Contribution from the School of Chemistry, Georgia Institute of Technology, Atlanta, Georgia 30332

Preparation and Characterization of HMgAlH₄, HMgBH₄, and H₄AlMgBH₄

E. C. ASHBY*1 and A. B. GOEL

Received February 7, 1977

AIC70093I

The reactions of alane and diborane with an active form of magnesium hydride in THF were used to prepare HMgAlH₄ and HMgBH₄. These products were also prepared by the reaction of NaAlH₄ and NaBH₄ with HMgCl in THF. The hydridomagnesium chloride was prepared by the reaction of magnesium chloride with magnesium hydride in THF. Both HMgAlH₄ and HMgBH₄ are soluble in THF and exhibit well-defined infrared absorption spectra. When the THF solvent was removed from HMgAlH₄, a mixture of MgH₂ and Mg(AlH₄)₂ was isolated rather than the expected HMgAlH₄, while in the case of HMgBH₄, a highly viscous liquid was obtained which differs from a physical mixture of solid MgH₂ and Mg(BH₄)₂. For the first time, a triple metal hydride of empirical formula, AlH₄MgBH₄, has been successfully prepared in pure form by the reaction of sodium aluminum hydride with chloromagnesium borohydride. The ClMgBH₄ was prepared by the reaction of HMgCl with diborane in 1:1 ratio. The infrared spectrum of AlH₄MgBH₄ in THF showed strong bands at 2366 and 2155 cm⁻¹ due to B-H stretching vibrations and a very strong band at 1713 cm⁻¹ due to Al-H stretching. X-ray powder diffraction and DTA-TGA studies of this compound are also presented.

Introduction

The preparation of HMgAlH₄ and HMgBH₄ has been attempted in several laboratories including our own over a period of years. In 1951, Schlesinger and co-workers² reported that if diethylmagnesium in diethyl ether is added to a large excess of LiAlH₄ in ether solution, a clear solution results from which a compound possessing the empirical formula HMgAlH₄ precipitates on addition of benzene. Unfortu-

 $\text{LiAlH}_4 + \text{Et}_2\text{Mg} \rightarrow \text{HMgAlH}_4 + \text{other products}$ (1)

nately, the compound was not characterized further. An attempt to repeat this result failed to produce HMgAlH₄ but instead resulted in the formation of MgH₂ and Mg(AlH₄)₂ regardless of the reaction conditions.³ Our earlier attempts to prepare HMgAlH₄ and HMgBH₄ by several possible reaction routes failed⁴ and in each case a mixture of MgH₂ and either Mg(AlH₄) or Mg(BH₄)₂ was isolated rather than the expected products.

Wiberg and co-workers reported that $LiAlH_4$ and $NaAlH_4$ react with diborane in THF to form a new class of unusually stable compounds which they refer to as "triple metal hydrides" (e.g., $LiAlH_2(BH_4)_2$, $NaAlH_3BH_4$).⁵ The reactions were reported to take place according to eq 2. We have

LiAlH₄ +
$$n$$
BH₃ \rightarrow LiAlH₄ $\cdot n$ BH₃ (2)
(where $n = 1-4$)

studied⁶ the same reactions reported by Wiberg under a variety of conditions but were not able to isolate the reported compounds. Instead we found (when n = 2) that LiBH₄ and H₂AlBH₄ are formed according to eq 3.

$$LiAlH_4 + nBH_3 \rightarrow LiBH_4 + H_{4-n}Al(BH_4)_n$$
(3)

Our recent preparation of THF-soluble HMgX compounds (where X = Cl or Br) suggests that the reaction of HMgCl with LiAlH₄ and LiBH₄ should form HMgAlH₄ and HMgBH₄, respectively. In addition, if it is possible to prepare HMgAlH₄ and HMgBH₄, it should be possible to prepare AlH₄MgBH₄ by the reaction of ClMgAlH₄ with NaBH₄ or ClMgBH₄ with NaAlH₄.

Experimental Section

All operations were carried out either in a nitrogen-filled glovebox equipped with a recirculating system to remove oxygen and moisture or at the bench using typical Schlenk tube techniques. All glassware was flash flamed and flushed with nitrogen prior to use.

