe-N4	91.3 (2)	N1-C1-S1	124.2 (4)
N3-Fe-S1	102.2 (2)	S2-C1-S1	110.8 (3)
N3-Fe-S3	95.3 (2)	N2-C2-S4	126.2 (5)
N3-Fe-S4	169.8 (2)	N2-C2-S3	124.1 (5)
N3-Fe-S2	94.3 (2)	S4-C2-S3	109.7 (3)
N4-Fe-S1	92.8 (2)	C1-N1-C5	121.9 (5)
N4-Fe-S3	98.4 (2)	C1-N1-C3	120.7 (5)
N4-Fe-S4	87.4 (2)	C5-N1-C3	117.4 (5)
N4-Fe-S2	167.8 (2)	C2-N2-C9	121.4 (5)
S1-Fe-S3	159.0(1)	C2-N2-C7	121.7 (5)
S1-Fe-S4	88.0(1)	C9-N2-C7	116.9 (5)
S1-Fe-S2	75.4 (1)	O1-N3-Fe	174.9 (5)
S3-Fe-S4	74.9 (1)	O2-N4-O3	118.6 (6)
S3-Fe-S2	92.0 (1)	02-N4-Fe	124.8 (5)
S4-Fe-S2	89.0 (1)	O3-N4-Fe	116.5 (5)
C1-S1-Fe	87.2 (2)	N1-C3-C4	112.5 (6)
C1-S2-Fe	86.6 (2)	N1-C5-C6	111.8 (6)
C2-S3-Fe	87.5 (2)	N2-C7-C8	111.1 (6)
C2-S4-Fe	87.6 (2)	N2-C9-C10	111.9 (6)
N1-C1-S2	125.1(5)		

(Table IV). In spite of the small bite angles of the dithiocarbamate ligands, the planes defined by S1, S2, S3, N4, by S1, S3, S4, N3, and by N3, Fe, N4 intersect at nearly 90° (89.3–93.2°, Table V) and indicate that a semblance of octahedral geometry is preserved in this complex. The two chelate rings Fe, S1, S2, C1 and Fe, S3, S4, C2 are planar within experimental error and also form planes which intersect at 90.9°. The four atoms of the FeNO₂ group are coplanar, but the NO₂ group is slightly twisted (23.4°) out of the plane defined by S1, S2, S3, N4.

To compare this structure with other {MNO}ⁿ complexes, it is convenient to describe this molecule as a distorted square pyramid with the NO group and S4 occupying the axial positions, and the atoms S1, S2, S3, and N4 defining the basal plane. The iron atom is displaced from this plane toward the nitrosyl group by 0.22 Å and the average N3–Fe–L angle with the adjacent ligands is 95.5° similar to those found for Fe-(NO)(CN)₅²⁻ by Manoharan and Hamilton²⁵ (0.2 Å and 96°, respectively). The Fe–N3 and N3–O1 distances (1.659 (5) and 1.136 (6) Å) in the present structure also compare favorably with the corresponding distances found for Fe-(NO)(CN)₅²⁻ (1.63 (2) and 1.13 (2) Å, respectively). The FeNO angles appear to differ only slightly (174.9 (5) vs. 178 (1) Å).

The nitrosyl group has normal temperature factors and is well resolved with no evidence for disorder. The Fe-N3 distance of 1.659 (5) Å, N3-O1 distance of 1.136 (2) Å, and Fe-N3-O1 angle of 174.9 (5)° are not greatly different from those observed for FeNO(S_2 CNMe₂)₂: 1.720 (5) Å, 1.102 (7) Å, and 170.4 (6)°, respectively.⁹ The Fe-S distances are also similar to those of low-spin FeNO(S_2 CNMe₂)₂. In contrast the distances Fe-S1 = 2.299 (2) Å, Fe-S2 = 2.321 (2) Å,

			Equatior	in the Forn	hAx + By	+Cz - D =	0 by Hami	lton's Method	la		
	Plane	A	· · · · · · · · · · · · · · · · · · ·	В		С		D	Atoms d	lefining the	plane
	1	9.3	17	-4.699		1.493		0.0879	Fe	, S1, S2, C1	
	2	3.7	21	14.987		-2.032		7.632	Fe,	, S3, S4, C2	2
	3	8.3	21	-6.086		3.26		-0.0182	S1.	S2, S3, N4	1
	4	6.0	14	-4.128		7.268		1.138	Fe.	N4. 02. 0	3
	5	2.6	19	5.636		-1.020		7.745	S 1	, S3, S4, N3	3
				Ľ	eviations f	rom the Pla	ines, Å				
Plane	Fe	S1	S2	S 3	S4	N3	N4	02	03	C1	C2
1	0.001	-0.005	-0.004							0.061	
2	-0.001			0.006	0.007						-0.092
3		0.033	-0.028	0.025			-0.430				
4	0.000						0.017	-0.009	-0.012		
5		-0.034		-0.049	0.045	0.410					
				Dihe	dral Angle	s between t	he Planes				
		Planes		Angles, d	eg		Plane	s		Angles, deg	;
	3	-4		23.4		5-(N	13, Fe, N4)			92.4	
	.3	-5		89.3		(Fe,	S1, S2)-(Fe	e, S3, S4)		90.9	
	3	-(N3, Fe, N4	Ð	93.2		(Fe,	N3. N4)-(N	4, 02, 03)		69.9	

Table V.	Least-Squares	Planes for	cis-Fe(NO)	(NO ₂)(S ₂ CNEt	$(2)_{2}$
----------	---------------	------------	------------	--	-----------

^a Reference 26.

