The vessel was opened in a nitrogen-filled glovebag, the lower portion containing the gray-brown nonvolatile residue was cut off and removed, and the $Sn(CH_1)_2C_2B_4H_4$ (III) was washed with degassed methylene chloride and resublimed at room temperature to produce 50 mg (4% yield) of pure product.

Reaction of PbBr2 with Na⁺[(CH3)2C2B4H5]. A 4.0-mmol quantity of the carborane salt in THF was allowed to react with 3.9 mmol of PbBr₂ in a procedure identical with the preceding synthesis. Sublimation of $Pb(CH_3)_2C_2B_4H_4$ (IV) from the yellowish-brown residue at room temperature onto a -78 °C cold finger gave 22 mg of light yellow product.

Reaction of $Sn(CH_3)_2C_2B_4H_4$ (III) with $(\eta^5-C_5H_5)Co(CO)_2$. A "hot-cold" reactor, consisting of a cylindrical Pyrex tube 24 mm in diameter and equipped with a greaseless Teflon stopcock at one end for attachment to the vacuum line, was charged with 1.2 mmol of $Sn(CH_3)_2C_2B_4H_4$ and 1.8 mmol of $(\eta^5-C_5H_5)Co(CO)_2$. The central portion of the tube was maintained at 150 °C by a Variac-controlled heating tape while the lower end was held at 70 °C in an oil bath. After 24 h the tube was cooled in liquid nitrogen and the noncondensables were removed on the vacuum line. On warming of the system to room temperature the volatile materials were removed by distillation. Extraction of the residue with methylene chloride gave a dark brown solution which was separated by preparative thin-layer chromatography. Development on silica gel plates with a 2:1 chloroform-hexane mixture gave yellow $1,2,3-(\eta^5-C_5H_5)Co$ - $(CH_3)_2C_2B_4H_4$ (100 mg, 0.48 mmol, R_f 0.77) identified from its ¹¹B NMR and mass spectra, ¹³ and dark red (η^5 -C₅H₅)CoSn(CH₃)₂C₂B₄H₄ (V) (20 mg, 0.06 mmol; R_f 0.58). A trace of (η^5 -C₅H₅)₂Co₂-(CH₃)₂C₂B₄H₄^{12,17} was also obtained and identified from its mass spectroscopic cutoff at m/e 350. The partial decomposition of V to produce $(\eta^5 - C_5H_5)C_0(CH_3)_2C_2B_4H_4$ was observed during development on silica gel; most of the latter compound could be removed by vacuum sublimation onto a -78 °C cold finger, leaving behind the less volatile V.

The reaction of the same two reagents in refluxing n-nonane at 151 °C under dry nitrogen for 4 h, followed by elution of the dark brown residue on silica gel with hexane, gave $(\eta^5-C_5H_5)$ Co- $(CH_3)_2C_2B_4H_4$ but no V was detected.

Acknowledgment. This work was supported by the Office of Naval Research. The pulse Fourier transform NMR spectrometer and associated computer were obtained in part via a departmental instrument grant from the National Science Foundation.

Registry No. I, 63181-06-6; II, 63181-05-5; III, 63181-04-4; IV, 63181-03-3; V, 63230-65-9; $Na_2C_2B_5H_7$, 63230-64-8; Na^+ $[(CH_3)_2C_2B_4H_5]^-$, 54244-93-8; Na⁺C₂B₄H₇⁻, 63231-39-0; PbBr₂, 10031-22-8; GeI₂, 13573-08-5; SnCl₂, 7772-99-8; (η⁵-C₅H₅)Co(CO)₂, 12078-23-8; 1,2,3- $(\eta^{5}-C_{5}H_{5})Co(CH_{3})_{2}C_{2}B_{4}H_{4}$, 50932-66-6; $(\eta^{5}-C_{5}H_{5})Co(CH_{3})_{2}C_{2}B_{4}H_{4}$ $C_5H_5)_2Co_2(CH_3)_2C_2B_4H_4$, 63269-89-6.

References and Notes

- (1) (a) R. W. Rudolph, R. L. Voorhees, and R. E. Cochoy, J. Am. Chem. Soc., 92, 3351 (1970); (b) R. L. Voorhees and R. W. Rudolph, *ibid.*, 91, 2173 (1969); (c) V. Chowdhry, W. R. Pretzer, D. N. Rai, and R. W. Rudolph, *ibid.*, 95, 4560 (1973).
- (2) L. J. Todd, A. R. Burke, H. T. Silverstein, J. L. Little, and G. S. Wikholm, J. J. L. B. Lotte, L. L. Burdstein, J. L. Lindstein, J. Z. Lindstein, J. Am. Chem. Soc., 91, 3376 (1969).
 G. S. Wikholm and L. J. Todd, J. Organomet. Chem., 71, 219 (1974).
 D. C. Beer and L. J. Todd, J. Organomet. Chem., 50, 93 (1973).
 R. E. Loffredo and A. D. Norman, J. Am. Chem. Soc., 93, 5587 (1971).