Instrumentation. Infrared spectra were recorded in KBr cells using a Perkin-Elmer 621 high-resolution infrared spectrophotometer. X-ray powder diffraction of all samples was obtained on a Philips-Norelco x-ray unit using a 114.6-mm camera with nickel-filtered Cu K α radiation. Single-walled capillaries of 0.5 mm diameter were used. The *d* spacings were evaluated using a precalibrated scale equipped with a viewing apparatus. Line intensities were estimated visually. DTA-TGA data were obtained under vacuum using a modified Mettler Thermoanalyzer II.

Analytical Procedures. Gas analyses were carried out by hydrolyzing samples on a standard vacuum line equipped with a Toepler pump. Aluminum analyses were carried out by complexometric titration with EDTA at pH 4. Magnesium analyses in the presence of aluminum were carried out by masking the aluminum with triethanolamine and titrating with EDTA at pH 10. Boron was determined as boric acid by titration with standard base in the presence of mannitol. Chloride was determined by Volhard titration.

Materials. Tetrahydrofuran and benzene (Fisher Certified reagent) were distilled over sodium aluminum hydride just prior to use, and diethyl ether was distilled over LiAlH₄. Magnesium chloride in THF was prepared⁷ by the reaction of mercuric chloride with excess magnesium in THF. Lithium and sodium aluminum hydride were obtained from Ventron Metal Hydrides Division and prepared as a solution in diethyl ether and in THF as described previously.⁸ Aluminum hydride in THF was prepared⁹ by the reaction of 100% sulfuric acid on lithium aluminum hydride in THF at -10 °C. Diborane in THF was prepared by the reaction of diethylmercury at 60 °C with excess magnesium metal.¹⁰

Preparation of Active MgH₂ **Slurry in THF.** To diethylmagnesium (20 mmol) in diethyl ether (35 mL) was added dropwise lithium aluminum hydride (20 mmol) in diethyl ether (40 mL) with constant stirring at room temperature. An exothermic reaction resulted and immediate precipitation of MgH₂ was observed. This reaction mixture was stirred for about 15 min and then centrifuged. The supernatant solution was removed via syringe and the white solid was washed with fresh amounts of diethyl ether and centrifuged and the supernatant solution again removed via syringe. This process was repeated three times in order to ensure the removal of the LiAlH₂Et₂ formed as a by-product in the reaction. The ether-wet solid was now added to freshly distilled THF and the resulting slurry analyzed. Analysis of the solid showed a Mg:H ratio of 1.00:2.02.

Reaction of AlH₃ with MgH₂ Slurried in THF in 1:1 ratio. To 4.0 mmol of magnesium hydride slurried in THF (15 mL) was added aluminum hydride (4.0 mmol) in THF (25 mL) dropwise with continued stirring. The reaction mixture was stirred for 0.5 h, during which time all of the insoluble MgH₂ dissolved. A slight terbidity was separated by centrifuging and removing the supernatant solution by syringe. An infrared spectrum of this solution gave a band at 1715 cm⁻¹ due to Al-H stretching. Anal. Calcd for HMgAlH₄: Mg:Al:H = 1.00:1.00:5.00. Found: 1.00:1.05:5.06.

No precipitation occurred when the solution was allowed to sit overnight. When the solvent was removed under pressure, precipitation began when the concentration of the solution was about 0.10 M. This white crystalline solid was dried under reduced pressure at 25 °C (0.1 mm) for about 0.5 h and analyzed. Anal. Calcd for HMgAlH₄-1.5THF: Mg:Al:H:THF = 1.00:1.00:5.00:1.50. Found: 1.00:1.06:4.87:1.53. An infrared spectrum of the solid (Nujol mull) showed bands at 1830 and 1720 cm⁻¹ due to Al-H stretching. An x-ray powder diffraction pattern of this solid showed weak lines due to Mg(AlH₄)₂:4THF along with some new lines different from that

Preparation of HMgAlH₄, HMgBH₄, and H₄AlMgBH₄

of Mg(AlH₄)₂·4THF. The main lines were 8.6 (w), 7.4 (w), 7.1 (w), 5.40 (s), 5.25 (s), 4.60 (s), 4.12 (m), 3.00 (s), 2.82 (m), 2.50 (m), 1.87 (m), 1.77 (w), 1.66 (s), 1.52 (w), 1.49 (w), 1.25 (s), 1.21 (s).