Table VI. IR Data for $FeNO(S_2CNR_2)_2$ Complexes^a

Compd	$v_{\rm NO}({\rm KBr})$	$\nu_{\rm NO}(\rm CHCl_3)$
FeNO(S ₂ CNMe ₂) ₂	1691	1724
$FeNO(S_2CNEt_2)_2$	1690	1721
$FeNO(S_2CN(Me)(Ph))_2$	1714	1726
$FeNO(S_2CNPh_2)_2$	1707	1728

^a All frequencies are measured in cm^{-1} using the polystyrene band at 1601 cm^{-1} as a standard.

Fe-S3 = 2.306 (2) Å, and Fe-S4 = 2.308 (2) Å are distinctly different from those of high-spin $Fe(S_2CNEt_2)_2$,²⁷ where the corresponding distances are Fe-S1 = 2.453 (2) Å, Fe-S2 = 2.402 (2) Å, Fe-S3 = 2.408 (2) Å, and Fe-S4 = 2.437(2) Å. The smaller Fe-S distances in the low-spin complexes can be directly attributed to the smaller covalent radii of iron atoms in low-spin states. The absence of substantial lengthening of the Fe-S4 bond trans to the NO group is consistent with the lack of strong structural trans effects in metal nitrosyls with linear MNO groups.²⁸ The Fe–S2 bond distance is ~ 0.015 Å ($\sim 7\sigma$) longer than the other three Fe–S bonds and may reflect a structural trans effect of the NO₂ group. The Fe–NO₂ distance of 2.008 (6) Å is comparable to that reported for Co-NO₂ of 1.954 (7) Å in trans-dinitro(1,10-diamino-4,7-diazadecane)cobalt(III) bromide.²⁹ The N-O distances N4-O3 and N4-O2 of 1.222 (8) and 1.178 (6) Å are similar to the mean N-O distance of 1.223 (7) Å reported for the cobalt complex.

FeNO(S₂CNR₂)₂ Complexes. Several five-coordinate FeNO(S₂CNR₂)₂ complexes have been prepared and characterized. They were prepared either from the reaction of FeNO²⁺ with R₂NCS₂⁻ or from the reaction of Fe(S₂CNR₂)₂ with NO. These complexes are extremely air sensitive in solution and must be recrystallized carefully to obtain analytically pure samples. Each complex had a single broad NO absorption band near 1725 cm⁻¹ in solution (Table VI). Both FeNO(S₂CNMe₂)₂ and FeNO(S₂CNEt₂)₂ have square-pyramidal geometry in the solid state.⁷⁻⁹ The similarity of their EPR spectra indicates that they are isoelectronic with the unpaired electron occupying an a₁ (d_z²) molecular orbital.¹¹⁻¹³

The reactions of $Fe(NO)(dtc)_2$ with oxidants discussed below suggested that they might add NO readily even though the previous reports of the formation of $Fe(NO)_2(S_2CNR_2)_2$ complexes were erroneous.¹⁸ Wayland and Olson³⁰ have identified a closely related dinitrosyl complex $Fe(NO)_2TPP$

Figure 2. NMR spectrum of cis-FeNO(S₂CNMe₂)₂Br in CDCl₃,

which was stable at 77 K under an NO atmosphere. Another dinitrosyl complex, $Fe(NO)_2(sacsac)_2$, has been reported by Broitman et al.,³¹ but it has not been characterized further. Solutions of FeNO(S_2CNMe_2)₂ and excess NO were carefully examined by IR and EPR spectroscopy for the presence of $Fe(NO)_2(S_2CNMe_2)_2$, but no direct evidence for its formation was found. Even though a dinitrosyl intermediate was not observed, indirect evidence for its existence was obtained from a study of the reaction of Fe(15 NO)(S₂CNMe₂)₂ with 14 NO. Complete exchange between 14 NO and Fe(15 NO)(S₂CNMe₂)₂ in CHCl₃ occurred in the time required to measure the IR spectrum of the solution (2 min). Previous studies of NO exchange with metal nitrosyl complexes³²⁻³⁴ have found that the reactions are slow, as are those of the six-coordinate complexes $Fe(NO)X(S_2CNMe_2)_2$ discussed below. Thus, it is likely that the fast-exchange reaction observed between ¹⁴NO and $Fe(^{15}NO)(S_2CNMe_2)_2$ proceeds through formation of $Fe(NO)_2(S_2CNMe_2)_2$, but the experiments described above do not conclusively show this.

