Reactions of $(tolan)(CO)_6Co_2$

Inorganic Chemistry, Vol. 16, No. 8, 1977 1923

References and Notes

- (1) D. A. Buckingham, C. E. Davis, and A. M. Sargeson, J. Am. Chem. D. A. Buckingham, F. R. Keene, and A. M. Sargeson, J. Am. Chem.
- (2)Soc., **96**, 4981 (1974).
- (3) J. D. Bell, A. R. Gainsford, B. T. Golding, A. J. Herlt, and A. M. Sargeson, J. Chem. Soc., Chem. Commun., 980 (1974).
- (4) B. T. Golding, J. Harrowfield, and A. M. Sargeson, J. Am. Chem. Soc., 96, 3003 (1974).
- (5) J. Harrowfield and A. M. Sargeson, J. Am. Chem. Soc., 96, 2634 (1974).
 (6) B. T. Golding, J. Harrowfield, G. B. Robertson, A. M. Sargeson, and
- P. O. Whimp, J. Am. Chem. Soc., 96, 3691 (1974).
 (7) R. Breslow, R. Fairweather, and J. Keana, J. Am. Chem. Soc., 89, 2135

- 972).
- (11) M. A. Bennett, and T. Yoshida, J. Am. Chem. Soc., 95, 3030 (1973).
- (12) D. A. Buckingham, F. R. Keene, and A. M. Sargeson, J. Am. Chem. Soc., 95, 5649 (1973).
- (13) D. A. Buckingham, B. M. Foxman, A. M. Sargeson, and A. Zanella, J. Am. Chem. Soc., 94, 8246 (1972).
 (14) K. B. Nolan and R. W. Hay, J. Chem. Soc., Dalton Trans., 914 (1974).
- (15) D. A. Buckingham, A. M. Sargeson, and A. Zanella, J. Am. Chem. Soc., 94, 1007 (1972).
- (16) R. Adams and W. D. Langley, "Organic Syntheses", Collect. Vol. I, Witey, New York, N.Y., 1941, p 355. (17) W. K. Anslow and H. King, "Organic Syntheses", Collect. Vol. I, Wiley,
- New York, N.Y., 1941, p 298. (18) S. R. Buc, "Organic Syntheses", Collect. Vol. III, Wiley, New York, N.Y., 1955, p 93.
- (19) E. Baraniak, Ph.D. Thesis, The Australian National University, March
- (20) J. Meisenheimer, Justus Liebigs Ann. Chem., 438 217 (1924); D. A. Buckingham, C. E. Davis, and A. M. Sargeson, J. Am. Chem. Soc., 92, 5159 (1970), and ref 8 therein.
- (21) D. A. Buckingham, C. E. Davis, D. M. Foster, and A. M. Sargeson, J. Am. Chem. Soc., 92, 5571 (1970).

- (22) D. A. Buckingham, D. M. Foster, and A. M. Sargeson, J. Am. Chem. Soc., 92, 6151 (1970).
- (23) D. A. Buckingham and C. Boreham, unpublished work.
- (24) D. A. Buckingham, D. M. Foster, and A. M. Sargeson, J. Am. Chem. Soc., 91, 4102 (1969).
- (25) D. A. Buckingham, A. M. Sargeson, M. Wein, and A. Zanella, in preparation. (26) D. A. Buckingham, S. F. Mason, A. M. Sargeson, and K. R. Turnbull,
- Inorg. Chem., 5, 1649 (1966).
- (27) D. A. Buckingham, J. Dekkers, A. M. Sargeson, and L. G. Marzilli, Inorg. Chem., 12, 1207 (1973). (28) J. Blount, H. C. Freeman, K. Turnbull, and A. M. Sargeson, Chem. Commun., 324 (1967).
- (29) R. D. Gillard, N. C. Payne, and G. B. Robertson, J. Chem. Soc. A, 2579
- (1970).
- (30) A. Haim and H. Taube, J. Am. Chem. Soc., 85, 3108 (1963).
 (31) C. Bifano and R. G. Linck, Inorg. Chem., 7, 908 (1968); J. H. Worrell, ibid., 14, 1699 (1975)
- (32) D. A. Buckingham, I. I. Olsen, and A. M. Sargeson, Inorg. Chem., 6, 1807 (1967); J. Am. Chem. Soc., 90, 6654 (1968).
- (33) F. A. Posey and H. Taube, J. Am. Chem. Soc., 79, 255 (1957).
- (34) A. Haim and H. Taube, Inorg. Chem., 2, 1199 (1963).
- (35) D. A. Buckingham, D. J. Francis, and A. M. Sargeson, Inorg. Chem., 13, 2630 (1974).
- (36) D. A. Buckingham, I. I. Olsen, A. M. Sargeson, and H. Satrapa, Inorg. Chem., 6, 1027 (1967).
- (37) J. C. Sullivan, personal communication.
 (38) C. R. Clarke and R. W. Hay, J. Chem. Soc., Dalton Trans., 2148 (1974).
 (39) B. S. Rabinovitch and C. A. Winkler, Can. J. Res., Sect. B, 20, 185 (1942).

- (40) K. B. Wiberg, J. Am. Chem. Soc., 77, 2519 (1955).
 (41) C. D. Ritchie and W. F. Sager, Prog. Phys. Org. Chem., 2, 323 (1964).
- (42) Program written by L. M. Engelhardt for the PDP-11.
 (43) K. B. Yatsimirskii and V. D. Korableva, Russ. J. Inorg. Chem. (Engl.
- Transl.), 9, 195 (1964) (44) D. A. Owensby, Ph.D. Thesis, The Australian National University, Feb
- 1975, p 131.
 (45) L. G. Sillén and A. E. Martell, Chem. Soc., Spec. Publ., No. 17, 180–181 (1964).
- (46) D. A. Buckingham and L. M. Engelhardt, J. Am. Chem. Soc., 97, 5915 (1975).

Contribution from the Chemistry Department of Concordia University, Sir George Williams Campus, Montreal, Quebec, H3G 1M8, Canada

Reactions of μ -Diphenylethyne-hexacarbonyldicobalt with Bis(diphenylphosphino)methane and Bis(diphenylarsino)methane. Crystal Structures of $(tolan)(dpm)Co_2(CO)_4$ and $(tolan)(dam)_2Co_2(CO)_2 C_2H_4Cl_2$

PETER H. BIRD,* ALAN R. FRASER, and DAVID N. HALL

Received September 20, 1976

AIC60689Q

The bidentate ligands bis(diphenylphosphino)methane (dpm) and bis(diphenylarsino)methane (dam) displace two or four carbonyl groups from μ -tolan-hexacarbonyldicobalt, (tolan)(CO)₆Co₂ (tolan = diphenylethyne). Single-crystal x-ray diffraction studies have yielded the molecular geometries of μ -bis(diphenylphosphino)methane- μ -tolan-tetracarbonyldicobalt and di-µ-bis(diphenylarsino)methane-µ-tolan-dicarbonyldicobalt. The crystal data for the phosphino complex (tolan)(dpm)Co₂(CO)₄ are as follows: space group $P2_1/n$ (C_{2h}^5 ; No. 14, nonstandard setting) with a = 19.97 (2) Å, b = 20.41 (2) Å, c = 15.45 (2) Å, $\beta = 97.57$ (7)°, V = 3742 Å³, Z = 4. A unique quadrant of 3144 diffraction intensities with $I > 3\sigma(I)$ and $2\theta < 100$ 40° (Mo K α radiation), collected on a Picker FACS-1 diffractometer, was used to solve and refine the structure by conventional Patterson, Fourier, and full-matrix least-squares techniques. Phenyl groups were constrained as idealized rigid groups with isotropic thermal parameters; remaining atoms were refined anisotropically to final discrepancy indices $R_F = 0.088$ and $R_{wF} = 0.102$. The bidentate phosphine ligand bridges between the cobalt atoms. The cobalt-cobalt bond length is 2.459 (2) Å and the cobalt-phosphorus bond lengths are 2.210 (3) and 2.215 (3) Å, while those from cobalt to "acetylene" carbon atoms are 1.97 (1), 1.95 (1), 1.94 (1), and 1.92 (1) Å. The carbon-carbon distance is 1.33 (1) Å. The arsino complex (tolan)(dam)₂Co₂(CO)₂ was crystallized as the dichloroethane monosolvate: space group $P\overline{1}$ (C_1^1 , No. 2) with a = 14.207 (4) Å, b = 17.321 (5) Å, c = 13.736 (4) Å, $\alpha = 73.63$ (2)°, $\beta = 112.44$ (2)°, $\gamma = 99.78$ (2)°, V = 2990 Å³, Z = 2. Structure solution and refinement employed 4158 intensities measured in a unique hemisphere on the diffractometer ($I > 3\sigma(I)$ and $2\theta < 40^\circ$ using Mo K α radiation). Refinement with rigid rings was terminated with $R_F = 0.086$ and $R_{wF} = 0.075$. The arsine ligands both bridge between the cobalt atoms which are 2.518 (4) Å apart. Cobalt-arsenic bond lengths are 2.326 (4), 2.330 (4), 2.332 (4), and 2.348 (3) Å. The cobalt to "acetylene" carbon distances are 1.97 (1), 1.98 (1), 1.95 (1), and 1.95 (1) Å while the carbon-carbon distance is 1.37 (3) Å.