- (3) K. E. Lonredo and A. D. Norman, J. Am. Chem. Soc., 95, 536 (1971).
 (6) (a) M. L. Thompson and R. N. Grimes, *Inorg. Chem.*, 11, 1925 (1972);
 (b) A. Tabereaux and R. N. Grimes, *ibid.*, 12, 792 (1973).
 (7) (a) C. G. Savory and M. G. H. Wallbridge, *Chem. Commun.*, 622 (1971);
 (b) C. G. Savory and M. G. H Wallbridge, J. Chem. Soc., Dalton Trans., 918 (1972).
- (8) A review of group 4 carborane chemistry is given by R. N. Grimes, Rev. Silicon, Germanium, Tin Lead Compd., in press.
- (9) R. N. Grimes, W. J. Rademaker, M. L. Denniston, R. F. Bryan, and P. T. Greene, J. Am. Chem. Soc., 94, 1865 (1972)
- (10) L. G. Sneddon, D. C. Beer, and R. N. Grimes, J. Am. Chem. Soc., 95, 6623 (1973).
- (11) R. N. Grimes, *Pure Appl. Chem.*, 39, 455 (1974), and references therein.
 (12) V. R. Miller and R. N. Grimes, *J. Am. Chem. Soc.*, 95, 2830 (1973).
 (13) R. N. Grimes, D. C. Beer, L. G. Sneddon, V. R. Miller, and R. Weiss,
- Inorg. Chem., 13, 1138 (1974).
- (14) M. F. Hawthorne, D. C. Young, T. D. Andrews, D. V. Howe, R. L. Pilling, A. D. Pitts, M. Reintjes, L. F. Warren, Jr., and P. A. Wegner, J. Am. Chem. Soc., 90, 879 (1968). (15) T. P. Onak, R. P. Drake, and G. B. Dunks, Inorg. Chem., 3, 1686 (1964).
- (16) (a) K. Wade, Adv. Inorg. Chem. Radiochem., 18, 1 (1976), and references therein; (b) R. E. Williams, *ibid.*, 18, 67 (1976); (c) R. W. Rudolph, Acc. Chem. Res., 9, 446 (1976).
 (17) V. R. Miller, L. G. Sneddon, D. C. Beer, and R. N. Grimes, J. Am. Chem.
- Soc., **96**, 3090 (1974), (18) W. J. Evans, G. B. Dunks, and M. F. Hawthorne, J. Am. Chem. Soc.,
- 95, 4565 (1973).
- (19) This observation is consistent with the finding²⁰ that $1,2,3-(\eta^5-C_5H_5)$ -CoC2B4H6 requires much higher temperature (400 °C) for rearrangement than was employed in the synthesis of V.
- (20) V. R. Miller and R. N. Grimes, J. Am. Chem. Soc., 97, 4213 (1975).
 (21) W. M. Maxwell, V. R. Miller, and R. N. Grimes, J. Am. Chem. Soc.,
- 98, 4818 (1976).
- (22) (a) F. N. Tebbe, P. M. Garrett, and M. F. Hawthorne, J. Am. Chem. Soc., 90, 869 (1968); (b) F. Klanberg, D. R. Eaton, L. J. Guggenberger, and E. L. Muetterties, Inorg. Chem., 6, 1271 (1967); (c) M. L. Thompson and R. N. Grimes, J. Am. Chem. Soc., 93, 6677 (1971).
- (23) For a comprehensive review of metallocarborane chemistry see R. N. Grimes in "Organometallic Reactions and Syntheses", Vol. 6, Plenum Press, New York, N.Y., 1977, Chapter 2, pp 63-221.
 (24) R. W. Rudolph and V. Chowdhry, *Inorg. Chem.*, 13, 248 (1974).
 (25) T. Onak and G. B. Dunks, *Inorg. Chem.*, 5, 439 (1966).

Contribution from the Department of Inorganic and Analytical Chemistry, La Trobe University, Bundoora, Victoria, Australia 3083, and the University of Queensland, St. Lucia, Queensland, Australia 4067

Hydrogen–Deuterium Exchange between MBH_4 and MBD_4 (M = Li, Na). Isotope Effects on the ¹H and ¹¹B NMR Spectra of the BH_nD_{4-n} Anions and a Discussion of Exchange Reactions in Some Covalent Tetrahydroborate Systems

BRIAN E. SMITH,^{1a} BRUCE D. JAMES,^{*1b} and RUSSELL M. PEACHEY^{1c}

Received March 16, 1977

AIC70233O

The ¹H NMR spectra of lithium and sodium borohydrides, in various solvents, have been recorded. The resulting chemical shift and coupling constant data do not yield any clear indications of variations in solution structure. Hydrogen-deuterium exchange between LiBH₄ and LiBD₄ occurs in some ethereal solvents yielding a mixture of partially substituted species, LiBH_nD_{4-n} (n = 0 to 4). These observations are relevant to the isotopic distribution in the products of exchange reactions involving some covalent borohydrides. Isotope effects in the ¹H and ¹¹B NMR spectra of LiBH_nD_{4-n} (THF solvent) and NaBH_n D_{4-n} (alkaline aqueous solvent) are described. Chemical shifts (¹¹B and ¹H) and coupling constants, $J(^{11}B-H)$, decrease approximately monatonically with deuterium substitution. These isotope effects are considered to arise from the modification of the vibrational characteristics of the $(BH_nD_{4-n})^-$ species.

Introduction

In 1952, Brown and co-workers demonstrated that tritium gas exchanged with the hydrogen in lithium and sodium tetrahydroborates at elevated temperatures.² Their method was later extended by Mesmer and Jolly into a convenient preparation for KBD₄, in which the anions BH_3D^- , $BH_2D_2^-$, and BHD₃⁻ were shown to occur as intermediates.³ It has since been demonstrated⁴ that a mixture of LiBH₄ and LiBD₄

Table I. Chemical Shifts and Coupling Constant for $LiBH_4$ and $NaBH_4$ in Various Solvents, from ¹H NMR

Compd	Solvent	Molarity	Chem shift, ppm ^a	J ₁₁ В-Н, Нz ^b
LiBH₄	1. Pyridine	0.2	1.38	81.3 ^c
	2. Diglyme ^f	0.3	-0.45	81.2
	3. Monoglyme ^g	1.2	-0.47	81.1
	4. Tetrahydrofuran	0.8	-0.48	81.1
	5. Diethyl ether	0.4	-0.41	81.1 ^d
NaBH₄	6. D ₂ O/1.0 N NaOH	0.8		80.6 ^e
	7. Pyridine	0.2	1.26	81.3
	8. Diglyme	0.3	-0.47	81.2
	9. Monoglyme	0.2	-0.47	81.0

^a A positive value indicates a downfield shift with respect to internal TMS. ^b Cf ref 6. ^c Cf 1.27 ppm and 81.0 Hz (ref 12). ^d Cf 75 ± 3 Hz (ref 10). ^e Cf 82 ± 3 Hz (ref 10) and 81 Hz (ref 11). ^f Diglyme = diethylene glycol dimethyl ether, CH₃OCH₂-CH₂OCH₃. ^g Monoglyme = ethylene glycol dimethyl ether, CH₃OCH₂CH₂OCH₃.

readily undergoes H–D exchange at room temperature in tetrahydrofuran, producing a mixture of species LiBH_nD_{4-n} (n = 0-4). Also, isotope effects on the coupling constant and chemical shift were present. Consequently, the $[BH_nD_{4-n}]^-$ system could serve as an excellent source of data on some isotope effects. There had also been reports on intermolecular exchange between LiBH₄ and the covalent systems^{5,6} Zr(BH₄)₄ and Al(BH₄)₃. These results prompted us to make a closer examination of MBH₄/MBD₄ solutions (M = Li, Na) in various common solvents, using NMR spectroscopy.