FeNO(S₂CNMe₂)₂X Complexes. In solution at room temperature, FeNO(S₂CNMe₂)₂ is oxidized by I₂, Br₂, and NO₂ producing the six-coordinate complexes FeNO-(S₂CNMe₂)₂X. The ¹H NMR spectra (Figure 2) of the halide complexes *cis*-FeNO(S₂CNMe₂)₂X (X = Br, I) consist of four sharp evenly spaced peaks of equal intensity indicative of a cis complex without symmetry.

Three different synthetic routes were used to prepare cis-FeNO(S₂CNMe₂)₂NO₂ (reactions 1-3). This compound CHC1.

$$FeNO(S_2CNMe_2)_2 + NO_2 \xrightarrow{CHO_3} cis-FeNO(S_2CNMe_2)_2NO_2$$
(1)

+ NO₂⁻
$$\frac{\text{CHCl}_3}{25\,^{\circ}\text{C}}$$
 cis-FeNO(S₂CNMe₂)₂NO₂ + BF₄⁻ (2

cis-FeNO(S₂CNMe₂)₂I

+ AgNO₂
$$\xrightarrow{\text{CH}_3 \text{CN}}_{25^{\circ}\text{C}}$$
 cis-FeNO(S₂CNMe₂)₂NO₂ + AgI (3)

has ν_{NO} 1835, ν_{NO_2} 1382, 1305, and δ_{NO_2} 812 cm⁻¹. However, when reaction 1 was carried out at -60 °C, the product of the reaction was *trans*-FeNO(S₂CNMe₂)₂NO₂. The IR spectrum of the trans isomer has ν_{NO} 1840, ν_{NO_2} 1386, 1275, and δ_{NO_2} 760 cm⁻¹. The only strong bands in the 1000–1100-cm⁻¹ region were due to the dithiocarbamate ligand, which indicates the absence of coordinated nitrito groups.^{36,37} Thus in both cis and trans isomers the NO₂ ligand is attached to iron through the nitrogen atom. The trans complex is stable as a solid but rapidly isomerizes in solution at 25 °C forming the cis complex.

The ¹H NMR spectrum of *cis*-FeNO(S₂CNMe₂)₂NO₂ is both solvent and temperature dependent. In CDCl₃ at room temperature, cis-FeNO(S₂CNMe₂)₂NO₂ exhibited only three peaks at τ 6.67, 6.72, and 6.78 with an intensity ratio of 2:1:1, but at -40 °C the spectrum consisted of four peaks of equal intensity at τ 6.84, 6.77, 6.70, and 6.62 similar to those of the bromide and iodide complexes (vide supra.) Although the ¹H NMR spectrum of cis-FeNO(S₂CNMe₂)₂NO₂ was measured at only two temperatures, the data obtained show that the dithiocarbamate ligands of this chiral cis complex are participating in a dynamic process at room temperature. Numerous rearrangements of the dithiocarbamate ligands can be suggested, but several of the most obvious ones are not consistent with the experimental observations. Rotation of the Me₂N- group about the C-N bond would result in the coalescence of the NMR spectrum into two peaks of equal intensity corresponding to the averaged environment of the methyl groups on each of the two nonequivalent dithiocarbamate ligands, similar to the ¹H NMR spectrum observed for the closely related $Fe(S_2CNMe_2)_2(S_2C_2(CF_3)_2)$ complex.³⁸ Since there are four distinct pseudo-threefold axes in cis- $FeNO(S_2CNMe_2)_2NO_2$, there are eight different ways in which the environment of the methyl groups could be altered by twists about these axes.³⁹ However, a careful examination of the five trigonal twists which are possible shows that the resultant NMR spectra should consist of either four (1:1:1:1), two (1:1), or one methyl resonance. Since the ¹H NMR spectrum of the cis complex observed at room temperature consists of three methyl peaks with a 2:1:1 intensity ratio, it is not likely that any of the trigonal-twist mechanisms are responsible for the observed averaging of the methyl groups in the cis complex. Although it is conceivable that some combination of the processes mentioned above could possibly account for the observed NMR spectrum, a bond-rupture mechanism which produces a monodentate dithiocarbamate ligand seems more likely. The NO_2 group is known to have a strong trans labilizing effect in octahedral complexes.⁴⁰ It is not unreasonable that the Fe-S2 bond is so weakened that it ruptures in solution. This mechanism would account for the large solvent effect observed for the ¹H NMR spectrum of the cis complex and for the absence of temperature and solvent dependence in the NMR spectra of the cis iodide and bromide. However, further information is required before any of these mechanisms can be eliminated from consideration with certainty.