Introduction

The replacement of up to two carbonyl groups on alkynehexacarbonyldicobalt is facile with a large range of ligands.¹ To progress beyond two, monodentate ligands must have good π -acceptor properties. Thus trialkyl or triaryl phosphites² or trifluorophosphine³ replaces a maximum of four carbonyl groups. The preparation of complexes in which two carbonyl groups have been replaced by a bridging ligand has been

Table I.	Experimental	Data for	X-Ray	Diffraction	Studies
----------	--------------	----------	-------	-------------	---------

Α.	Crystal	Parameters at	18	°C Assuming	λ(Μο	Kα)	0.710	69	Å
----	---------	---------------	----	-------------	------	-----	-------	----	---

· · · · · · · · · · · · · · · · · · ·	<u> </u>	(tolan)(dpm)Co ₂ (CO) ₄	$(tolan)(dam)_2Co_2(CO)_2 \cdot C_2H_4Cl_2$
	<i>a</i> , A	11.97 (2) 11.97 ^a	14.207 (4) 14.207 ^a
	<i>b</i> , A	20.41(2) 20.41	17.321 (5) 17.321
	C, A	15.45 (2) 18.25	13./36 (4) 18.830 72.62 (2) 125.64
	a, ueg	90 90 90	(5.05(2) - 155.04)
	p, deg	97.37(7) 122.98	112.44(2) 97.14
	V A 3	3742 3742	2990 2990
	Space group	$P_2 / n P_2 / c$	PĨ PĨ
	Space group	C_{1}^{5} No. 14	C_{s}^{1} , No. 2
	Mol wt	796.84	1395.67
	Z	4	2
	ρ_{calcd} , g cm ⁻³	1.40	1.55
	ρ_{obsd} , g cm ⁻³ (by flotation in aqueous ZnI,	1.35 (2)	1.54 (2)
	μ, cm^{-1}	10.49	30.30
	Crystal dimensions		
	(100)→(100), mm	0.2	0.1
	(010)→(01 <u>0</u>), mm	0.2	0.1
	(001)→(001), mm	0.2	0.1
	Estd transmission factors	0.80-0.86%	0.74-0.81%
	Radiatio Monoch Crystal t Detector set f Attenua Takeoff Detector Scan typ Scan len start	B. Measurement of Intensity E on: Mo K α romator: Highly oriented graphite 26 to detector distance: 25 mm r: scintillation counter and pulse heig or 100% of Mo K α peak tors: Ni foil used for intensities >10° angle: 3.0° r aperture: 4 mm × 4 mm pe: coupled θ (crystal)-2 θ (detector), gth: $\Delta(2\theta) =$ (base width (see below) ing (base width/2.0) below Mo K α per	Data $\theta_{002} = 12.1^{\circ}$ ght analyzer ⁴ Hz $1.0^{\circ} \min^{-1}$)) + 0.692 tan θ) ^o ak
	······································	(tolan)(dpm)Co ₂ (Co	$O)_4$ (tolan)(dam) ₂ Co ₂ (CO) ₂
	Rotation axis	[001]	[100]

	$(totall)(upin)Co_2(CO)_4$	$((01an)(0an)_2 CO_2(CO)_2)$	
 Rotation axis	[001]	[100]	
Reflections measd	$\pm h, +k, +l$	$+h,\pm k,\pm l$	
Min 2θ , deg	4	4	
Max 2θ , deg	40	40	
Scan length, deg	2.1	2.0	
Std reflections (every 50 cycles)	600, 060, 006	800, 0,11,0, 006	
Variation of standards	10% (random)	10% (random)	
Reflections collected	3942	6047	
Reflections where $I > 3\sigma(I)$	3144	4158	

^a Reduced cells.

described.⁴ The bridging acetylene was emplaced after the bidentate ligand

$$Co_{2}(CO)_{8} \xrightarrow{LL} (LL)Co_{2}(CO)_{6} \xrightarrow{\text{tolan}} (\text{tolan})(LL)Co_{2}(CO)_{4}$$
$$LL = dpm, dam, \text{ or } [(C_{6}H_{6}), Sb], CH,$$

Here we report the preparations of 1:1 and 1:2 complexes by an alternative route: prior attachment of the acetylene moiety

$$\frac{\text{Co}_{2}(\text{CO})_{8}}{-2\text{CO}} \xrightarrow{\text{tolan}} (\text{tolan})\text{Co}_{2}(\text{CO})_{6} \xrightarrow{\text{LL}} (\text{tolan})(\text{LL})\text{Co}_{2}(\text{CO})_{4}}{-2\text{CO}}$$
$$\xrightarrow{\text{LL}} (\text{tolan})(\text{LL})_{2}\text{Co}_{2}(\text{CO})_{2}$$

The ligands $(CH_3)_2AsC = C(As(CH_3)_2)CF_2CF_2$ (f4fars), $(C_6H_5)_2PC = C(P(C_6H_5)_2)CF_2CF_2$ (f4fos), and cis- $(CH_3)_2AsC(CF_3) = C(CF_3)As(CH_3)_2$ (dab) have also been

shown to yield 1:2 complexes by this route.² We have determined the crystal and molecular structures of (tolan)(dpm)Co₂(CO)₄ and (tolan)(dam)₂Co₂(CO)₂ both to confirm the overall geometry and to compare the (tolan)Co₂ units in these structures with the parent (alkyne) $Co_2(CO)_6$ fragment.⁵⁻⁷

Experimental Section

Dicobalt octacarbonyl $(Co_2(CO)_8)$ purchased from Alfa-Ventron, Beverley, Mass., and tolan (diphenylethyne), from Eastman Organic Chemicals, Rochester, N.Y., were used to prepare (tolan)Co₂(CO)₆.⁸ [(C₆H₅)₂P]₂CH₂ (dpm) and [(C₆H₅)₂As]₂CH₂ (dam) were obtained from Alfa-Ventron. Solution infrared spectra were obtained on a Perkin-Elmer Model 457 recording spectrometer.

Microanalyses were performed by Galbraith Laboratories, Inc., Knoxville, Tenn.

Preparation of (tolan)(dpm)Co₂(CO)₄. (tolan)Co₂(CO)₆, 0.47 g (1.0 mmol), and dpm, 0.39 g (1.0 mmol), were dissolved in 50 mL of *n*-hexane, and the solution was refluxed under N₂ for 1.5 h. The solution was concentrated and cooled to room temperature. The red precipitate was filtered off, washed with cold hexane, and recrystallized from a hexane–dichloroethane mixture; yield 70%; mp 200 °C dec.

Anal. Calcd for $C_{43}H_{32}Co_2O_4P_2$: C, 65.35; H, 4.05; Co, 14.79; P, 7.77. Found: C, 65.23; H, 4.16; Co, 14.70; P, 7.83.

The infrared spectrum showed the following maxima. In C_2Cl_4 solution: 3070 (sh), 3058 (w), 3020 (vw), 3010 (sh), 2033 (s), 2000 (s), 1975 (s), 1592 (w), 1483 (w), 1435 (w) cm⁻¹. From a solution in CS₂: 1366 (vw), 1328 (vw), 1304 (vw), 1276 (vw), 1002 (vw), 968 (vvw), 922 (vw), 840 (vvw), 785 (w), 740 (m), 720 (w), 695 (m), 632 (vw), 625 (vw) cm⁻¹.

Reactions of (tolan)(CO)₆Co₂

Inorganic Chemistry, Vol. 16, No. 8, 1977 1925

Table II.	Final Positional Parameters ^a	for (tolan)(dpm)Co ₂ (CO),	1
14010 11.	1 mai 1 Obi cional 1 arannecero	101 (to min)(=p-11) = 2 (= 2)	ł

Atom	x	y	Z
Co1	0.29013 (12)	0.40511 (7)	0.16834 (9)
Co2	0.36081 (12)	0.33636 (7)	0.05663 (9)
P1	0.42922 (23)	0.37725 (14)	0.27022 (18)
P2	0.49280 (24)	0.28213 (14)	0.14186 (18)
C12	0.4670 (9)	0.2911 (4)	0.2562 (6)
CA1	0.2091 (8)	0.3650 (5)	0.0625 (7)
CA2	0.2373 (8)	0.3199 (5)	0.1235 (6)
CCOA	0.1893 (10)	0.4198 (6)	0.2341 (8)
OCOA	0.1191 (7)	0.4296 (4)	0.2776 (6)
CCOB	0.3145 (9)	0.4857 (6)	0.1308 (8)
OCOB	0.3230 (7)	0.5372 (4)	0.1031 (7)
CCOC	0.4184 (12)	0.3993 (7)	-0.0016 (9)
OCOC	0.4467 (10)	0.4392 (6)	-0.0451 (8)
CCOD	0.3367 (11)	0.2793 (7)	-0.0252 (8)
OCOD	0.3143 (10)	0.2431 (6)	-0.0808 (7)
C1A1	0.5647 (5)	0.4191 (4)	0.2817 (5)
C1A2	0.6516 (6)	0.3967 (3)	0.3431 (4)
C1A3	0.7564 (5)	0.4270 (4)	0.3511 (5)
C1A4	0.7743 (5)	0.4798 (4)	0.2976 (6)
C1A5	0.6874 (7)	0.5022 (3)	0.2362 (5)
C1A6	0.5826 (6)	0.4718 (4)	0.2282 (4)
C1B1	0.3960 (6)	0.3800 (4)	0.3820 (4)
C1B2	0.3747 (6)	0.3241 (3)	0.4285 (5)
C1B3	0.3412 (7)	0.3298 (4)	0.5110 (5)
C1B4	0.3291 (7)	0.3914 (5)	0.5469 (4)
C1B5	0.3505 (7)	0.4473 (3)	0.5004 (5)
C1B6	0.3840 (6)	0.4416 (3)	0.4179 (5)
C2A1	0.6420 (5)	0.2983 (4)	0.1465 (5)
C2A2	0.7196 (7)	0.2622 (3)	0.2020 (5)
C2A3	0.8337 (6)	0.2770 (4)	0.2086 (5)
C2A4	0.8702 (5)	0.3280 (5)	0.1597 (6)
C2A5	0.7927 (8)	0.3641 (4)	0.1042 (6)
C2A6	0.6786 (7)	0.3493 (4)	0.0976 (5)
C2B1	0.4844 (7)	0.1938 (3)	0.1218 (5)
C2B2	0.5412 (6)	0.1694 (4)	0.0559 (5)
C2B3	0.5285 (7)	0.1041 (5)	0.0310 (5)
C2B4	0.4589 (8)	0.0632 (3)	0.0721 (6)
C2B5	0.4021 (7)	0.0877 (4)	0.1380 (6)
C2B6	0.4149 (7)	0.1530 (4)	0.1629 (5)
CP11	0.1177 (6)	0.3869 (4)	-0.0030 (4)
CP12	0.1273 (6)	0.4446 (4)	-0.0492 (6)
CP13	0.0407 (8)	0.4638 (4)	-0.1131 (6)
CP14	-0.0554 (6)	0.4253 (4)	-0.1308 (5)
CP15	-0.0649 (6)	0.3676 (4)	-0.0845 (6)
CP16	0.0216 (7)	0.3484 (3)	-0.0206 (5)
CP21	0.1859 (6)	0.2604 (3)	0.1580 (5)
CP22	0.1525 (8)	0.2094 (4)	0.1006 (4)
CP23	0.1080 (8)	0.1524 (4)	0.1313 (6)
CP24	0.0971 (7)	0.1462 (4)	0.2194 (7)
CP25	0.1306 (8)	0.1971 (5)	0.2768 (4)
CP26	0.1750 (7)	0.2542 (4)	0.2462 (5)

^a The estimated standard deviations in parentheses are right justified to the least significant digits of the fractional coordinates.