Experimental Section

LiBH₄ and LiBD₄ (98% isotopic purity) were obtained from Koch Light Co. Both were purified prior to use (largely unnecessary for fresh samples) by dissolving in dried diethyl ether, filtering, then removing ether solvent by extended evacuation on a vacuum line. NaBH₄ and NaBD₄ were obtained from Research Organic/Inorganic Chemical Corp. Apart from drying on a vacuum line, both were used without further purification.

All organic solvents were dried by refluxing and distilling over calcium hydride under an atmosphere of nitrogen and were subsequently degassed by successive freeze-thaw cycles on a vacuum line. Solutions were made up in a nitrogen-filled Mecaplex AG. glovebox and filtered through diatomaceous earth (predried by extended evacuation) prior to NMR measurements. In the survey of H-D exchange reactions, solutions of the hydridoborate were added to deuterioborate solutions such that the BH_4^-/BD_4^- ratios correspond approximately to 60% H, 40% D. Survey ¹H NMR spectra (23.5 kG, 100 MHz) were recorded on a JEOL MH 100 spectrometer and accurate data on a JEOL PS 100 instrument internally locked on solvent resonances. ¹¹B NMR spectra (23.5 kG, 32.09 MHz) were recorded on the PS 100 instrument with modifications based on those described elsewhere.⁷ In the ¹H and ¹¹B NMR studies of NaBH_nD_{4-n} mixtures, 1.0 N NaOH/D₂O and 1.0 N NaOH/H₂O solvents, respectively, were employed, with solutions approximately 1.5 M in boron. The sodium hydroxide was present to reduce the rate of hydrolysis.⁸ In the studies of the ¹H and ¹¹B NMR of LiBH_nD_{4-n}, solutions were approximately 2 M in boron.

Results and Discussion

(1) The BH₄⁻ Ion. The ¹H NMR spectrum of the BH₄⁻ ion consists of an intense quartet due to ¹H-¹¹B coupling (¹¹B: $I = 3/_2$, natural abundance 80.4%) superimposed on a weaker septet due to ¹H-¹⁰B coupling (¹⁰B: I = 3, natural abundance = 19.6%). The corresponding ¹¹B NMR spectrum is a 1:4:6:4:1 quintet arising from coupling to four equivalent protons.⁹ Published data on solution NMR studies of alkali metal tetrahydroborates are relatively sparse and have been derived largely from ¹¹B NMR spectroscopy.^{6,10-13} Proton NMR chemical shifts and coupling constants obtained in this work for LiBH₄ and NaBH₄ in various solvents are given in Table I.

Table II. Results of H-D Exchange Experiments in Solution

Compd	Solvent	Exchange result
LiBH4	1. Pyridine	
•	2. Diglyme	+
	3. Monoglyme	+
	4. Tetrahydrofuran	+
	5. Diethyl ether	+
NaBH.	6. D.O/1 N NaOH	-
- 4	7. Pyridine	-
	8. Diglyme	_
	9. Monoglyme	-

In all cases, $J(^{11}B-H) = 81.0 \pm 0.4$ Hz and the small observed variations are not statistically significant. These data compare with an often-quoted earlier result¹⁰ in which J- $(^{11}B-H)$ for LiBH₄ (in diethyl ether) and NaBH₄ (in water) were estimated as 75 ± 3 and 82 ± 3 Hz, respectively. All the measured coupling constants $J(^{10}B-H)$ are in the range 27.05 to 27.25 Hz, consistent with the value calculated from $(\gamma^{10}B/\gamma^{11}B)J(^{11}B-H)$, within experimental error. The proton chemical shifts of both LiBH₄ and NaBH₄ in ethereal solvents (systems 2 to 5, 8, and 9 in Table I) are relatively insensitive to both solvent and cation. All lie within the range 0.45 \pm 0.04 ppm to high field of TMS. The exceptionally low field resonance positions of lithium and sodium tetrahydroborate in pyridine may derive from ring current shifts. It has been known for some time that in diethyl ether and THF, LiBH₄ suffers a considerable degree of association¹⁴ and detailed studies of structure in these solvents have recently been published.^{15,16} Further, Shirk and Shriver¹⁷ have noted variations in the Raman spectral characteristics of systems 1 to 9 which may be indicative of structural differences in solution. What little variation we do find in the current NMR data, however, does not seem to be readily correlated with the Raman results, nor of itself, to give any clear indication of solution structure.

(2) Exchange. The results of a survey of the occurrence of H–D exchange between MBH_4 and MBD_4 (M = Li, Na) in the solvent systems 1 to 9 are presented in Table II. Positive results were gained only when LiBH₄ and LiBD₄ were mixed in ethereal solvents.¹⁸ In order for exchange to take place, B–H bond cleavage must occur in some manner, plausibly through a concerted mechanism of the form:

 $Li^+ + BH_4^- + BD_4^- \rightleftharpoons Li^+ + H^- + BH_3^-BD_4^-$

in which the lithium ion acts as an intermediary facilitating the juxtaposition of anionic species and subsequent H–D interchange. The existence of the ion $BH_3BH_4^-$ has been established,^{19,20} and Ashby and co-workers^{15,16} have proposed the occurrence of the species $[Li(BH_4)_2]^-$ (and perhaps higher aggregates) in THF and diethyl ether solutions of LiBH₄. It is interesting that the Raman characteristics of a pyridine solution of LiBH₄, in contrast to ethereal solutions, give no evidence of strong Li⁺BH₄⁻ association.¹⁷ It is plausible, then, that the conspicuous absence of H–D exchange between LiBH₄ and LiBD₄ in pyridine may reflect a distinction in solution structure.