The highly reactive oxygen-sensitive $Fe(S_2CNMe_2)_2$ reacts

Figure 3. NMR spectrum of *trans*-[FeNO(S_2CNMe_2)₂CH₃CN][BF₄] in CD₃CN.

readily with small molecules including NO, CO, and NO⁺. The reaction of $Fe(S_2CNMe_2)_2$ with NOBF₄ in CH₃CN produced the important intermediate *trans*-[FeNO-(S_2CNMe_2)_2(CH_3CN)][BF₄] (A) in good yield. The ¹H NMR spectrum (Figure 3) of the acetonitrile complex consists of two peaks at τ 6.73 ((CH₃)₂N-) and 8.03 (CH₃CN) in the ratio of 4:1 indicative of trans geometry. Its infrared spectrum (KBr) had prominent bands at 1830 (ν_{NO}) and 2250 cm⁻¹ (coordinated CH₃CN). The fact that ν_{CN} is at a higher frequency than free acetonitrile was taken to indicate that the nitrile ligand is bound through the nitrogen atom.³⁵

Treatment of A with I⁻ or Br⁻ resulted in the displacement of coordinated acetonitrile and rearrangement of the dithiocarbamate ligands to give *cis*-FeNO(S_2CNMe_2)₂X. The ¹H NMR and the IR spectra of these complexes were identical with those of the complexes made by direct oxidation of FeNO(S_2CNMe_2)₂. Thus it is clear that the stereochemistries of FeNO(S_2CNMe_2)₂Br and FeNO(S_2CNMe_2)₂I are independent of their method of preparation.

To extend the scope of these investigations several other six-coordinate complexes were prepared and their stereochemistries determined. Treatment of A with SCN⁻ produced *trans*-FeNO(S₂CNMe₂)₂NCS (ν_{NO} 1835, ν_{SCN} 2090 cm⁻¹). Its ¹H NMR which consists of a single methyl peak at τ 6.73 establishes its geometry. The presence of bands at 835 and 440 cm⁻¹ indicates that the thiocyanate ligand is N bonded.^{37,41,42} In view of the similarity between halogens and thiocyanates as ligands, the observation of trans geometry in the thiocyanate complex was surprising. To determine whether or not the trans complex is the thermodynamic product, the thiocyanate complex was also prepared by direct oxidation of FeNO(S₂CNMe₂)₂ with (SCN)₂. The product from this reaction had ¹H NMR and IR spectra identical with those of the trans complex made from A.

Treatment of A with CH₃NC produced *cis*-[FeNO-(S₂CNMe₂)₂(CH₃NC)][BF₄]. The IR spectrum of this complex had ν_{NO} at 1870 cm⁻¹ and ν_{NC} at 2070 cm⁻¹, and the NMR spectrum had peaks at τ 6.73 (CH₃NC), 6.67, 6.70, 6.72, and 6.75 ((CH₃)₂N-). This compound has the highest NO frequency in this series of FeNO-dtc complexes. A similar increase in ν_{CO} has been observed upon isocyanide ligation in iron carbonyls.⁴³

Treatment of A with pyridine produced a green product with $\nu_{\rm NO}$ at 1830 cm⁻¹ and two weak bands in the IR spectrum at 610 and 680 cm⁻¹ assignable to coordinated pyridine. The single peak at τ 6.70 in the ¹H NMR spectrum suggests that [FeNO(S₂CNMe₂)₂py][BF₄] has trans geometry.

Attempts to isolate $FeNO(S_2CNMe_2)_2Cl$ were unsuccessful even though solutions of the complex were prepared by several

Figure 4. Plot of $-\log (A - A_{eq})$ vs. time for the exchange of ¹⁴NO with *cis*-Fe¹⁵NO(S₂CNMe₂)₂I.

independent methods: (a) direct oxidation of FeNO- $(S_2CNMe_2)_2$ with Cl_2 ; (b) reaction of A with Cl^- ; (c) reaction of $FeCl(S_2CNMe_2)_2$ with NO. In reaction (a) a mixture of $FeNO(S_2CNMe_2)_2Cl$ and $FeNO(S_2CNMe_2)_2$ was obtained which was impossible to separate. In reaction (b) the solution IR spectrum indicated the presence of FeNO(S₂CNMe₂)₂Cl, and the four peaks in the methyl region of the ¹H NMR spectrum indicated cis geometry for the complex. However, in solution, $FeNO(S_2CNMe_2)_2Cl$ rapidly decomposes to form $FeNO(S_2CNMe_2)_2$. Pathway (c) also produced an inseparable mixture of $FeNO(S_2CNMe_2)_2Cl$ and $FeNO(S_2CNMe_2)_2$. Although it is surprising that the chloride is more reactive than the bromide or iodide, a similar reaction has been observed for iron-porphyrin complexes.^{44,45} It has been shown that the addition of methanol and nitric oxide to a solution of Fe(TPP)Cl results in reductive nitrosylation to form Fe(T-**PP**)NO. In this reaction, methanol was assumed to be required for reaction with coordinated NO in the reduction step. However, FeNO(S₂CNMe₂)₂Cl decomposes to give high yields (65–70%) of FeNO $(S_2CNMe_2)_2$ even in nonhydroxylic solvents such as CHCl₃ and benzene. Consequently, the key step in the reduction of $FeNO(S_2CNMe_2)_2Cl$ does not require the attack of a hydroxyl group on coordinated NO. However, since the fate of chlorine in this reaction was not discovered, the instability of $FeNO(S_2CNMe_2)_2Cl$ and the course of its decomposition reaction are not understood.