Preparation of (tolan)(dam)₂Co₂(CO)₂·C₂H₄Cl₂. (tolan)Co₂(CO)₆, 0.47 g (1 mmol), was treated with dam, 0.94 g (2.0 mmol), in 50 mL of refluxing toluene under N₂ for 48 h. The red solution was filtered hot, and the solvent removed under nitrogen. The residue was extracted with 1,2-dichloroethane, hexane was added, and the solution concentrated. The brown microcrystalline product, which was obtained upon cooling the solution, was recrystallized from a C₂H₄Cl₂-hexane mixture; yield 57%; mp 192–193 °C.

Anal. Calcd for $C_{68}H_{58}As_4Cl_2Co_2O_2$: C, 58.52; H, 4.19. Found: C, 58.33; H, 4.12.

The infrared spectrum in CH₂Cl₂ showed maxima at 1920 (s), 1590 (w), 1078 (w), 1028 (w), 1004 (w) cm⁻¹.

Collection of X-Ray Diffraction Data. Weissenberg and precession photographs of the three zero and three first levels were obtained to check the mosaicity of the crystals and obtain approximate cell dimensions. The crystal was approximately aligned on a fully automated Picker Nuclear FACS-1 diffractometer, and accurate setting

Figure 1. Atom labeling in (tolan)(dpm)Co₂(CO)₄.

Figure 2. Atom labeling in $(tolan)(dam)_2Co_2(CO)_2$.

angles for 12 Bragg reflections, at both positive and negative 2θ , were measured. At the 30-35° 2θ angles involved, the $K\alpha_1-K\alpha_2$ doublet was not resolved. The angles were used in a least-squares calculation to obtain the quoted cell parameters and a refined orientation matrix.

Details of the unit cell measurement, space group determination, and intensity data collection are collected in Table I. The Picker Disc Operating System was used for all automatic diffractometer operations. The data were processed using a locally written program:

$$I \text{ (intensity)} = N - Bt_{\rm s}/t_{\rm b}$$

$$\sigma(I) = [N + B(t_{\rm s}/t_{\rm b})^2 + (0.02N)^2]^{1/2}$$

where N and B are the counts accumulated during the scan period t_s and total background counting time t_b , respectively. Data for which $I < 3\sigma(I)$ were discarded and the remainder were corrected for Lorentz and polarization effects:

$$(Lp)^{-1} = \sin 2\theta_{\rm s}(\cos^2 2\theta_{\rm m} + 1)/(\cos^2 2\theta_{\rm m} + \cos^2 2\theta_{\rm s})$$

where $2\theta_{\rm m}$ and $2\theta_{\rm s}$ are diffraction angles at the monochromator and

Bird. F	raser.	and	Hall
---------	--------	-----	------

Atom	β_{11}	β22	β ₃₃	β ₁₂	β ₁₃	β ₂₃
Co1 Co2 P1 P2 C12	61.0 (13) 71.2 (15) 60.9 (25) 65.1 (26) 82 (10)	17.8 (4) 25.1 (5) 17.4 (8) 19.1 (9) 13 (3)	42.4 (8) 35.6 (8) 33.0 (14) 35.3 (15) 38 (6)	3.3 (6) 4.9 (6) 2.9 (11) 5.0 (12) 12 (4)	$\begin{array}{r} -3.2 (8) \\ -2.9 (8) \\ -0.2 (16) \\ 1.7 (16) \\ 8 (6) \end{array}$	$\begin{array}{c} 0.6 (5) \\ 0.0 (5) \\ -2.3 (9) \\ -4.6 (9) \\ 0 (3) \end{array}$
CA1 CA2	53 (9) 66 (10)	22 (3) 19 (3)	46 (6) 35 (6)	-8 (4) 2 (4)	0 (6) -10 (6)	5 (4) 2 (4)
CCOA OCOA CCOB OCOB CCOC OCOC CCOD OCOD	82 (12) 101 (9) 55 (10) 113 (10) 117 (15) 167 (13) 116 (14) 218 (15)	22 (4) 43 (3) 26 (4) 23 (3) 43 (5) 72 (5) 39 (5) 69 (5)	49 (7) 80 (6) 64 (8) 113 (7) 52 (8) 114 (9) 50 (8) 76 (7)	$ \begin{array}{r} -10 (5) \\ 12 (4) \\ 8 (5) \\ 5 (4) \\ 1 (7) \\ 7 (6) \\ 8 (6) \\ 4 (7) \end{array} $	8 (8) 33 (6) -12 (7) 5 (6) 3 (9) 22 (9) -18 (8) -19 (8)	3 (4) -3 (4) 6 (5) 17 (4) 14 (5) 51 (6) -12 (5) -37 (5)
Atom	<i>B</i> , Å ²		Atom	<i>B</i> , Å ²	Atom	<i>B</i> , Å ²
C1A1 C1A2 C1A3 C1A4 C1A5 C1A6	3.8 (2) 5.2 (3) 5.8 (3) 5.9 (3) 6.9 (4) 4.6 (3)	ţ	C2A1 C2A2 C2A3 C2A4 C2A5 C2A6	4.1 (2) 5.2 (3) 6.4 (3) 7.1 (3) 8.3 (4) 6.6 (3)	CP11 CP12 CP13 CP14 CP15 CP16	4.0 (2) 7.0 (4) 7.5 (4) 6.2 (3) 6.9 (3) 5.6 (3)
C1B1 C1B2 C1B3 C1B4 C1B5 C1B6	3.5 (2) 4.9 (3) 6.9 (3) 6.6 (3) 6.5 (3) 5.4 (3)		C2B1 C2B2 C2B3 C2B4 C2B5 C2B6	4.1 (2) 6.5 (3) 8.4 (4) 7.2 (4) 7.4 (4) 6.2 (3)	CP21 CP22 CP23 CP24 CP25 CP26	4.4 (3) 6.3 (3) 8.8 (4) 7.9 (4) 7.3 (4) 5.6 (3)

Table III. Final Thermal Parameters^a for (tolan)(dpm)Co₂(CO)₄

^a Anisotropic thermal parameters are applied in the expression $\exp[-(h^2\beta_{11} + k^2\beta_{22} + l^2\beta_{33} + 2hk\beta_{12} + 2hl\beta_{13} + 2kl\beta_{23})]$. They are multiplied by 10⁴. Estimated standard deviations in parentheses are right justified to the least significant digits of the thermal parameter.

Figure 3. Projection of $(tolan)(dpm)Co_2(CO)_4$ directly down the cobalt-cobalt vector.

sample crystals, respectively. In view of the relatively invariant transmission factors of the very small crystals, absorption corrections were not applied.

Solution and Refinement of Structures

The scattering factors for neutral atoms were taken from the listings of Cromer and Waber,⁹ and real and imaginary anomalous dispersion corrections were applied for the "heavy" atoms.¹⁰ We used the following equations

$$R_F = \sum ||F_o| - |F_c|| / \sum |F_o|$$
$$R_{wF} = \sum (\sum (|F_o| - |F_c|)^2 / \sum (|F_o|^2)^{1/2}$$

Figure 4. Projection of $(tolan)(dam)_2Co_2(CO)_2$ directly down the cobalt-cobalt vector.

The standard deviation in an observation of unit weight is

"goodness of fit" = $[\Sigma w(|F_o| - |F_c|)^2/(m-n)]^{1/2}$

where *m* is the number of reflections, *n* is the number of refined variables, and $w[F(hkl)] = \sigma^{-2}[F(hkl)]$.

Fourier and Patterson syntheses were calculated using FORDAP by Zalkin; structure factor and least-squares calculations were performed using NUCLS (by J. A. Ibers). All computing was carried out on the Concordia University CDC 6400 computer.

a. $(tolan)(dpm)Co_2(CO)_4$. The positions of the two independent cobalt atoms were determined from a three-dimensional Patterson synthesis. A structure factor calculation (R = 49.9%) was used as the basis for a Fourier synthesis which revealed the position of the two phosphorus atoms, the carbonyl groups, the "acetylene" carbon atoms, and most of the carbon atoms of the six phenyl rings. After one cycle of full-matrix least-squares refinement and a structure factor calculation (R = 25.2%), a difference Fourier showed the remaining