It was apparent from the ¹H and ¹¹B NMR spectra from $LiBH_4/LiBD_4$ mixtures in THF⁴ that not only did H–D exchange take place but also isotope effects on the coupling constant and chemical shift were present.²¹ Since isotope effects had not been widely documented in boron systems,²² the availability of the various $[BH_nD_{4-n}]^-$ anions made an ideal opportunity for their investigation. Two systems have therefore been studied in detail. The series $LiBH_nD_{4-n}$ in THF is attractive because of the high solubility. In addition to solubility considerations, NaBH_nD_{4-n} dissolved in (alkaline) H₂O or D₂O is particularly facile in that very narrow line widths are readily attainable.

Figure 1. The four major features a, b, c and d (in order, low to high field) of the ¹H NMR spectrum of a mixture of species NaBH_nD_{4-n} (n = 0 to 4) in 1.0 M NaOH/D₂O solvent. The designations (a) BH₄⁻, (b) BH₃D⁻, (c) BH₂D₂⁻, (d) BHD₃⁻, and (e) BD₄⁻ are also used in other figures. Consecutive members of this quartet of multiplets are separated by $J(^{11}B-H) \sim 81$ Hz. The weaker septet multiplets due to $^{10}B-H$ coupling is not shown.

(3) Proton NMR Spectra. The ¹H NMR spectrum of a mixture of species NaBH_nD_{4-n} (Figure 1) appears as four major complex features separated by approximately 81 Hz, $J(^{11}B-H)$. Each feature consists of a superposition of signals whose multiplicity arises from H–D coupling. For simplicity, the four major spectral features will be referred to as "features a, b, c, and d" going from low to high field.

Within each feature, components due to BH_4^- (singlet), BH_3D^- (1:1:1 triplet), $BH_2D_2^-$ (1:2:3:2:1 quintet), and BHD_3^- (1:3:6:7:6:3:1 septet) are observed.

That an isotope shift is operative is apparent from Figure 1 since in each of the features a, b, c, and d the centers of the component $BH_4^{-}(a)$, $BH_3D^{-}(b)$, $BH_2D_2^{-}(c)$, and $BHD_3^{-}(d)$ multiplets occur to successively higher field. However, it is also starkly apparent that the four features a, b, c, and d are not identical, and indeed the above separations can be seen to decrease in a stepwise fashion in passing from a to d. This derives from a decrease in the absolute magnitude of $J(^{11}B-H)$ from a maximum in BH_4^- to a minimum in BHD_3^- . The proton chemical shifts of $NaBH_nD_{4-n}$ decrease (i.e., shift upfield) by about 0.0146 ppm per deuterium substitution and and $J(^{11}B-H)$ decreases by about 0.37 Hz per replacement. Relevant data are given in Table III and Figures 2a and 2b. It should be noted that this system is particularly well suited to the detection of an isotope effect on a coupling constant, in that the separation between the centers of, for example, the BH_4^- and BH_3D^- multiplets in features a and d differ by $3x[J(^{11}B-H), BH_4^- - J(^{11}B-H), BH_3D^-]$. In all isotopic variants, a coupling constant $^2J(H-D) = 1.61$ Hz (standard deviation = 0.03 Hz) was observed, and indeed any isotope effect on ${}^{2}J(H-D)$ would be expected to be small.²³ This value compares with ${}^{2}J(H-D)$ estimated as 1.90 and 1.78 Hz for Inorganic Chemistry, Vol. 16, No. 8, 1977 2059

Figure 3. The patterns of line in the ¹¹B NMR due to: (a) BH_4^- (1:4:6:4:1); (b) BH_3D^- (1:1:1, 3:3:3, 3:3:3, 1:1:1); (c) $BH_2D_2^-$ (1:2:3:2:1, 2:4:6:4:2, 1:2:3:2:1); (d) BHD_3^- (1:3:6:7:6:3:1, 1:3:6:7:6:3:1); (e) BD_4^- (1:4:10:16:19:16:10:4:1). In Figures 4 to 6, the centers of resonances (a) to (e) occur successively to higher field.

Figure 4. The ¹¹B NMR spectrum of a mixture of NaBH₄ (a) and NaBD₄ (e) in 1.0 M NaOH/H₂O. H-D exchange is absent. The center of the BD₄⁻ resonance occurs upfield of the center of the BH₄⁻ resonance. Features due to NaBHD₃ impurity in the NaBD₄ sample are weakly visible.

 $CH_n D_{4-n}$ and $(NH_n D_{4-n})^+$, respectively.^{24,25} In the absence of a primary isotope effect, ²*J*(H–H) can be calculated from $(\gamma H/\gamma D)J(H-D) = 10.5$ Hz.

The ¹H NMR spectra of LiBH_nD_{4-n} mixtures⁴ show evidence of similar isotope effects on chemical shifts and coupling constants, but the greater line widths of component peaks make it difficult to gain as much or as accurate data. It is estimated that the BH₃D⁻ resonance occurs about 0.011 ppm upfield of the BH₄⁻ resonance, that $J(^{11}B-H)$ for BH₃D⁻ is approximately 0.4 Hz less than $J(^{11}B-H)$ for BH₄⁻, and that ²J(H-D) for BH₃D⁻ = 1.6 Hz. These values are compatible, within the limitations of measurement, with the NaBH_nD_{4-n} results. We have also found that, within experimental error, the relevant peak positions are invariant over a temperature range of -35 to +58 °C. Thus the rate of H-D exchange is slow on the NMR time scale and does not significantly affect spectral characteristics.