Exchange of cis-Fe¹⁵NO(S₂CNMe₂)₂I with ¹⁴NO. Because an associative mechanism was proposed for the exchange of NO with FeNO(S₂CNMe₂)₂, it was also important to study the possible exchange reactions of the six-coordinate complexes. The exchange reaction between ¹⁴NO and cis-Fe¹⁵NO-(S₂CNMe₂)₂I was found to be complete in 1.5 h in the dark. A plot of -log ($A - A_{eq}$) vs. t gave a straight line (Figure 4). A first-order rate constant of $1.22 \times 10^{-4} \text{ s}^{-1}$ was obtained. When the reaction was carried out in laboratory light, the reaction was complete in 0.5 h with a first-order rate constant of $1.65 \times 10^{-4} \text{ s}^{-1}$. The net reaction is

$$Fe^{15}NO(S_2CNMe_2)_2I + {}^{14}NO \Rightarrow Fe^{14}NO(S_2CNMe_2)_2I + {}^{15}NO$$
 (4)

One possible pathway which accounts for reaction 4 is illustrated in Scheme I. Reactions 6 and 7 have been studied separately (vide supra), are fast, and are not light dependent. Thus the rate-determining step in Scheme I is reaction 5. The enhancement of reaction 4 by light is probably due to the photolysis of the Fe–I bond. Further evidence for the homolytic dissociation of Fe–X bonds in FeNO(S_2CNR_2)₂X comes from the decomposition of solutions of these complexes

Scheme I

 $cis-Fe^{15}NO(S_2CNMe_2)_2 I \rightleftharpoons Fe^{15}NO(S_2CNMe_2)_2 + I \cdot (slow) (5)$ Fe¹⁵NO(S_2CNMe_2)_2 + ¹⁴NO \approx Fe¹⁴NO(S_2CNMe_2)_2

+ ¹⁵NO (fast) (6)

 $Fe^{14}NO(S_2CNMe_2)_2 + I \Rightarrow cis - Fe^{14}NO(S_2CNMe_2)_2 I$ (fast) (7)

in the presence of light to form $FeNO(S_2CNMe_2)_2$.

Exchange between $Fe^{14}NO(S_2CNMe_2)_2$ and cis- $Fe^{15}NO(S_2CNMe_2)_2I$. A solution of $Fe^{14}NO(S_2CNMe_2)_2$ in CHCl₃ was treated with a solution of cis- $Fe^{15}NO(S_2CNMe_2)_2I$ in CHCl₃. Even though the solution spectrum between 1650 and 1900 cm⁻¹ was obtained within 2 min, the four NO bands with equal intensities observed in solution at 1848, 1810, 1724, and 1698 cm⁻¹ indicated that an equilibrium mixture had already been established (reaction 8). This reaction is fast $Fe^{14}NO(S_1CNMe_2)_1 + cis Fe^{15}NO(S_2CNMe_2)_1$

$$\approx^{1} \operatorname{NO}(S_{2} \operatorname{CNMe}_{2})_{2} + cis + ci^{13} \operatorname{NO}(S_{2} \operatorname{CNMe}_{2})_{2} I$$

$$\approx \operatorname{Fe}^{15} \operatorname{NO}(S_{2} \operatorname{CNMe}_{2})_{2} + cis + \operatorname{Fe}^{14} \operatorname{NO}(S_{2} \operatorname{CNMe}_{2})_{2} I \qquad (8)$$

compared to the exchange of ${}^{14}NO$ with *cis*-Fe¹⁵NO-(S₂CNMe₂)₂I which requires 0.5 h for completion under comparable conditions.

Exchange between $Fe^{15}NO(S_2CNMe_2)_2$ and trans-[Fe¹⁴NO(S₂NMe₂)₂CH₃CN][BF₄]. A solution of Fe¹⁵NO-(S₂CNMe₂)₂ in CHCl₃ was treated with a chloroform solution of trans-[Fe¹⁴NO(S₂CNMe₂)₂CH₃CN][BF₄] and the solution spectrum was obtained within 2 min. The four NO bands of equal intensity observed at 1852, 1822, 1724, and 1698 cm⁻¹ indicate the presence of equal amounts of trans-[Fe¹⁴NO-(S₂CNMe₂)₂CH₃CN][BF₄], trans-[Fe¹⁵NO-(S₂CNMe₂)₂CH₃CN][BF₄], Fe¹⁴NO(S₂CNMe₂)₂, and Fe¹⁵NO(S₂CNMe₂)₂, respectively (reaction 9). Since re-

trans-[Fe¹⁴NO(S₂CNMe₂)₂CH₃CN][BF₄] + Fe¹⁵NO(S₂CNMe₂)₂

$$\Rightarrow$$
 Fe¹⁴NO(S₂CNMe₂)₂
(2)