Table IV. Final Positional Parameters^a for (tolan)(dam)₂Co₂(CO)₂·C₂H₄Cl₂

Atom	x	у	, z	Atom	x	у	Z
Co1	0.31578 (17)	0.27155 (15)	0.46306 (20)	C3A2	0.0345 (8)	0.2653 (6)	-0.0068 (11)
Co2	0.14594 (17)	0.19851 (15)	0.38388 (20)	C3A3	-0.0128 (10)	0.2248 (8)	0.0893 (8)
As1	0.30253 (14)	0.37498 (12)	0.30865 (17)	C3A4	0.0952 (8)	0.1283 (6)	0.0228 (12)
As2	0.42387 (13)	0.17762 (12)	0.47964 (16)	C3A5	-0.0777 (9)	0.1564 (8)	-0.0745 (10)
As3	0.08522 (14)	0.28668 (12)	0.21369 (16)	C3A6	0.0479 (9)	0.1688 (8)	0.1053 (8)
As4	0.20748 (13)	0.10286 (12)	0.33533 (16)	C3B1	-0.0186(10)	0 3647 (9)	0.1761(10)
C13	0.1956 (13)	0.3564 (11)	0.1695 (14)	C3B2	0.0160 (10)	0.3077(0)	0.1533(12)
C24	0.3502 (11)	0.0776 (10)	0.4368 (13)	C3B3	-0.0663(14)	0.5008 (6)	0.1305(12) 0.1306(13)
CAL	0 1891 (13)	0.2602 (11)	0 4926 (15)	C3B4	-0.1636(12)	0.5000(0)	0.1300(13) 0.1307(12)
	0.1091(13) 0.2262(13)	0.2002(11) 0.1902(12)	0.4920(13) 0.5361(14)	C3B5	-0.1030(12)	0.3890 (12)	0.1535(12)
CA2	0.2303 (13)	0.1895(15)	0.3301 (14)	C3B6	-0.1363(0)	0.3355(7)	0.1333(12) 0.1762(12)
CC01	0.4017 (12)	0.3201 (10)	0.5566 (15)	C3D0	-0.1100 (12)	0.5555 (7)	0.1702 (12)
OC01	0.4556 (10)	0.3572 (8)	0.6184 (12)	C4A1	0.2322 (10)	0.1247 (8)	0.1995 (8)
CCO2	0.0260 (12)	0.1531 (10)	0.3909 (14)	C4A2	0.3091 (8)	0.1812 (7)	0.1805 (9)
OCO2	-0.0486 (9)	0.1292 (8)	0.4039 (12)	C4A3	0.3237 (8)	0.1980 (7)	0.0819 (12)
C1A1	0.4159 (8)	0.4193 (7)	0.2565 (11)	C4A4	0.2613 (11)	0.1582 (8)	0.0023 (8)
C1A2	0.4955 (11)	0.4643 (8)	0.3175 (9)	C4A5	0.1844 (9)	0.1017 (8)	0.0213 (9)
C1A3	0.5815 (8)	0.4910 (7)	0.2891 (12)	C4A6	0.1698 (8)	0.0849 (6)	0.1199 (11)
C1A4	0.5880 (9)	0.4728 (8)	0.1997 (13)	C4B1	0.1454 (10)	-0.0068 (6)	0.3423 (10)
C1A5	0.5085 (12)	0.4278 (9)	0.1387 (10)	C4B2	0.0425 (9)	-0.0229 (7)	0.3285 (10)
C1A6	0.4224 (9)	0.4010 (7)	0.1671 (10)	C4B3	-0.0019 (7)	-0.1010 (9)	0.3298 (10)
C1 P1	0.2661 (0)	0 4 800 (7)	0 2002 (13)	C4B4	0.0566 (11)	-0.1629 (6)	0.3450 (11)
CIBI	0.2001(9)	0.4600(7)	0.3092(13)	C4B5	0.1595 (10)	-0.1468 (7)	0.3587 (10)
CID2	0.2320(10)	0.3430(10) 0.6171(9)	0.2203(3)	C4B6	0.2039 (7)	-0.0688 (8)	0.3574 (10)
C1D3	0.2222(10) 0.2047(10)	0.01/1(0)	0.2220(10) 0.2125(14)	CD11	0 1431 (10)	0 2062 (7)	0 5 2 7 5 (11)
C104	0.2047(10)	0.0230(7)	0.3123(14) 0.4012(10)	CD12	0.1431(10) 0.1904(7)	0.3002(7)	0.5375(11)
C1D3	0.2160(10)	0.3374(10)	0.4013(10) 0.2007(9)	CP12	0.1304(7) 0.1457(11)	0.3177(0)	0.6420(10)
CIBO	0.2400 (9)	0.4636 (6)	0.3337 (8)	CP14	0.1437(11) 0.0526(11)	0.3027(3)	0.0733(0)
C2A1	0.5336 (8)	0.1997 (9)	0.4190 (10)	CD14	0.0330(11)	0.3904(7)	0.0131(13)
C2A2	0.5615 (11)	0.1421 (6)	0.3841 (11)	CD16	0.0003(8)	0.3047 (0)	0.3060(11)
C2A3	0.6462 (12)	0.1580 (8)	0.3525 (11)	CFIG	0.0310(10)	0.3399 (8)	0.4/0/(8)
C2A4	0.7031 (8)	0.2316 (10)	0.3558 (11)	CP21	0.2601 (9)	0.1228 (6)	0.6374 (8)
C2A5	0.6752 (10)	0.2892 (7)	0.3907 (11)	CP22	0.2152 (7)	0.0450 (8)	0.6375 (8)
C2A6	0.5905 (10)	0.2733 (7)	0.4223 (10)	CP23	0.2392 (9)	-0.0148 (5)	0.7334 (11)
C2B1	0.5115 (8)	0.1312 (8)	0.6311 (7)	CP24	0.3081 (9)	0.0032 (7)	0.8292 (8)
C2B2	0.4990 (8)	0.0512(7)	0.6842(10)	CP25	0.3531 (8)	0.0810 (8)	0.8291 (8)
C2B3	0.5644 (10)	0.0220 (6)	0.7895 (10)	CP26	0.3291 (8)	0.1408 (6)	0.7332 (11)
C2B4	0.6422(9)	0.0728(9)	0.8417 (8)	C11	0.5712(7)	0.6864 (6)	0.1136 (7)
C285	0.6547 (8)	0.1529 (8)	0.7885(11)	ČS1	0.4374(21)	0.6635 (23)	0.0866 (31)
C286	0 5893 (10)	0.1821(5)	0.6832 (11)	CS2	0.3852(41)	0 7 3 26 (20)	0.0720(27)
Cabo			0.0005 (0)	CI2	0.3727(10)	0 7871 (7)	-0.0665(11)
C3A1	0.0170 (8)	0.2372 (7)	0.0905 (9)	012	0.5727(10)	0.7071(7)	0.0003 (11)

^a The estimated standard deviations in parentheses are right justified to the least significant digits of the fractional coordinates.

atoms (other than hydrogen). Two further cycles of refinement reduced the R value to 10.2%. At this point idealized six-membered rings (C-C bond length 1.39 Å; all angles 120°) were fitted to the observed ring atom positions by a least-squares procedure and refinement was continued using isotropic thermal parameters for each ring atom and anisotropic thermal parameters for the remaining atoms. The anomalous dispersion corrections for cobalt were included from this point. Refinement converged with $(\Delta/\sigma)_{max} < 0.10$ after four cycles of refinement at R = 8.8% and $R_w = 10.2\%$. The "goodness of fit" was 2.45. A final difference Fourier showed no features with an electron density greater than 0.9 e Å⁻³.

A table of observed and calculated structure factors is available as supplementary material. Table II gives the final positional parameters and their estimated standard deviations, and Table III gives the thermal parameters and esd's.

b. $(tolan)(dam)_2Co_2(CO)_2 \cdot C_2H_4Cl_2$. Solution and refinement of this structure closely parallelled that of the phosphino complex. The solution of the Patterson for the six heavy atoms was facilitated by the wide separation of intramolecular peak groupings caused by the sheath of phenyl groups. One cycle of refinement of the heavy atoms was followed by a structure factor calculation (R = 30.2%). This yielded a difference Fourier map from which the remaining non-hydrogen atom positions were obtained (including the dichloroethane).

Two cycles of istropic refinement were used to improve the positions prior to the use of rigid rings. The parameters were separated randomly into seven matrices during these two cycles after which R = 12.7%.

Refinement with all ten phenyl rings constrained as rigid groups with individual atomic isotropic parameters, and all other atoms anisotropic, converged at R = 8.6% and $R_w = 7.5\%$ with the "goodness of fit" 3.04. The final difference Fourier showed residual peaks of less than 1.0 e Å⁻³.

A table of observed and calculated structure factors is available as supplementary material. The final positional parameters are in Table IV, and thermal parameters in Table V.

Results and Discussion

Figures 1 and 2 show the atom labelling with the molecules viewed approximately along the cobalt-cobalt vector. Figures 3 and 4 show the molecules viewed directly along this bond. In neither structure are there unusually short intermolecular distances: the shortest nonbonded contacts are intramolecular. The intramolecular bond lengths and angles are collected in Tables VI and VII.

 $(tolan)(dpm)Co_2(CO)_4$. The molecular structure is derived from that of $(tolan)Co_2(CO)_6$ by replacement of two pseudoaxial carbonyls, one on each cobalt, by phosphorus atoms. Examination of Figure 3 reveals that the five-membered ring

Co1-Co2-P2-C12-P1 is nonplanar, being folded up at the line joining the phosphorus atoms and twisted slightly: the two ends of the molecule are not perfectly eclipsed. The cobalt to carbonyl-carbon distances are normal, averaging 1.71 Å for the pseudoaxial groups (A and D), and 1.77 Å for the pseudoequatorial groups (B and C). The average cobalt-phosphorus distance of 2.213 Å is similar to the value of 2.233 Å in $Co_4(CO)_{10}(Ph_2PC_2CF_3)_2$.¹¹

 $(tolan)(dam)_2Co_2(CO)_2$. In this structure all of the pseudoequatorial carbonyl groups have been replaced by

Table V.	Final Thermal	Parametersa	for	(tolan)(dam)) ₂ Co	2(CO)	2·C2H	₄Cl
----------	---------------	-------------	-----	--------------	-------------------	-------	-------	-----