(4) Boron-11 NMR Spectra. In Figure 3 the patterns of lines due to BH_4^- (a), BH_3D^- (b), $BH_2D_2^-$ (c), BHD_3^- (d), and BD_4^- (e) in the ¹¹B NMR are illustrated. The spectrum of a mixture of NaBH₄ and NaBD₄ in alkaline aqueous solution (no H-D exchange) shown in Figure 4 clearly demonstrates the presence of a considerable isotope effect on ¹¹B

Table III. Isotope Effects in the ¹H and ¹¹B NMR Spectra of MBH_nD_{4-n} (M = Li, Na; n = 0 to 4)^a

Compd	n	¹ H NMR 10 ² Δδ, ppm	¹¹ B NMR Δδ, ppm	¹ H NMR ΔJ (¹¹ B-H), Hz	¹¹ B NMR ΔJ (¹¹ B-H), Hz	
LiBHnD	4	0.0	0.0	0.0	0.0	
,, , , , , , , , , , , , , , , , , , ,	3	1.1	0.139 (0.007)	0.4	0.45 (0.22)	
	2		0.275 (0.005)		0.55 (0.13)	
	1		0.423 (0.009)		1.09 (0.26)	
	0		0.558 [0.004]			
NaBH _n D ₄	4	0.0	0.0	0.0	0.0	
,, ,-,,	3	1.46 (0.02)	0.137 (0.004)	0.37 (0.02)	0.68 (0.25)	
	2	2.90 (0.03)	0.271 (0.004)	0.73 (0.03)	0.71 (0.22)	
	1	4.41 (0.05)	0.411 (0.004)	1.09 (0.04)	1.02 (0.20)	
	0		0.543 [0.007]			

 $^{a}\Delta\delta$ = isotope shift upfield of BH₄. $\Delta J(^{11}B-H) = [J(^{11}B-H), BH_{4} - J(^{11}B-H), BH_{n}D_{4-n}]$. Where ten or more measurements were made, calculated standard deviations are given in parentheses. Where less than ten measurements were made, an average deviation is given in square brackets.

Figure 5. The ¹¹B NMR spectra of LiBH₄/LiBD₄ mixtures in THF in which H–D exchange has occurred: (a) BH₄⁻, BH₃D⁻, and BH₂D₂⁻ species predominate; (b) BH₂D₂⁻, BHD₃⁻, and BD₄⁻ predominate.

chemical shifts. From Figure 5 (LiBH_nD_{4-n}) and Figure 6 (NaBH_nD_{4-n}) it is found that the centers of the ¹¹B NMR signals of the component species occur at successively higher fields with increasing deuteration. The effect is approximately linear with n, corresponding to an upfield shift of about 0.14 ppm per deuterium substituent, in both the lithium and the sodium systems.

The isotope effects on $J({}^{11}B-H)$, which were accurately measured from ¹H NMR spectra of NaBH_nD_{4-n}, may also be deduced from the ¹¹B NMR data. For example, the separations denoted m and n in Figure 6 differ by $2x[J({}^{11}B-H),$ BH₄⁻ - $J({}^{11}B-H)$, BH₂D₂⁻]. Such measurements for the NaBH_nD_{4-n} mixtures yield results comparable with the ¹H NMR data but are of poorer precision. Hence, while it was not possible to measure the full range of isotope effects on $J({}^{11}B-H)$ for the LiBH_nD_{4-n} system from ¹H NMR spectra, these data have been deduced from the ¹¹B NMR spectra, and the results are comparable with those for NaBH_nD_{4-n}.

Secondary isotope effects on coupling constants $J({}^{11}B-D)$ may be sought from, for example, the differences between the separations marked x and y in Figure 6, which would be expected to be $4x[J({}^{11}B-D), BH_2D_2^- - J({}^{11}B-D), BD_4^-]$. Within experimental error, however, all such distances are found to be equal and it is estimated that the $J({}^{11}B-D)$ values for $BH_2D_2^-$ and for BD_4^- differ by less than 0.2 Hz. $J({}^{11}B-D)$ is estimated as 12.2 Hz (standard deviation 0.2 Hz) for NaBH_nD_{4-n} and 12.3 Hz (standard deviation 0.2 Hz) for LiBH_nD_{4-n}, both of which are consistent with the value calculated from $(\gamma D/\gamma H)J({}^{11}B-H)$.

Isotope effect data from the present work are summarized in Table III. That deuterium substitution produces upfield shifts in the ¹H and ¹¹B NMR is in keeping with the majority

Figure 6. The ¹¹B NMR spectrum of a mixture of species NaBH_nD_{4-n} dissolved in 1.0 M NaOH/H₂O. Figures 6b-e are expansions of the regions between the components of the BH₄⁻ quintet shown in Figure 6a. Most of the 55 expected lines (Figure 3) are observed. Not all observed resonances are labeled in Figure 6. The separation between adjacent lines due to BH₄⁻ (a) is 81 Hz.

of observations for various isotope replacements and for various resonant nuclei.²⁶⁻²⁸ The current ¹H NMR results contrast with the earlier report³ for aqueous KBH_nD_{4-n}, in which upfield shifts of 0.02 and 0.04 ppm for n = 3 and 2, respectively, were deduced, and no effect on $J(^{11}B-H)$ was detected.²⁹ The present ¹¹B NMR results compare with an earlier report³⁰ for deuterated sodium borohydrides in which the ¹¹B signals of BH₃D⁻ and BD₄⁻ were reported to occur 0.17 ± 0.03 and 0.58 ± 0.04 ppm to high field of the BH₄⁻ resonance. However, the sample investigated in the latter work would not have facilitated the observation of the relatively small effect on $J(^{11}B-H)$. That the ¹¹B isotope shift is about ten times that observed for proton resonances reflects the approximately tenfold wider chemical shift range apparent^{10,11,31,32} in ¹¹B NMR.

Hydrogen-Deuterium Exchange between MBH₄ and MBD₄

Relatively few observations of secondary isotope effects on coupling constants are available for comparison with the present results.³³⁻³⁹ While, in most cases, substitution of D for H produces a decrease in J(X-H), consistent with the BH_nD_{4-n} data, some increases have also been reported.³⁶ The magnitude of the effect has been found to vary from zero (e.g., $(C_6H_5)_2SnH_2$, $J(Sn-H) = 1930.0 \pm 1$ Hz; $(C_6H_5)_2SnHD$, $J(Sn-H) = 1929.7 \pm 1$ Hz, ref 37) to a few hertz. The present results are comparable with, for example, a recent estimate³⁸ that $J({}^{13}C-H)$ for C₆H₅ ${}^{13}CH_3$ is slightly greater than $J({}^{13}C-H)$ in $C_6 H_5^{13} C H_2 D$ by 0.6 ± 0.4 Hz.