+ trans-[$Fe^{15}NO(S_2CNMe_2)_2CH_3CN$][BF₄] (9)

actions 8 and 9 take place in the dark, they are not photoinduced free-radical reactions and may be outer-sphere electron-transfer reactions related to those of $\{RuNO\}^6$ complexes reported by Callahan et al.⁴⁶ (reaction 10).

$$Ru(bpy)_{2}^{14}NOCl^{+} + Ru(bpy)_{2}^{15}NOCl^{2+} \Rightarrow Ru(bpy)_{2}^{14}NOCl^{2+} + Ru(bpy)_{2}^{15}NOCl^{+}$$
(10)

Reaction 10 is fast $(k > 10^2 \text{ M}^{-1} \text{ s}^{-1})$ and the electron transfer presumably takes place to and from a coordinated NO group. Even though reaction 10 has not been demonstrated previously for iron nitrosyls, facile electron-transfer reactions between Fe²⁺ and Fe³⁺ in tris(phenanthroline) complexes are known⁴⁷ (reaction 11).

$$\operatorname{Fe}(\operatorname{phen})_{3}^{3+} + \operatorname{Fe}(\operatorname{phen})_{3}^{2+} \approx \operatorname{Fe}(\operatorname{phen})_{3}^{2+} + \operatorname{Fe}(\operatorname{phen})_{3}^{3+}$$
(11)

Conclusions

EPR and Mössbauer studies indicate that the unpaired electron in FeNO(S_2CNMe_2)₂ occupies an orbital which is mainly comprised of $d_{z^2}(Fe)$ and $\sigma^*(NO)$. Enemark and Feltham⁵ have suggested a qualitative molecular orbital scheme for this complex. Some of the features of this MO diagram are (a) the FeNO group is essentially linear because the 3b₁ and 3b₂ orbitals are not occupied and (b) the highest occupied orbital is 5a₁. The 5a₁ orbital is somewhat antibonding with respect to both Fe–N and N–O. Oxidation of FeNO-(S_2CNEt_2)₂ to *cis*-Fe(NO)(NO₂)(S_2CNEt_2)₂ results in an increase in ν_{NO} and in shortening of the Fe–N bond but in no important change in the Fe–N–O angle. These structural and spectroscopic changes are consistent with the removal of an unpaired electron from an antibonding orbital (5a₁).

Moreover, since the unpaired electron in $FeNO(S_2CNMe_2)_2$ presumably occupies a vacant coordination site of the square pyramid, direct oxidation by coordinating ligands would be

Iron-Sulfur Complexes of NO

expected to favor formation of trans six-coordinate complexes. The present studies have shown that although cis-FeNO- $(S_2CNMe_2)_2NO_2$ is thermodynamically more stable than trans-FeNO $(S_2CNMe_2)_2NO_2$, the trans isomer is the one formed initially and consequently is the kinetic product of the oxidation of $FeNO(S_2CNMe_2)_2$ by NO₂. The fact that the trans isomer is the kinetically favored product is in agreement with the ground-state properties of $FeNO(S_2CNMe_2)_2$ and the MO diagram in Figure 12 of ref 5. These facts also suggest that the molecular and electronic structure of FeNO- $(S_2CNMe_2)_2$ controls the stereochemistry of the kinetic products from each of these reactions although only the formation of the nitro complex has been studied in any detail.

On the other hand, the thermodynamically stable forms of the six-coordinate {FeNO}⁶ complexes are determined by the sixth ligand attached to the iron atom. Trans geometry is favored by ligands such as CH₃CN and N-bonded NCS⁻ which are relatively weak σ donors and relatively poor π acceptors, while strong σ donors and strong π acceptors such as NO₂ and CH₃NC favor cis geometry. However, the cis geometry of the I⁻, Br⁻, and Cl⁻ complexes cannot be so easily explained in terms of their σ - and π -donor abilities. The halides are not particularly good σ donors but are modestly good π donors, properties which should favor trans geometry. Fenske and DeKock⁴⁸ have proposed that π -donating ligands such as halides can donate electron density into empty π^* orbitals of cis ligands by direct overlap between the large π orbitals of the halide and the π^* orbitals more effectively than by indirect overlap via the metal into the π^* orbitals of trans ligands. This suggestion nicely accounts both for the cis geometry of the halides and for their relative stability: I > IBr > Cl.