Atom	β_{11}	β22	β ₃₃	β_{12}	β ₁₃	β ₂₃
Co1 Co2 As1 As2 As3 As4 C13 C24	31.6 (17) 36.0 (18) 42.9 (15) 33.0 (14) 43.7 (15) 35.3 (14) 53 (15) 33 (12)	29.0 (13) 27.5 (13) 27.5 (10) 29.1 (10) 30.5 (11) 27.1 (10) 34 (10) 45 (10)	62.6 (25) 54.7 (24) 63.9 (20) 60.9 (19) 55.6 (20) 55.1 (19) 63 (18) 55 (16)	$\begin{array}{c} 7.5 (12) \\ 7.5 (12) \\ 5.0 (10) \\ 10.8 (9) \\ 13.3 (10) \\ 7.6 (10) \\ -1 (10) \\ 30 (9) \end{array}$	$5.7 \cdot (17)$ 4.6 (16) 14.2 (14) 3.9 (13) 2.3 (14) 2.8 (13) 19 (13) -30 (11)	$\begin{array}{r} -15.6 (15) \\ -14.6 (14) \\ -10.5 (12) \\ -16.1 (11) \\ -10.5 (12) \\ -12.9 (11) \\ -15 (11) \\ -15 (10) \end{array}$
CA1	59 (15)	22 (9)	66 (19)	7 (9)	28 (14)	-23 (11)
CA2	53 (16)	64 (13)	37 (17)	19 (11)	10 (13)	-18 (12)
CCO1	62 (15)	40 (9)	102 (20)	12 (9) -4 (8) -5 (9) -12 (7) -11 (9) 20 (23) 93 (38) 52 (10)	39 (14)	-34 (11)
OCO1	88 (12)	52 (8)	135 (17)		16 (11)	-46 (10)
CCO2	61 (14)	31 (9)	62 (18)		19 (13)	-38 (11)
OCO2	53 (10)	67 (9)	159 (18)		58 (11)	-22 (10)
Cl1	221 (11)	119 (11)	148 (6)		62 (6)	-12 (8)
CS1	86 (26)	180 (29)	288 (62)		96 (33)	-18 (35)
CS2	711 (11)	104 (22)	423 (42)		499 (62)	3 (24)
Cl2	435 (18)	130 (9)	362 (20)		49 (15)	18 (10)
Atom	<i>B</i> , A ²		Atom	<i>B</i> , Å ²	Atom	<i>B</i> , A ²
C1A1	3.8 (4)	•	C2B1	3.5 (4)	C4A1	3.1 (4)
C1A2	5.2 (5)		C2B2	3.5 (4)	C4A2	4.7 (5)
C1A3	5.5 (5)		C2B3	4.7 (4)	C4A3	4.8 (5)
C1A4	7.1 (6)		C2B4	5.2 (5)	C4A4	5.4 (5)
C1A5	7.5 (6)		C2B5	5.7 (5)	C4A5	6.0 (6)
C1A6	6.0 (6)		C2B6	5.5 (5)	C4A6	4.4 (5)
C1B1	4.6 (5)	•	C3A1	3.5 (4)	C4B1	4.0 (4)
C1B2	5.6 (5)		C3A2	4.3 (5)	C4B2	4.3 (5)
C1B3	6.3 (6)		C3A3	5.1 (5)	C4B3	6.3 (6)
C1B4	7.3 (6)		C3A4	4.7 (5)	C4B4	5.7 (5)
C1B5	6.0 (6)		C3A5	5.5 (5)	C4B5	5.3 (5)
C1B6	5.4 (5)		C3A6	4.8 (5)	C4B6	4.5 (5)
C2A1	4.0 (4)	•	C3B1	3.5 (4)	CP11	3.0 (4)
C2A2	6.5 (6)		C3B2	7.0 (6)	CP12	4.9 (5)
C2A3	7.6 (7)		C3B3	9.5 (8)	CP13	6.5 (6)
C2A4	7.0 (6)		C3B4	8.2 (7)	CP14	5.2 (5)
C2A5	5.7 (5)		C3B5	8.5 (7)	CP15	6.2 (6)
C2A6	3.9 (4)		C3B6	7.1 (6)	CP16	5.7 (5)
CP21	3.4 (4)		CP22	3.2 (4)	CP23	4.0 (4)
CP24	5.1 (5)		CP25	4.6 (5)	CP26	3.7 (4)
	Atom Co1 Co2 As1 As2 As3 As4 C13 C24 CA1 CA2 CC01 OC01 CC02 OC02 Cl1 CS1 CS2 Cl2 Atom C1A1 C1A2 C1A3 C1A4 C1A3 C1A4 C1A5 C1B1 C1B2 C1B3 C1B4 C1B5 C1B6 C2A1 C2A2 C2A3 C2A1 CA2 C1A1 CA2 C1A1 CA2 C2A2 C2A2 C2A2 C2A2 C2A2 C2A2 C2A2 C2A2 C2A2 C2A2 C2A2 C2A2 C2A2 C2A3 C1A1 C1A2 C1A3 C1A1 C1A2 C1A3 C1A1 C1A2 C1A3 C1A4 C1A3 C1A4 C1B2 C1B3 C1B4 C2A1 C2A2 C2A3 C2A2 C2A3 C2A2 C2A3 C1A4 C1A5 C1B6 C2A1 C2A2 C2A3 C2A2 C2A3 C1A4 C1A5 C1B6 C2A1 C2A2 C2A3 C2A2 C2A3 C1B4 C2A2 C2A3 C2A2 C2A3 C2A2 C2A3 C2A2 C1A3 C1A4 C1A5 C1B4 C1B4 C2A2 C2A3 C2A2 C2A3 C2A3 C1B4 C2A3 C2A4 C2A3 C2A3 C2A4 C2A3 C1B4 C2A2 C2A3 C2A4 C2A3 C1B4 C2A2 C2A3 C2A4 C2A3 C1B4 C2A2 C2A3 C2A4 C2A3 C1B4 C2A2 C2A3 C2A4 C2A3 C1B4 C2A2 C2A3 C2A4 C2A3 C2A4 C2A3 C2A4 C2A3 C2A4 C2A3 C2A4 C2A3 C2A4 C2A3 C2A4 C2A3 C2A4 C2A3 C2A4 C2A3 C2A4 C2A3 C2A4 C2A3 C2A4 C2A5 C2A6 C2A1 C2A2 C2A3 C2A4 C2A3 C2A4 C2A5 C2A6 C224 C224 C224 C2A3 C2A4 C2A5 C2A6 C224 C224 C224 C2A3 C2A4 C2A5 C2A6 C224 C224 C224 C2A6 C224 C224 C2A6 C224 C224 C2A6 C224 C224 C224 C2A6 C224 C224 C2A6 C224 C2A6 C224 C2A6 C224 C2A6 C224 C244 C2A5 C2A6 C224 C245 C244 C2A5 C2A6 C224 C245 C244 C2A5 C2A6 C224 C245 C244 C2A5 C2A6 C224 C245 C244 C2A5 C2A6 C224 C245 C244 C2A5 C2A6 C244 C2A5 C2A6 C244 C2A5 C2A6 C244 C2A5 C2A6 C244 C2A5 C2A6 C244 C2A5 C2A6 C244 C2A5 C246 C244 C2A5 C2A6 C244 C2A5 C2A6 C2A5 C2A6 C2A5 C2A6 C2A5 C2A6 C2A5 C2A5 C2A6 C2A5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Atom β_{11} β_{22} Co131.6 (17)29.0 (13)Co236.0 (18)27.5 (13)As142.9 (15)27.5 (10)As233.0 (14)29.1 (10)As343.7 (15)30.5 (11)As435.3 (14)27.1 (10)C1353 (15)34 (10)C2433 (12)45 (10).CA159 (15)22 (9)CA253 (16)64 (13)CC0162 (15)40 (9)OCO188 (12)52 (8)CC0261 (14)31 (9)OCO253 (10)67 (9)Cl1221 (11)119 (11)CS186 (26)180 (29)CS2711 (11)104 (22)Cl2435 (18)130 (9)Atom B, A^2 C1A13.8 (4)C1A25.2 (5)C1A35.5 (5)C1A47.1 (6)C1A57.5 (6)C1A66.0 (6)C1B14.6 (5)C1B25.6 (5)C1B36.3 (6)C1B47.3 (6)C1B56.0 (6)C1B65.4 (5)C2A14.0 (4)C2A26.5 (6)C2A37.6 (7)C2A47.0 (6)C2A55.7 (5)C2A63.9 (4)CP213.4 (4)CP245.1 (5)	Atom β_{11} β_{22} β_{33} Co131.6 (17)29.0 (13)62.6 (25)Co236.0 (18)27.5 (13)54.7 (24)As142.9 (15)27.5 (10)63.9 (20)As233.0 (14)29.1 (10)60.9 (19)As343.7 (15)30.5 (11)55.6 (20)As435.3 (14)27.1 (10)55.1 (19)C1353 (15)34 (10)63 (18)C2433 (12)45 (10)55 (16)CA159 (15)22 (9)66 (19)CA253 (16)64 (13)37 (17)CC0162 (15)40 (9)102 (20)OC0188 (12)52 (8)135 (17)CC0261 (14)31 (9)62 (18)OC0253 (10)67 (9)159 (18)C11221 (11)119 (11)148 (6)CS186 (26)180 (29)288 (62)CS2711 (11)104 (22)423 (42)C12435 (18)130 (9)362 (20)AtomB, ŲAtomC1A13.8 (4)C2B1C1A25.2 (5)C2B2C1A35.5 (5)C3A3C1A47.1 (6)C2B4C1A57.5 (6)C2B5C1A66.0 (6)C3A3C1B14.6 (5)C3A1C1B25.6 (5)C3A2C1B36.3 (6)C3A3C1A47.1 (6)C2B6C1A47.3 (6)C3A4C1B56.0 (6)C3B4C1B4 </th <th>Atom β_{11} β_{22} β_{33} β_{12} Co1 31.6 (17) 29.0 (13) 62.6 (25) 7.5 (12) Co2 36.0 (18) 27.5 (13) 54.7 (24) 7.5 (12) As1 42.9 (15) 27.5 (10) 63.9 (20) 5.0 (10) As2 33.0 (14) 29.1 (10) 60.9 (19) 10.8 (9) As3 43.7 (15) 30.5 (11) 55.6 (20) 13.3 (10) As4 35.3 (14) 27.1 (10) 55.1 (19) 7.6 (10) C13 53 (15) 22 (9) 66 (19) 7 (9) CA2 53 (16) 64 (13) 37 (17) 19 (11) CC01 62 (15) 40 (9) 102 (20) 12 (9) OC01 88 (12) 52 (8) 135 (17) -4 (8) CC02 61 (14) 31 (9) 62 (18) -5 (9) OC02 53 (10) 67 (9) 159 (18) -12 (7) C11 221 (11) 119 (11) 148 (6) 11 (9) CS1</th> <th>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</th>	Atom β_{11} β_{22} β_{33} β_{12} Co1 31.6 (17) 29.0 (13) 62.6 (25) 7.5 (12) Co2 36.0 (18) 27.5 (13) 54.7 (24) 7.5 (12) As1 42.9 (15) 27.5 (10) 63.9 (20) 5.0 (10) As2 33.0 (14) 29.1 (10) 60.9 (19) 10.8 (9) As3 43.7 (15) 30.5 (11) 55.6 (20) 13.3 (10) As4 35.3 (14) 27.1 (10) 55.1 (19) 7.6 (10) C13 53 (15) 22 (9) 66 (19) 7 (9) CA2 53 (16) 64 (13) 37 (17) 19 (11) CC01 62 (15) 40 (9) 102 (20) 12 (9) OC01 88 (12) 52 (8) 135 (17) -4 (8) CC02 61 (14) 31 (9) 62 (18) -5 (9) OC02 53 (10) 67 (9) 159 (18) -12 (7) C11 221 (11) 119 (11) 148 (6) 11 (9) CS1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

^a Anisotropic thermal parameters are applied in the expression $\exp[-(h^2\beta_{11} + k^2\beta_{22} + l^2\beta_{33} + 2hk\beta_{12} + 2hl\beta_{13} + 2kl\beta_{23})]$. They are multiplied by 10⁴. Estimated standard deviations in parentheses are right justified to the least significant digits of the thermal parameter.

arsenic. Figure 4 shows that both five-membered rings Co1-Co2-As3-C13-As1 and Co1-Co2-As4-C24-As2 are nonplanar but folded in opposite directions. One of the rings, that containing As2 and As4, is essentially similar in conformation to that in the dpm complex. The other does not possess the twist; that is, Co1, Co2, As1, and As3 are coplanar. The mean cobalt to carbonyl carbon distance is 1.75 Å. The Co to As bond lengths average 2.334 Å which is close to the value of 2.222 Å in Co (CO1) (CUL) ArC=O(Ac(CUL))

value of 2.323 Å in $Co_2(CO)_6(CH_3)_2AsC = C(As(CH_3)_2)$ -

 CF_2CF_2 .¹² The tolan unit has a rather unusual conformation with both phenyl rings turned in the same direction. It is also displaced slightly such that the CA1–CA2 vector deviates by about 12° from a perpendicular to the plane containing the cobalt atoms and carbonyl groups.