That there is such a marked similarity between the results obtained from $LiBH_nD_{4-n}$ in THF and those from $NaBH_nD_{4-n}$ in aqueous solution suggests that the observed effects are unlikely to have been grossly affected either by solvent-solute interactions or by cation-anion association in solution. The effects are therefore considered to arise from the modification of (intramolecular) vibrational characteristics on deuteration.

Isotope effects in diatomics, such as the isotopic variants of the hydrogen molecule $^{40-43}$ have been treated in detail. It is well established that contributions from modifications of both harmonic and anharmonic contributions to the vibrational energy may be significant and even of opposite sign. By contrast, a number of attempts which have been made to explain the observations for polyatomic molecules (ref 26, 28, and references therein) have been based on rather simple models. In view of this current state of theory, further rationalization of the present data does not seem warranted at this time.

Molecular reorientation of three-coordinate or distorted four-coordinate boron compounds (in which there is significant coupling between the electric field gradient and boron nuclear quadrople) will generally provide an efficient mechanism for the nonradiative relaxation of ¹¹B nuclear spin. This results in the broadening of both ¹¹B NMR signals and the ¹H NMR signals of protons coupled to the boron nuclei.⁴⁴ Since the isotope effects observed in both ¹¹B and ¹H NMR spectra are relatively small in magnitude, it would seem unlikely that such isotope effects will be readily detected in any but the most symmetrical boron compounds in which the electric field gradient at the boron nucleus is minimal. To this extent, the tetrahedral (or near tetrahedral) BH₄⁻ (and substituted) ions are particularly suitable. Accordingly, we feel this work represents not only a worthwhile addition to the available data pertaining to secondary isotope effects but also represents the most complete record of such effects in the ¹H and ¹¹B NMR of a boron compound.

(5) Extension to Covalent Systems. Although intramolecular exchange of hydrogen atoms is well-known in covalent hydroborate systems,⁴⁵ the existence of intermolecular exchange between LiBH₄ (or LiBD₄) and covalent zirconium borohydride was only clearly established in 1970 by Wallbridge and co-workers.⁵ A mechanism for the exchange between $LiBD_4$ (or $LiBH_4$) and $Zr(BH_4)_4$ in diethyl ether was proposed as follows:

$$Li^*BH_4 + Zr(BH_4)_4 \approx Li[Zr(BH_4)_4^*BH_4]$$

$$\approx \text{LiBH}_4 + \text{Zr}(\text{BH}_4)_3^* \text{BH}_4 \tag{1}$$

An intermediate analogous to that marked A above had been suggested⁴⁶ for the system $LiBH_4/Al(BH_4)_3/diethyl ether$, and compounds of this type have since been isolated and characterized. $^{6,47-50}$ For the LiBD₄/Zr(BH₄)₄/diethyl ether system, a mechanism totally represented by eq 1 would result in the species LiBH₄, LiBD₄, and $Zr(BH_4)_n(BD_4)_{4-n}$ (n = 0 to 4) where discrete BH_4^- and BD_4^- entities remain intact. The possibility of a scrambled isotopic distribution was put forward but not asserted.⁵ Further evidence by Ehemann and Nöth⁴⁷

 $LiBH_4 + Zr(BH_4)_4 \Rightarrow LiZr(BH_4)_5$

lies to the left at room temperature but strongly to the right at -78 °C. It was also suggested that mechanism 1 might be extended by reactions of the sort

 $LiZr(BH_4)_5 + B' \rightleftharpoons LiZr(BH_4)_5B' \rightleftharpoons LiZr(H)(BH_4)_4 + B'BH_3$ (2)

where B' is a Lewis base, here BH_4^- or diethyl ether. Such a scheme presents a situation whereby the hydrogen/deuterium could be randomized in the product molecules.

Since the evidence suggests that in the reactions described in (1) LiBH₄ and LiBD₄ should coexist in solution, the observation of facile isotope exchange in LiBH₄/LiBD₄ systems is of relevance and indicates that reactions of type 3 must be

$$\text{LiBH}_4 + \text{LiBD}_4 \rightleftharpoons \text{LiBH}_3\text{D} + \text{LiBD}_3\text{H}, \text{etc.}$$
 (3)

added to eq 1. Consequently a scrambled H/D distribution is to be expected in the reaction between $LiBD_4$ and $Zr(BH_4)_4$ yielding products $LiBH_nD_{4-n}$ (n = 0 to 4) and $ZrB_4H_mD_{16-m}$ (m = 0 to 16). Reactions between Al(BH₄)₃ and a number of compounds LiX (X = H, D, Cl, BH_4) have also been reported^{6,46,51} and similar results might be expected for X = BD_4 . It is probable that (1) and (3) do not represent the only exchange reactions occurring in solutions of $LiBD_4/Zr(BH_4)_4$ and (2) remains plausible. A mechanism incorporating either an intramolecular proton rearrangement or an intermolecular process involving borane intermediates, [BH₃], has been put forward⁵¹ to explain the isotopic distribution in the products of the reaction between LiD and $Al(BH_4)_3$ in ether.

Acknowledgment. This work is supported by the Australian Research Grants Committee. We thank Ms. L. Lambert for assistance.

Registry No. LiBH₄, 16949-15-8; NaBH₄, 16940-66-2; LiBH₃D, 53538-47-9; LiBH2D2, 53538-48-0; LiBHD3, 62860-09-7; LiBD4, 15246-28-3; NaBH3D, 20492-86-8; NaBH2D2, 62816-02-8; NaBHD3, 20492-87-9; NaBD₄, 15681-89-7.