The six-coordinate {FeNO}⁶ complexes also have a remarkable tendency, especially in the presence of light, to be reduced in good yields to FeNO(S₂CNMe₂)₂ in a variety of organic solvents. In solution, these six-coordinate complexes have the following order of decreasing stability: $CH_3CN >$ $CH_3NC > I > SCN > Br > NO_2 > Cl >> N_3$. This order roughly parallels two properties of these ligands: (a) the ease with which the ligand radicals X. can be formed (i.e., CH_3CN^+ , I, etc.) and (b) the reactivity of the X radicals themselves. The facts that these complexes are photoreduced, are reduced by radical scavenging solvents, and have the order of stability listed above suggest that they decompose by a homolytic cleavage of the Fe-X bond (reaction 12). The

$$FeNO(S_2CNMe_2)_2 X \rightleftharpoons FeNO(S_2CNMe_2)_2 + X$$
(12)

position of equilibrium for reaction 12 should be dependent on the nature of X. The more reactive X is, the more easily it will be scavenged, thus shifting (12) toward FeNO- $(S_2CNMe_2)_2$. On the other hand, ligands which do not readily form free radicals should be relatively stable to reduction as is found experimentally.

Acknowledgment. The authors wish to acknowledge Dr. J. I. Gelder for his assistance with the structure determination and Dr. J. H. Enemark for his many helpful discussions. O.A.I. expresses his appreciation to the Department of Chemistry, University of Arizona, for the award of the C. S. Marvel Fellowship and the U.S. Department of State for the award of a Fulbright-Hays Fellowship. This project was supported by Grant No. HL-16205, awarded by the National Institutes of Health, Department of Health, Education, and Welfare.

Registry No. $FeNO(S_2CN(C_2H_5)_2)_2$, 14239-50-0; $FeNO(S_2C-N(CH_3)_2)_2$, 14263-11-7; $FeNO(S_2CN(CH_3)(C_6H_5))_2$, 62637-78-9; $FeNO(S_2CN(C_6H_5)_2)_2$, 23792-49-6; *cis*-FeNO(S_2CN(CH_3)_2)_2I, 62637-83-6; cis-FeNO(S₂CN(CH₃)₂)₂Br, 62637-84-7; cis-FeNO- $(S_2CN(CH_3)_2)_2NO_2$, 60876-36-0; trans-FeNO(S_2CN-(CH_3)_2)_2CH_3CN^+BF_4^-, 62637-82-5; cis-FeNO(S_2CN-

(CH₃)₂)₂CH₃NC⁺BF₄⁻, 62637-74-5; trans-FeNO(S₂CN(CH₃)₂)₂SCN, 62637-75-6; trans-FeNO(S₂CN(CH₃)₂)₂CH₃CN⁺PF₆, 62637-77-8; trans-FeNO($S_2CN(CH_3)_2$)₂NO₂, 60895-59-2; Fe(S_2CNMe_2)₂, 15339-38-5; $trans-FeNO(S_2CNMe_2)_2C_5H_5N^+BF_4^-$, 62637-72-3; $Fe^{15}NO(S_2CNMe_2)_2$, 62637-70-1; cis- $Fe^{15}NO(S_2CNMe_2)_2I$, 62637-69-8; cis-Fe(NO)(NO₂)(S₂CN(C₂H₅)₂)₂, 36413-49-7.

Supplementary Material Available: A listing of structure factor amplitudes (13 pages). Ordering information is given on any current masthead page.

References and Notes

- (1) Part 1: H. Büttner and R. D. Feltham, Inorg. Chem., 11, 971 (1972).