The Bridging Ligands. There are relatively few crystallographic data on complexes of dpm and dam compared with the ethane analogues. A comparison of these moieties in our structures with those in other molecules in which they bridge or are chelating is of interest. We wish to know, if possible, whether the cobalt-cobalt bond is under tension or compression as a result of the presence of the bridging ligands. Table VIII displays relevant structural parameters.¹³⁻²²

In cases with four-membered chelate rings, where most strain is present, a planar skeleton is expected, provided torsional effects caused by nonbonded interactions between substituent groups are not significant. Such torsional effects are presumably responsible for the nonplanarity observed in cyclobutane²³ but might be reduced in chelate complexes due to longer skeletal bond lengths. The Ni and Fe complexes indeed show planar rings, while in the Pt and Mo complexes cyclic strain is sufficiently reduced that the rings pucker. In the binuclear complexes in which the ring strain is further reduced (or eliminated) the rings fold along the line joining donor atoms by even larger angles with steric repulsion between phenyl rings imposing the upper limit. In those complexes where the fold angle lies between 40 and 46.4°, the phenyl rings are found approximately face to face in quite close contact. A typical distance between the phosphorus-bonded carbon atoms is 3.58 Å in dpm(CuCl)₂, while the closest approach of ring atoms in $(dam)_2Rh_2(CO)_2Cl_2$ is 3.54 Å.

In $(tolan)(dpm)Co_2(CO)_4$ the chelate ring conformation is very similar to that found in $(dam)_2Rh_2(CO)_2Cl_2$. Rings 1A and 2A are nearly parallel and perpendicular to the Co-Co bond, with a distance between C1A1 and C2A1 of 3.43 (1) Å. The other two phenyl rings 1B and 2B lie in approximately the same plane as P1, P2, and C12.

In $(tolan)(dam)_2Co_2(CO)_2$ none of the phenyl rings are found in this limiting face to face position; indeed examination of crude molecular models suggests that such conformations are all unfavorable. As a consequence, the fold angles are limited to 28 and 30°. If the chelating rings are closer to planarity than would be preferred in the absence of the steric Table VI. Bond Lengths (Å) and Angles (deg) in (tolan)(dpm)Co₂(CO)₄^a

	Dista	nces	
Co1-Co2	2.459 (2)	CA1-CA2	1.33 (1)
Co1-CCOA Co1-CCOB Co1-CA1 Co1-CA2 CCOA-OCOA CCOB-OCOB	1.70 (1) 1.78 (1) 1.97 (1) 1.95 (1) 1.16 (2) 1.14 (2)	Co2-CCOD Co2-CCOC Co2-CA2 Co2-CA1 CCOC-OCOC CCOD-OCOD	1.71 (1) 1.76 (1) 1.94 (1) 1.92 (1) 1.13 (2) 1.14 (2)
Co1-P1 P1…P2	2.210 (3) 2.946 (4)	Co2-P2	2.215 (3)
P1-C12 P1-C1A1 P1-C1B1	1.84 (1) 1.822 (7) 1.822 (7)	P2-C12 P2-C2A1 P2-C2B1	1.84 (1) 1.809 (7) 1.829 (7)
CA1-CP11	1.46 (1)	CA2-CP21	1.49 (1)
	Ang	les	·
PI-Co1-Co2 P1-Co1-CCOB P1-Co1-CCOA P1-Co1-CA2 CA1-Co1-Co2 CA1-Co1-CCOB	93.2 (1) 109.2 (4) 98.5 (4) 101.7 (3) 50.0 (3) 101.4 (5)	P2-Co2-Co1 P2-Co2-CCOC P2-Co2-CCOD P2-Co2-CA2 CA1-Co2-Co1 CA1-Co2-CCOC	98.8 (1) 111.8 (5) 97.8 (5) 97.5 (3) 51.6 (3) 103.8 (6)
CA1-Co1-CCOA CA1-Co1-Co2 Co2-Co1-CCOB CCOB-Co1-CCOA CCOA-Co1-CA2 CA2-Co1-Co2	105.0 (5) 39.7 (4) 102.2 (4) 101.0 (5) 98.5 (5) 50.7 (3)	CA1-Co2-CCOD CA1-Co2-Co2 Co1-Co2-CCOC CCOC-Co2-CCOI CCOD-Co2-CA2 CA2-Co2-Co1	100.0 (6) 40.2 (4) 97.8 (5) 99.1 (6) 102.0 (5) 50.8 (3)
Co2-Co1-CCOA	148.8 (4)	Co1-Co2-CCOD	149.8 (4)
Co1-P1-C12 Co1-P1-C1A1 Co1-P1-C1B1 C12-P1-C1A1 C12-P1-C1B1 C1A1-P1-C1B1	109.7 (3) 121.8 (3) 115.4 (3) 103.4 (4) 103.2 (4) 101.3 (4)	Co2-P2-C12 Co2-P2-C2A1 Co2-P2-C2B1 C12-P2-C2B1 C12-P2-C2B1 C2A1-P2-C2B1	108.9 (3) 123.8 (3) 111.9 (3) 103.5 (4) 104.3 (4) 102.6 (4)
P1-C12-P2	106.4 (5)		
CP11-CA1-CA2 CP11-CA1-Co1 CP11-CA1-Co2 CA2-CA1-Co1 CA2-CA1-Co2 Co1-CA1-Co2	143.2 (9) 133.8 (7) 133.5 (7) 69.4 (6) 70.7 (6) 78.5 (4)	CP21-CA2-CA1 CP21-CA2-Co1 CP21-CA2-Co2 CA1-CA2-Co2 CA1-CA2-Co2 Co1-CA2-Co2	137.7 (9) 136.9 (7) 135.2 (7) 70.9 (6) 69.1 (6) 78.5 (4)
Co1-CCOA-OCOA	179 (1) 175 (1)	Co2-CCOD-OCO	D 176 (1) C 173 (1)

^a Estimated standard deviations in parentheses are right justified to least significant digits of the preceding number.

limitations, one effect is to place the Co-Co bond under a compressional stress.

The Co₂(tolan) Groups. Table IX contains various geometrical parameters for selected molecules containing "acetylene" bridging between singly bonded metal atoms.^{7,24-27} Further structural data for acetylene bridging two cobalt atoms are available in the literature.^{11,28-32} Cobalt-cobalt distances range from 2.447 (4) Å in Co₃(CO)₉C₃HCo₂(CO)₆²⁶ to 2.488 (4) Å in $C_6F_6Co_2(CO)_6$.³¹ The value of 2.459 (2) Å for $(tolan)(dpm)Co_2(CO)_4$ is within this range but the bond length observed in $(tolan)(dam)_2Co_2(CO)_2$, 2.518 (4) Å, is significantly longer. We are inclined to ascribe this lengthening to electronic effects since the arguments presented above suggest the bond would be under steric compression. It should be noted that the available evidence suggests that poorer π -electron acceptors replacing the carbonyl groups of $Co_2(CO)_6(C_2H_2)$ appear to prefer the pseudoaxial sites.^{2,33} Similarly, triphenylphosphine replacing PF_3 groups in $Rh_2(PF_3)_6(C_2H_2)$ prefers these sites.²⁵ The inaccessibility of these electronically preferred sites to the bidentate bridging ligands may lie at the root of the Co-Co bond length anomalies.

Given the magnitude of their esd's, the C-C distance and the carbon-phenyl distances and the angles at these Table VII. Bond Lengths (A) and Bond Angles (deg) in (tolan)(dam),Co,(CO), C,H,Cl,a

	Dist	ances	
Co1–Co2	2.518 (4)	CA1–CA2	1.37 (3)
Co1-CCO1	1.71 (2)	Co2-CCO2	1.78 (2)
Co1-CA1	1.96 (2)	Co2-CA2	1.97 (2)
Co1-CA2	1.96 (2)	Co2-CA1	1.93 (2)
CC01-0C01	1.17 (2)	CCO2-OCO2	1.13 (2)
Col-As1	2 326 (4)	Co2-4-3	2 3 3 2 (1)
Col-As2	2.320(4)	Co2-Asj	2.332(4)
C01-A32	2.330(3)	C02-A94	2.346 (3)
Asl···As3	3.165 (3)	As2· · · As4	3.240 (3)
As1-C13	2.01 (2)	As3-C13	1.99 (2)
As1-C1A1	1.96 (1)	As3-C3A1	1.95 (1)
As1-C1B1	1.98 (1)	As3-C3B1	1.99 (1)
As2-C24	1.98 (2)	As4-C24	2.01 (2)
As2-C2A1	1.97 (1)	As4-C4A1	1.95 (1)
As2-C2B1	1.98 (1)	As4-C4B1	1.95 (1)
CA1-CP11	1.48 (2)	CA2-CP21	1.50 (2)
C81-C11	1.79 (3)	CS2-C12	1 82 (4)
CS1-CS2	1.44 (6)		1.02 (4)
	An	zles	
As1-Co1-Co2	96.2 (1)	As3-Co2-Co1	99.7 (1)
As1-Co1-As2	110.0(1)	As3-Co2-As4	98.7 (1)
As1-Co1-CCO1	98.2 (6)	A 3-Co2-CCO2	977(6)
As1-Co1-CA1	108 4 (6)	As2-Co2-C01	109.2 (6)
CA2 - Co1 - Co2	503(6)	$C_{A}^{3} - C_{a}^{2} - C_{a}^{1}$	108.5 (0)
CA2 - Co1 - Co2	30.3(0)	CA2 - C02 - C01	47.0 (0)
CA2-C01-AS2	92.1 (0) 107.0 (0)	CA2 = C02 = AS4	101.7 (6)
CA2 = Co1 = CCO1	107.9 (9)	CA2-C02-CC02	104.8 (8)
CA2-C01-CA1	41.0 (8)	CA2-C02-CA1	41.1 (9)
C02-C01-AS2	99.5 (1)	Co1-Co2-As4	96.9 (1)
	96.9 (6)	A\$4-C02-CCU2	103.6 (6)
CCUI-COI-CAI	104.3 (8)	CCO2-Co2-CA1	101.8 (8)
CAI-CoI-Co2	49.1 (6)	CA1-Co2-Co1	50.1 (6)
Co2-Co1-CCO1	152.9 (6)	Co1-Co2-CCO2	150.6 (6)
Col-Asl-Cl3	116.4 (5)	Co1-As2-C24	113.4 (5)
Col-Asl-ClA1	124.1 (4)	Co1-A s2-C2A1	125.6 (4)
Co1-As1-C1B1	116.5 (5)	Co1-As2-C2B1	114.4 (4)
C13-As1-C1A1	99.1 (7)	C24-As2-C2A1	103.6 (6)
C13-As1-C1B1	100.6 (7)	C24-As2-C2B1	100.0 (6)
C1A1-As1-C1B1	95.7 (5)	C2A1-As2-C2B1	95.8 (5)
Co2-As3-C13	113.1 (6)	Co2-As4-C24	110.9 (5)
Co2-As3-C3A1	116.4 (4)	Co2-As4-C4A1	122.8 (4)
Co2-As3-C3B1	122.9 (4)	Co2-As4-C4B1	121.7 (4)
C13-As3-C3A1	101.0 (7)	C24-As4-C4A1	97.6 (6)
C13-As3-C3B1	102.6 (7)	C24-As4-C4B1	98.8 (6)
C3A1-As3-C3B1	97.5 (6)	C4A1-As4-C4B1	100.1 (6)
As1-C13-As3	104.7 (9)	As2-C24-As4	108.4 (8)
CP11_CA1_CA2	132 (2)	CP21_CA2_CA1	140 (2)
CP11-CA1-Co1	135 (1)	CP21_CA2_CA1	134 (1)
CP11_CA1_Co2	139(1)		130(1)
CA2_CA1_Co1	40 (1)	CA1 CA2 Co1	133(1)
CA2-CA1-C01	71(1)		70(1)
C_{n2} C_{n1} C_{n1} C_{n1} C_{n2}	/1(1)	CAI-CA2-C02	08(1)
CUI-CAI-CO2	81 (I) 18	C01-CA1-C02	80(1)
Col-CCOl-OCOl	175 (2)	Co2-CCO2-OCO2	2 172 (2)
CII-CS1-CS2	112 (3)	Cl2-CS2-CS1	102 (3)