References and Notes

- (1) (a) Inorganic Chemistry Laboratory, University of Oxford, U.K.; (b) Department of Inorganic and Analytical Chemistry, La Trobe University, Bundoora, Victoria, Australia 3083; (c) Department of Chemistry, University of Queensland, St. Lucia, Australia 4067.
 W. G. Brown, L. Kaplan, and K. E. Wilzbach, J. Am. Chem. Soc., 74,
- 1343, (1952).
- (3) R. E. Mesmer and W. L. Jolly, J. Am. Chem. Soc., 84, 2039 (1962).
- (4) B. D. James, B. E. Smith, and R. H. Newman, J. Chem. Soc., Chem. Commun., 294 (1974).
- N. Davies, D. Saunders, and M. G. H. Wallbridge, J. Chem. Soc. A, (5) 2915 (1970).
- (6) M. Ehemann, H. Nöth, and G. Schmidt-Sudhoff, Z. Anorg. Allg. Chem., **394**, 33 (1972). (7) D. D. Traficante, J. A. Simms, and M. Mulcay, *J. Magn. Reson.*, **15**,
- 484 (1974).
- (8) Sodium tetrahydroborate dissolves in water to produce a basic solution and a little hydrogen, after which the solution is fairly stable. Measurements on aqueous NaBH₄ solutions are generally carried out in 0.1 M NaOH or at pH 12.5 (see, e.g., B. D. James and M. G. H. Wallbridge, Prog. Inorg. Chem., 11, 99 (1970)). We found that a little hydrogen is still evolved under these conditions and that to ensure stability for high-resolution NMR experiments it was beneficial to increase the NaOH concentration to 1.0 M
- (9) R. A. Ogg, J. Chem. Phys., 22, 1933 (1954).
- (10) T. P. Onak, H. Landesman, R. E. Williams, and I. Shapiro, J. Phys. Chem., 63, 1533 (1959). (11) W. D. Phillips, H. C. Miller, and E. L. Muetterties, J. Am. Chem. Soc.,
- 81, 4496, (1959). (12) H. Watanabe, J. Totani, M. Ohtsuru, and M. Kubo, *Mol. Phys.*, 14,
- 367 (1968).
- (13) G. W. Canters, J. Am. Chem. Soc., 94, 5230 (1972).
- (14) H. Nöth, Angew. Chem., 73, 371 (1961).
 (15) E. C. Ashby, F. R. Dodds, and H. P. Hopkins, Jr., J. Am. Chem. Soc.,
- 95, 2823 (1973) (16) E. C. Ashby, F. R. Dodds, and H. P. Hopkins, Jr., J. Am. Chem. Soc.,
- 97, 3158 (1975) A. E. Shirk and D. F. Shriver, J. Am. Chem. Soc., 95, 5901 (1973). (17)
- The samples of NaBH_nD_{4-n} mixture used in this work derive from two (18)preliminary exchange experiments using a diglyme sample in which some exchange was observed. Despite numerous subsequent attempts with

other batches of solvent, the original results were found to be irreproducible. It is conceivable that the exchanged samples arose because of catalysis by an impurity (e.g., peroxides or alcohols) in the original diglyme sample. Although exchanged samples could have been gained from alternative sources, the mixtures of NaBH, D4-n obtained from these preliminary experiments proved more than adequate sources of spectral information.

- (19) D. F. Gaines, *Inorg. Chem.*, 2, 523 (1963).
 (20) Y. Matsui and R. C. Taylor, *J. Am. Chem. Soc.*, 90, 1363 (1968).
 (21) Isotope effects are commonly classified as "primary" or "secondary".
- If on substitution an effect on a property of the nucleus at the position of substitution is observed, this is termed a primary effect; if an effect on a property of a nucleus in a different position is observed, this is a secondary effect.
- (22) The only reports of isotope effects in the NMR spectra of boron compounds, in addition to those of ref 3, 4, and 30, of which we are aware, are: (a) W. McFarlane, J. Magn. Reson., 10, 98 (1973); (b) N. N. Greenwood, "Comprehensive Inorganic Chemistry", J. C. Bailar, H. J. Emeleus, R. Nyholm, and A. F. Trotman-Dickinson, Ed., Pergamon Press, New York, N.Y., 1973, p 682.
- (23) H. S. Gutowsky, V. D. Mochel, and B. G. Somers, J. Chem. Phys., 36, 1153 (1961).
- (24) R. A. Bernheim and B. J. Lavery, J. Chem. Phys., 42, 1464 (1965). (25) G. Fraenkel, Y. Asahi, H. Batiz-Hernandez, and R. A. Bernheim, J. Chem. Phys., 44, 4647 (1966).
- (26) H. Batiz-Hernandez and R. A. Bernheim, Prog. Nucl. Magn. Reson. Spectrosc., 3, 63 (1967).
- (27) S. A. Linde and H. J. Jakobsen, J. Magn. Reson., 17, 411 (1975).
- (28) J. B. Lambert and L. G. Greifenstein, J. Am. Chem. Soc., 96, 5120 (1974).
- (29) It may be noted that the shifts reported in ref 3 correspond exactly with the separations measured here between the centers of the BH4-, BH3D-, and $BH_2D_2^-$ multiplets only in the lowest field feature (feature a) of the ¹H NMR spectra (see Figure 1). We estimate these separations to exceed the expected isotope shift by $3/2[J(1^{11}B-H), BH_4 - J(1^{11}B-H), BH_nD_{4-n}^-]$.