- N. G. Connelly, Inorg. Chim. Acta, Rev., 6, 47 (1972).
 B. F. G. Johnson and J. A. McCleverty, Prog. Inorg. Chem., 7, 277 (1966).
 O. A. Ileperuma and R. D. Feltham, J. Am. Chem. Soc., 98, 6039 (1976).
 The notation [MNO]" was introduced by us elsewhere: J. H. Enemark (3) The notation (MNO) was introduced by us elsewhere: J. H. Bhemark and R. D. Feltham, *Coord. Chem. Rev.*, 13, 339 (1974). If the NO group is assumed to be bound as NO⁺, then *n* corresponds to the number of d electrons on the metal. Thus the {FeNO}⁷ group is [FeNO]²⁺.
 (6) L. Cambi and A. Cagnasso, *Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat.*
- Nat., Rend., 13, 254, 809 (1931).
- (7) M. Colapietro, A. Domenicano, L. Scaramuzza, A. Vaciago, and L. Zambonelli, Chem. Commun., 583 (1967).
- (8) G. R. Davies, R. H. B. Mais, and P. G. Owston, Chem. Commun., 81 (1968)
- G. R. Davies, J. A. Jarvis, B. K. Kilbourn, R. H. B. Mais, and P. G. (9) Owston, J. Chem. Soc., 1275 (1970). (10) M. S. Hunt and R. D. Feltham, unpublished results.
- (11)C. M. Guzy, J. B. Raynor, and M. C. R. Symons, J. Chem. Soc. A, 2987 (1969).
- J. Gibson, Nature (London), 196, 64 (1962) (12)
- (13) H. Crain, Ph.D. Dissertation, University of Arizona, 1975.
 (14) H. B. Gray, I. Bernal, and E. Billig, J. Am. Chem. Soc., 84, 3404 (1962).
- (15) P. Brant and R. D. Feltham, unpublished results.
 (16) O. A. Ileperuma and R. D. Feltham, *Inorg. Synth.*, 16, 5-7 (1976).
- (17) Beilstein, 4th ed, 12, 237 (1950).
- W. H. Gardner and H. Weinberger, Inorg. Synth., 1, 84 (1939). (18)
- (19) P. W. R. Corfield, R. J. Doedens, and J. A. Ibers, Inorg. Chem., 6, 197 (1967).
- (20)The program used for data reduction was Raymond's UCFACS, itself a modification of Doedens and Ibers' PIKOUT. Other computer programs used included local versions of Zalkin's FORDAP Fourier summation programs, Ibers' NUCLS group least-squares refinement program based upon Busing and Levy's ORFLS, Busing and Levy's ORFFE, Johnson's ORTEP plotting program, R. J. Dellaca's DANFIG program which itself is a modification of C. K. Johnson's ORTEP, and Raymond and Iber's FINDH program. All computations were performed on a CDC 6400 computer.
 (21) D. T. Cromer and J. T. Waber, Acta Crystallogr., 18, 104 (1965).
 (22) R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 42,
- 3175 (1965).

- (23) J. A. Ibers and W. C. Hamilton, Acta Crystallogr., 17, 781 (1964).
 (24) D. T. Cromer, Acta Crystallogr., 18, 17 (1965).
 (25) P. T. Manoharan and W. C. Hamilton, Inorg. Chem., 2, 1043 (1963). W. C. Hamilton, "Statistics in Physical Science", Ronald Press, New (26)
- York, N.Y., 1964, pp 174–183. (27) O. A. Ileperuma and R. D. Feltham, *Inorg. Chem.*, 14, 3042 (1975).
- (28)B. A. Frenz and J. A. Ibers, MTP Int. Rev. Sci.: Phys. Chem., Ser. One, 11, 33 (1972).

- 11, 33 (1972).
 (29) N. C. Payne, Inorg. Chem., 11, 1376 (1972).
 (30) B. B. Wayland and L. W. Olson, J. Am. Chem. Soc., 96, 6037 (1974).
 (31) M. O. Broitman, Yu. G. Borodko, T. A. Stoylarova, and A. E. Shilov, Bull. Acad. Sci. USSR, Div. Chem. Sci., 19, 889 (1970).
 (32) F. A. Palocsay and J. V. Rund, Inorg. Chem., 8, 696 (1969).
 (33) C. Lazard, S. Pirantaro, and A. Eoffani, I. Organomet. Chem., 20, 284
- (33) G. Innorta, S. Pignataro, and A. Foffani, J. Organomet. Chem., 20, 284 (1969).
- (34) G. Innorta, S. Torroni, and A. Foffani, J. Organomet. Chem., 66, 459 (1974).
- R. E. Clarke and P. C. Ford, Inorg. Chem., 9, 227 (1970).
- (36) K. Nakamoto, "Infrared Spectra of Inorganic and Coordination Compounds", Wiley, New York, N.Y., 1963.
- (37) D. M. Adams, "Metal Ligand and Related Vibrations", St. Martin's Press, New York, N.Y., 1968.
- J. G. Gordon, II, and R. H. Holm, J. Am. Chem. Soc., 92, 5319 (1970).

- (39) D. G. Bickley and N. Serpone, *Inorg. Chem.*, 13, 2908 (1974).
 (40) F. Basolo and R. G. Pearson, "Mechanisms of Inorganic Reactions", 2nd ed, Wiley, New York, N.Y., 1967, p 176.
 (41) J. L. Burmeister, R. L. Hassel, and R. J. Phelan, *Chem. Commun.*, 676 (1970).

- (42) A. Sabatini and I. Bertini, *Inorg. Chem.*, 4, 1665 (1965).
 (43) F. A. Cotton and F. Zingales, *J. Am. Chem. Soc.*, 83, 351 (1961).
 (44) J. C. W. Chien, *J. Am. Chem. Soc.*, 91, 2166 (1969).
 (45) D. Gwost and K. G. Caulton, *Inorg. Chem.*, 12, 2095 (1973).
 (46) R. W. Callahan, G. M. Brown, and T. J. Meyer, *J. Am. Chem. Soc.*, 97, 924 (1975). 97, 894 (1975).
- (47) M. Chan and A. C. Wahl, paper presented at the 167th National Meeting of the American Chemical Society, Los Angeles, Calif., April 1974; see Abstracts, No. INOR 97.
- (48) R. F. Fenske and R. D. DeKock, Inorg. Chem., 9, 1053 (1970).