^a Estimated standard deviations in parentheses are right justified to the least significant digits of the preceding number.

"acetylenic" carbon atoms of the Co₂C₂ fragment do not reveal significant differences from compound to compound. We have, therefore, attempted to identify a parameter which is more sensitive to changes in the substituents on cobalt. The angle, θ , a representation of the deviation from linearity of the acetylene, is based on the crystallographically determined positions of the six ring atoms in the tolan cases and the five atoms comprising the *t*-Bu-C group in $Co_2(CO)_6((t-Bu)_2C_2)$. While this angle is expected to decrease as the acetylene acts more effectively as a σ donor or π acceptor, steric effects can account for such anomalies as appear in Table IX. Repulsion between tert-butyl groups in $Co_2(CO)_6((t-Bu)_2C_2)$ could be responsible for the larger angle observed for this compound. The angle θ in (tolan)(dam)₂Co₂(CO)₂ is at the other end of

Table VIII.	Geometrical Parameters	Associated with Bis(p	hosphino)- and J	Bis(arsino)met	hane Ligands
-------------	------------------------	-----------------------	------------------	----------------	--------------

Compd	Ref	Comments	Bite, deg	M-X, ^a Å	$\mathbf{X} \cdot \cdot \cdot \mathbf{X},^{a}$ Å	M-M, ^b Å	M···M, ^c Å	X-C-X, ^a deg	Dihedral angle, ^d deg
$[((C_6H_{11}), P), CH_2]_2Ni$	13	e, ring 1	77.7 (1)	2.193 (2), 2.198 (2)	2.778 (2)			96.4 (3)	0
		e, ring 2	77.3 (1)	2.215 (2), 2.214 (2)	2.766(2)			94.8 (3)	0
(dpm)Fe(CO) ₃	14	e	73.5(1)	2.209 (3), 2.225 (3)	2.651 (2)			90.8 (2)	0
(dpm)PtPh	15	е	73 (1)	2.30, 2.30	2.74			95 (1)	7.8
(dpm)Mo(CO)₄	16	е	67.3(1)	2.535 (3), 2.501 (2)	2.792 (3)			95.6 (4)	18.6
(dpm)(CuCl),	17	f		2.197 (5), 2.195 (4)	3.049 (6)		2.908	110(1)	40
(dpm)(CuI),	18	f		2.22, 2.22	3.08(1)		3.108 (7)	113	Nonplanar
(tolan)(dpm)Co ₂ (CO)		f		2.210 (3), 2.215 (3)	2.946 (4)	2.459 (2)		106.4 (5)	44.6
$(dpm)Fe_2(CO)_7$	19	f		2.250 (3), 2.257 (3)	2.999 (4)	2.709(2)		109.0 (5)	45.3
(dam), Mo(CO), Br,	20	е	66.7(1)	2.651 (5), 2.592 (5)	2.883 (5)			90 (1)	25
		8		2.608 (5)	3.28			113 (2)	
$(dam)[Hg(C_6F_5)_2]_2$	21	f		3.40 (5)	3.35			113 (3)	
$(dam)_2 Rh_2(CO)_2 Cl_2$	22	f		2.404 (1), 2.410 (1)	3.298 (1)		3.396 (1)	113.5 (4)	46.4
$(tolan)(dam)_2Co_2(CO)_2$		f, ring 1		2.326 (4), 2.330 (3)	3.165 (3)	2.518 (4)		104.7 (9)	29.9
		<i>f</i> , ring 2		2.332 (4), 2.348 (3)	3.240 (3)	2.518 (4)		108.4 (8)	27.7

 a X = P or As. b Binuclear complexes with a metal-metal bond have an entry here. c Binuclear complexes without a metal-metal bond have an entry here. d Defined by the XCX plane and either the XMX plane or the XMMX least-squares plane. e Chelating. f Bridging. ^g Dangling.

Table IX. Geometrical Parameters Associated with the μ -alkyne-M₂ Group in Selected Molecules

Compd	Ref	M-M, Å	М-С, ^а А	С-С, А	C-R, ^a Å	R-C-C, ^b deg	θ , ^c deg	θ_1, u deg	ϕ_2, a deg
$\overline{(tolan)(dpm)Co_2(CO)_4}$	This work	2.459 (2)	1.95 (2)	1.33 (1)	1.48 (2)	143.2 (9), 137.7 (9)	101.3	4.9	-58.5
$(tolan)(dam), Co_2(CO),$	This work	2.518 (4)	1.96 (2)	1.37 (3)	1.49 (1)	132 (2), 140 (2)	93.2	44.6	-64.7
$((t-Bu), C_2)Co_2(CO)_6$	7	2.463 (1)	1.996 (5)	1.335 (6)	1.51 (1)	144.5 (4), 144.8 (4)	108.6		
$(tolan)Ni_{2}(C,H_{2})_{2}$	24	2.329 (4)	1.89 (1)	1.35 (3)	1.45 (2)	142 (2), 138 (2)	103.2	16.1	53.4
$(tolan)(Ph_3)Rh_2(PF_3)_4$	25	2.740 (1)	2.125 (5)	1.369 (7)	1.460 (7)	141.5 (5), 141.1 (5)	104.0	28.9	-34.3
$(tolan)Co_{2}(CO)_{6}$	26	2.460 (5)	1.97 (2)	1.36 (3)	1.46 (3)	141 (2), 141 (2)	$102 (1)^{e}$	13 (7) ^e	-47 (3)
$(tolan)[(\tilde{P(OMe)}_2)_2O]Co_2((POMe)_3)_2$	27	2.461 (7)	1.96 (3)	1.28 (5)	1.50 (4)	138 (3), 141 (3)	101	18	-34

^a Average value; figure in parentheses is crystallographic esd or rms deviation, whichever is larger. ^b In tolan compounds, the first figure refers to the least rotated phenyl ring. ^c Angle between the appropriate axes of the R groups; see text. ^d Angle between the phenyl ring plane and the plane defined by acetylene carbons and substituted phenyl ring carbons. e Rms deviation.

the range, as might be expected since four relatively efficient π -accepting CO groups have been replaced by arsenic atoms quasi-trans to the alkyne. However, the observation that the tolan in this complex differs in its conformation from all the other examples suggests an alternative explanation. The normal conformation appears to be that in which the phenyl rings are rotated relative to the plane of the alkyne (with its attached ring carbon atoms) in opposite directions, to produce a propeller-shaped unit, with very approximate local C_2 symmetry. This presumably minimizes interactions between ortho hydrogen atoms. In the dam complex, the tolan has very approximate C_s symmetry and a fairly close (2.26 Å) contact between HP12 and HP16. This unusual conformation is probably another ramification of the crowding of phenyl rings around the molecule, and this same crowding might also account for the smallness of the θ angle.

In summary, the geometry of the $Co_2-\mu$ -alkyne group seems little affected by the substitution of carbonyl groups on cobalt. We are attempting to prepare carbonyl-free complexes in order to establish the extent to which this moiety is stable in the absence of good π -bonding ligands.

The 1,2-Dichloroethane. In the gas phase or in solution 1,2-dichloroethane exists as a mixture of trans and gauche forms.³⁴ The gauche form, which is present to 27 (5)%, reveals (by electron diffraction) a Cl-C bond length of 1.78 (1) Å and a C-C bond length of 1.48 (3) Å. The Cl-C-C angle is 110 (3)° and the torsion angle Cl-C-C-Cl is 71°.

The solvent molecule present in the dam complex crystal structure is present in the gauche form exclusively: the torsion angle is 78°.

The crystallographically determined geometry (Table VII) is in general agreement with the electron diffraction structure, although the accuracy is poor as a result of very large vi-

brational motion.

Acknowledgment. We thank the National Research Council of Canada for financial support for this work and for providing a 1967 Science Scholarship to A.R.F.

Registry No. (tolan)(dmp)Co₂(CO)₄, 52659-27-5; (tolan)-(dam)₂Co₂(CO)₂·C₂H₄Cl₂, 62475-96-1; (tolan)Co₂(CO)₆, 14515-69-6.

Supplementary Material Available: Listings of the structure factors for both structures (28 pages). Ordering information is given on any current masthead page.

References and Notes

- (1) R. S. Dickson and P. J. Fraser, Adv. Organomet. Chem., 12, 323 (1974).
- (2) L. S. Chia, W. R. Cullen, M. Franklin, and A. R. Manning, *Inorg. Chem.*, 14, 2521 (1975).
- P. H. Bird and D. N. Hall, unpublished results. T. Fukumoto, Y. Matsumura, and R. Okawara, J. Organomet. Chem., (4) 69. 437 (1974).