- (30) M. Shporer and A. Loewenstein, Mol. Phys., 15, 9 (1968).
- (31) W. G. Henderson and E. F. Mooney, Annu. Rep. NMR Spectrosc., 2, 353 (1968).
- (32) G. R. Eaton and W. N. Lipscomb, "N.M.R. Studies of Boron Hydrides and Related Compounds", W. A. Benjamin, New York, N.Y., 1969.
 (33) P. Diehl and T. Leipert, *Helv. Chim. Acta*, 47, 545 (1964).
- N. Muller and R. H. Birkhahn, J. Chem. Phys., 43, 4540 (1965). (35) G. Pfisterer and H. Dreeskamp, Ber. Bunsenges. Phys. Chem., 73, 654 (1969)
- (36) A. A. Borisenko, N. M. Sergeyev, and Y. A. Ustynyuk, Mol. Phys., 22, 715 (1971).
- (37) C. Schumann and H. Dreeskamp, J. Magn. Reson., 3, 204 (1970).
- (38) M. Murray, J. Magn. Reson., 9, 326 (1973). (35) M. Murray, J. Magn. Reson., 9, 326 (1973).
 (39) E. A. V. Ebsworth and J. J. Turner, J. Chem. Phys., 36, 2628 (1962).
 (40) T. W. Marshall, Mol. Phys., 4, 61 (1961).
 (41) A. Saika and H. Narumi, Can. J. Phys., 42, 1481 (1964).
 (42) W. T. Raynes, A. M. Davies, and D. B. Cook, Mol. Phys., 21, 123 (1971).
 (43) W. T. Raynes and J. P. Riley, Mol. Phys., 27, 337 (1974).
 (44) M. Suzuki and R. Kubo, Mol. Phys., 7, 201 (1964).
 (45) Sae for exemple H. Pacella ed C. H. Puchuellar, Chur. Phys. 72, 465

- (45) See, for example, H. Beall and C. H. Bushweller, Chem. Rev., 73, 465
- (1973).(46) M. Ehemann, H. Nöth, N. Davies, and M. G. H. Wallbridge, Chem.
- Commun., 862 (1968).
- (47) M. Ehemann and H. Nöth, Z. Anorg. Allg. Chem., 386, 87 (1971).
 (48) H. Nöth, E. Wiberg, and L. P. Winter, Z. Anorg. Allg. Chem., 386, 73 (1971)
- (49) N. N. Mal'tseva, N. S. Kedrova, V. V. Klinkova, and N. A. Chumaevskii, Russ. J. Inorg. Chem. (Engl. Transl.), 20, 339 (1975).
- (50) K. N. Semenenko, V. B. Polyakova, O. V. Kravchenko, S. P. Shilkin, and Yu. Ya. Kharitonov, Russ. J. Inorg. Chem. (Engl. Transl.), 20, 173 (1975).
- (51) N. Davies and M. G. H. Wallbridge, J. Chem. Soc., Dalton Trans., 1421 (1972).

Contribution from the School of Chemistry, Georgia Institute of Technology, Atlanta, Georgia 30332

AIC609191

(3)

Nature of Alkyl-Hydrogen Exchange Reactions Involving Aluminum and Zinc. 2. Reaction of (CH₃)₂Zn with LiAlH₄ in Tetrahydrofuran

JOHN J. WATKINS and E. C. ASHBY*

When $(CH_3)_2Zn$ was added to a THF solution of LiAlH₄ in 2:1, 3:2, and 1:1 molar ratios, LiZn₂(CH₃)₄AlH₄ and LiZn(CH₃)₂AlH₄ were formed according to eq 1–3. When the order of addition was reversed and LiAlH₄ was added

$$2(CH_3)_2 Zn + LiAlH_4 \Leftrightarrow LiZn_2(CH_3)_4 AlH_4$$
(1)

$$3(CH_3)_2Zn + 2LiAlH_4 \rightleftharpoons LiZn_2(CH_3)_4AlH_4 + LiZn(CH_3)_2AlH_4$$
(2)

$$(CH_3)_2 Zn + LiAlH_4 \rightleftharpoons LiZn(CH_3)_2 AlH_4$$

to a THF solution of (CH₃)₂Zn in 1:1, 2:3, and 1:2 molar ratios, LiZn(CH₃)₂AlH₄ and LiZn₂(CH₃)₄AlH₄ were again formed according to eq 1-3. Infrared and ¹H NMR spectroscopic studies, as well as ebullioscopic molecular weight measurements, were used to define the solution composition of the products obtained from these reactions. The role of $LiZn(CH_3)_2AlH_4$ as the intermediate involved in the formation of ZnH_2 from the reaction of $LiAlH_4$ with $(CH_3)_2Zn$ is discussed in light of the spectroscopic studies carried out on this reaction.

Introduction

Recently we reported the first synthesis of triple metal ate complexes involving an alkali metal, zinc, and aluminum, i.e., LiZn(CH₃)₂AlH₄ and LiZn₂(CH₃)₄AlH₄.¹ These compounds were formed by the reaction of AlH₃ with LiZn(CH₃)₂H and $LiZn_2(CH_3)_4H$ in THF and are believed to have the structures represented by I and II. In that report we noted that a study

of these triple metal complexes could provide clues as to the nature of alkyl-hydrogen exchange reactions between zinc and aluminum.

In this paper we will report on the formation of LiZn(C- $H_3)_2AlH_4$ and $LiZn_2(CH_3)_4AlH_4$ by reaction of $(CH_3)_2Zn$ with LiAlH₄ in THF under a variety of conditions. The fact that the triple metal complex, $LiZn(CH_3)_2AlH_4$, can be

prepared by allowing LiAlH₄ to react with $(CH_3)_2Zn$ offers the first indication of what could be the intermediate involved in the formation of ZnH₂ from these two reagents in diethyl ether.² An infrared spectral study of the reaction between $(CH_3)_2$ Zn and LiAlH₄ in THF does indeed provide evidence that $LiZn(CH_3)_2AlH_4$ is involved.

Experimental Section

Apparatus. Reactions were performed under nitrogen at the bench using Schlenk tube techniques.³ Filtrations and other manipulations were carried out in a glovebox equipped with a recirculating system.4

Infrared spectra were obtained using a Perkin-Elmer 621 spectrophotometer. Solutions were run in matched 0.10-mm path length NaCl or KBr cells. X-ray powder data were obtained on a Philips-Norelco x-ray unit using a 114.6-mm camera with nickel-filtered Cu K α radiation. Samples were sealed in 0.5-mm capillaries and exposed to x rays for 6 h. The d spacings were read on a precalibrated scale equipped with a viewing apparatus. Intensities were estimated visually. Proton magnetic resonance spectra were obtained on a Varian A-60 spectrometer with a standard variable-temperature unit. Ebullioscopic molecular association studies were carried out in THF