- (5) W. G. Sly, J. Am. Chem. Soc., 81, 18 (1959).
 (6) D. A. Brown, J. Chem. Phys., 33, 1037 (1960).
 (7) F. A. Cotton, J. D. Jamerson, and B. R. Stults, J. Am. Chem. Soc., 98, 1774 (1976)
- (8) H. Greenfield, H. W. Sternberg, R. A. Friedel, J. H. Wotiz, R. Markby, and I. Wender, J. Am. Chem. Soc., 78, 120 (1956).
- D. T. Cromer and J. T. Waber, Acta Crystallogr., 18, 104 (1965). "International Tables for X-Ray Crystallography", Vol. III, Kynoch Press, (10)
- (10) "International Tables for X-Ray Crystanlography, Vol. III, Kyhoen Press, Birmingham, England, 1962, p 216.
 (11) N. K. Hota, H. A. Patel, A. J. Carty, M. Mathew, and G. J. Palenik, J. Organomet. Chem., 50, 247 (1973).
 (12) W. Harrison and J. Trotter, J. Chem. Soc. A, 1607 (1971).
 (13) C. Kruger and Y. Tsay, Acta Crystallogr., Sect. B, 28, 1941 (1972).
 (14) F. A. Cotton, K. I. Hardcastle, and G. A. Rusholme, J. Coord. Chem., 217 (1973).
 (15) P. C. Start, D. L. Curn, L. Musrikuis, Main K. W. Muin and G.

- (15) P. S. Braterman, R. J. Cross, L. Manojlovic-Muir, K. W. Muir, and G. B. Young, J. Organomet. Chem., 84, C40 (1975).
 K. K. Cheung, J. Chem. Soc. A, 1644 (1971).
- (17)G. Nardin and L. Randaccio, Acta Crystallogr., Sect. B, 30, 1377 (1974). (18) N. Marisch, G. Nardin, and L. Randiccio, J. Am. Chem. Soc., 95, 4053
- (1973).
- (19) F. A. Cotton and J. M. Troup, J. Am. Chem. Soc., 96, 4422 (1974).

Oxidation of Thiolopentaaquochromium(III)

- (20) M. G. B. Drew, J. Chem. Soc., Dalton Trans., 626 (1972).
- (21) A. J. Carty and B. M. Gatehouse, J. Chem. Soc. Dalton Trans., 511 (1972).
- (22) J. T. Mague, Inorg. Chem., 8, 1975 (1969).
- (23) E. L. Eliel, N. L. Allinger, S. J. Angyal, and G. A. Morrison, "Conformational Analysis", Wiley-Interscience, New York, N.Y., 1965,

- (24) Y. Wang and P. Coppens, *Inorg. Chem.*, 15, 1122 (1976).
 (25) M. A. Bennett, R. N. Johnson, G. B. Robertson, T. W. Turney, and P. O. Whimp, *Inorg. Chem.*, 15, 97 (1976).
 (26) P. H. Bird and M. Kurylo, unpublished results. We have redetermined the structure of (CO)₆Co₂(tolan) on a triclinic polymorph containing

Inorganic Chemistry, Vol. 16, No. 8, 1977 1931

four molecules in the asymmetric unit.

- (27) P. H. Bird, D. N. Hall, and F. R. Gordon, unpublished results.
- (21) F. H. Bild, D. F. Halt, and F. K. Goldon, unpendence results.
 (28) R. J. Dellaca, B. R. Penfold, B. H. Robinson, W. T. Robinson, and J. L. Spencer, *Inorg. Chem.*, 9, 2197 (1970).
 (29) D. Seyferth, R. J. Spohn, M. R. Churchill, K. Gold, and E. R. Scholer, *J. Organomet. Chem.*, 23, 237 (1970).
 (30) R. J. Dellaca and B. R. Penfold, *Inorg. Chem.*, 10, 1269 (1971).
 (31) N. A. Bailaw and P. Macon, *J. Chem. Soc.* 4, 1293 (1968).

- (32)
- N. A. Bailey and R. Mason, J. Chem. Soc. A, 1293 (1968). P. H. Bird and A. R. Fraser, Chem. Commun., 681 (1970). G. Varadi, A. Vizi-Orosz, S. Vastag, and G. Palyi, J. Organomet. Chem., (33) 108, 225 (1976).
- (34) J. Ainsworth and J. Karle, J. Chem. Phys., 20, 425 (1952).

Contribution from the Department of Inorganic and Structural Chemistry, University of Leeds, Leeds LS2 9JT, England

Kinetic Studies on the Oxidation of the Thiolopentaaquochromium(III) Complex CrSH²⁺ with Fe^{3+} (and I₂) and the Reaction of Fe^{2+} with the μ -Disulfido-bis[pentaaquochromium(III)] Complex CrS₂Cr⁴⁺

T. RAMASAMI, ROGER S. TAYLOR, and A. GEOFFREY SYKES*

Received November 20, 1976

Anaerobic oxidation of thiolopentaaquochromium(III), $CrSH^{2+}$, by hexaaquoiron(III) at 25 °C and I = 1.00 M (LiClO₄) yields the chromium(III) products CrS_2Fe^{3+} (which is assigned the formula CrS_2HFe^{4+} at $[H^+] = 0.50-1.00$ M) and CrS_2Cr^{4+} with μ -disulfido (S-S) bridging ligands. Relative amounts of the two are dependent on the hydrogen ion concentration. At 25 °C with $[H^+] \ge 0.10$ M, CrS_2HFe^{4+} is the major product ($\ge 80\%$). The kinetics have been followed by monitoring formation of CrS₂HFe⁴⁺ and CrS₂Cr⁴⁺ at the 376-nm isosbestic for these complexes and conform to the rate law

rate =
$$k_1 [CrSH^{2+}] [Fe^{3+}] [H^+]^{-1}$$
 (i)

where $k_1 = 1.50 (\pm 0.02) \times 10^{-2} \text{ s}^{-1}$ at 25 °C and I = 1.00 M (LiClO₄). The reaction of hexaaquoiron(II) with CrS₂Cr⁴⁺ also yields CrS₂HFe⁴⁺ with a rate law

$$rate = k_2 [CrS_2Cr^{4+}] + k_3 [CrS_2Cr^{4+}] [Fe^{2+}]$$
(ii)

where $k_2 = 9.8 (\pm 0.4) \times 10^{-5} \text{ s}^{-1}$ and $k_3 = 3.16 (\pm 0.05) \times 10^{-2} \text{ M}^{-1} \text{ s}^{-1}$. Oxidation of CrSH²⁺ by I₂ (with CrSH²⁺ excess) yielding CrS_2Cr^{4+} as the sole product is too fast to follow by the stopped-flow method; $k_4 > 3 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ with [H⁺] = 0.50 M at 25 °C.

Many studies on redox reactions involving organic thiols and metal ions have been carried out.^{1,2} Little is known however about the redox behavior of simple ligands such as SH⁻ (or H_2S) when coordinated to a metal ion. The important complex CrSH²⁺ was first reported by Ardon and Taube in 1967.³ Further characterization together with studies of the aquation and anation (with NCS⁻) have recently been reported.⁴ A communication from this laboratory on the synthesis and characterization of the μ -disulfido complexes CrS₂Cr⁴⁺ and CrS_2HFe^{4+} resulting from the I₂ and Fe(III) oxidation of $CrSH^{2+}$ has already appeared.⁵ Iron(III) is also known to catalyze the aquation of $Cr(H_2O)_5(SC_6H_4NH_3)^{3+.6}$ The present paper describes kinetic studies on the Fe(III) (and I_2) oxidation of CrSH²⁺, as well as the Fe²⁺ displacement of Cr³⁻ from CrS_2Cr^{4+} to give CrS_2HFe^{4+} .

Experimental Section

Materials. Solutions of the complex CrSH²⁺ typically ca. 0.04 M in 0.10 M HClO₄ and 0.9 M LiClO₄ were prepared as described elsewhere.^{3,4} The μ -disulfido complex CrS₂Cr⁴⁺ was obtained by reacting I_2 with CrSH²⁺ and separating the product using a column of Sephadex SP C25.⁵ Concentrations of complex obtained were ca. 1×10^{-3} M in 0.1 M HClO₄ and 0.9 M LiClO₄. Hexaaquoiron(III) (G. F. Smith, Chemical Co.) was purified by elution from Amberlite IR-120(H) (BDH) cation-exchange column using 0.5 M HClO₄, while hexaaquoiron(II) perchlorate (G. F. Smith) was eluted from an air-free Dowex 50W-X8 (200-400 mesh) column using solutions of 0.1 M HClO₄ with 0.9 M LiClO₄. Solutions of iron(II) were stored under N2. Lithium perchlorate was prepared from perchloric acid (Analar grade) and lithium carbonate and recrystallized until free from Cl⁻ and SO42- impurities. Sephadex SP C25 resin (Pharmacia Fine

Table I. Reaction of CrSH²⁺ (1.52 \times 10⁻² M) with Fe(III) (2.5 \times 10^{-4} M) at 25 °C and I = 1.00 M (LiClO₄): Yield of CrS₂Cr⁴ with Varying [H⁺]

[H ⁺], M	% CrS ₂ Cr ⁴⁺ <i>a</i>	[H ⁺], M	% CrS ₂ Cr ⁴⁺ <i>a</i>
 0.10 0.25	18 12	0.40 0.55	8 4

^a Percentage of total binuclear product formed.

Chemicals, 40–120 μ) was prepared for use by washing extensively with water and 0.1 M HClO₄ ($3 \times$ resin volume) to remove any free polyelectrolytes and then equilibrating with 0.1 M HClO₄ for at least 24 h. Trapped air was removed by placing the slurry in a desiccator under vacuum.

Determination of Products Obtained from Fe(III) Oxidation of $CrSH^{2+}$. Because of the air sensitivity of both $CrSH^{2+}$ and the products of the Fe(III) oxidation, isolation was performed anaerobically under N₂. To a solution of CrSH²⁺ (ca. 2×10^{-2} M, 3–4 mL) at $[H^+] = 0.1$ M and I = 1.0 M (LiClO₄) was added Fe(III) (1.5 × 10⁻² M, 1 mL) and the mixture maintained at 25 °C for 20 min. The reaction mixture was cooled to 0 °C and passed down a dearated Sephadex SP C25 column (18–20 cm long, 1.8-cm diameter, at 0 $^{\circ}$ C) which had been preequilibrated with 0.1 M HClO₄. Four colored bands were observed. The first diffuse brownish green band was identified as unreacted $CrSH^{2+}$ by its visible spectrum, peak positions 575 nm (ϵ 27.5 M⁻¹ cm⁻¹) and 435 nm (ϵ 43.1 M⁻¹ cm⁻¹).⁴ The second blue band was identified as Cr^{3+} , peak positions 575 nm (ϵ 13.7 M⁻¹ cm⁻¹) and 408 nm (ϵ 15.5 M⁻¹ cm⁻¹). The two remaining bands were both slow moving possibly because of the high charge. Washing the column first with 0.2 M HClO₄ eluted the Fe(II) product. This was identified by addition of thiocyanate and H₂O₂ which produced an

AIC60831N