The above reaction was repeated in the same manner except that this time the solvent was removed within 1 h after addition of the reagents. The resulting white solid was dried under similar conditions of temperature and pressure as reported above and then analyzed. Anal. Calcd for HMgAlH₄·2THF: Mg:Al:H:HFF = 1.00:1.00:5.00:2.00. Found: 1.00:1.07:5.10:2.02. X-ray powder pattern = 8.75 (m), 7.41 (m), 7.10 (s), 5.83 (m), 5.50 (m), 4.60 (w), 4.13 (3), 3.80 (m), 3.22 (m), 3.08 (w), 2.90 (w), 2.80 (w), 2.72 (w). These lines were comparable to that of Mg(AlH₄)₂·4THF.

Preparation of HMgCl in THF Solution.¹¹ Twenty-five milliliters of a 0.30 M solution of magnesium chloride (7.5 mmol) in THF was added dropwise to well-stirred magnesium hydride slurried in THF (7.50 mmol) at room temperature. The reaction was exothermic. The reaction mixture was stirred for 1 h and the clear solution analyzed. Anal. Calcd for HMgCl: H:Mg:Cl = 1.00:1.00:1.00. Found: 0.98:1.00:1.03.

Reaction of NaAlH₄ in THF in 1:1 Ratio. To 5 mL of a 0.81 M solution of HMgCl (4.05 mmol) in THF was added 8.1 mL of a 0.5 M THF solution of $NaAlH_4$ (4.05 mmol) dropwise with continuous stirring at room temperature. The reaction was exothermic and a white precipitate appeared just after beginning the addition of NaAlH₄. This reaction mixture was stirred for 0.5 h and the white insoluble solid was separated by centrifuging the reaction mixture and removing the supernatant solution by means of a syringe. The resulting white solid was washed with THF, and both the solid and the supernatant solution separated earlier were analyzed. (White insoluble solid. Anal. Calcd for NaCl: Na:Cl = 1.00:1.00. Found 1.00:1.03. A negligible amount of magnesium and aluminum was also detected. Supernatant solution. Anal. Calcd for $HMgAlH_4$: Mg:Al:H = 1.00:1.00:5.00. Found: 1.00:1.02:5.03. IR spectrum of the solution: 1715 (s), 1380 (m), 1350 (w), 1320 (w), 790 (m), 765 (s) cm⁻¹.) The THF solvent was removed under reduced pressure about 2 h after reagent addition and the resulting white crystalline product was dried under reduced pressure at 25 °C (0.1 mm) for 0.5 h and analyzed. Anal. Calcd for HMgAlH₄·2THF or MgH₂ + Mg(AlH₄)₂·4THF: Mg:Al:H:THF = 1.00:1.00:5.00:2.00. Found: 1.00:1.03:5.02:2.01. X-ray powder pattern: 8.75 (m), 7.41 (m), 7.10 (m), 7.10 (s), 5.83 (m), 5.50 (m), 4.60 (w), 4.13 (s), 3.80 (m), 3.22 (m), 3.08 (w), 2.90 (w), 2.80 (w), 2.72 (corresponds to Mg(AlH₄)₂·4THF).

Reaction of Magnesium Hydride with Mg(AlH₄)₂·4THF in THF. A freshly prepared slurry of magnesium hydride (4.0 mmol) in THF and Mg(AlH₄)₂ (4.0 mmol) were mixed in THF and stirred for 2 h at room temperature. Some white solid remained undissolved even after stirring for 4 h. It was filtered and both the filtrate and insoluble solid were analyzed.

Filtrate anal. Calcd for HMgAlH₄: Mg:Al:H = 1.00:1.00:5.00. Found: 1.00:1.15:4.92. Filtrate contained about 60% of the total magnesium. IR (in THF): 1715 (m), 1381 (m), 1349 (w), 1320 (w), 790 (m), 7.65 (s) cm⁻¹.

Insoluble solid anal. Found: Mg:A1:H = 1.13:1.00:4.82. X-ray pattern: 8.76 (m), 7.40 (m), 7.10 (s), 5.83 (m), 5.50 (m), 4.60 (w), 4.13 (s), 3.80 (m), 3.22 (m), 3.08 (w), 2.90 (w) (corresponds to Mg(A1H₄)₂·4THF).

Reaction of NaBH₄ with HMgCl in THF. Sodium borohydride (3.02 mmol) in THF (25 ml) was added dropwise to a well-stirred solution of HMgCl (3.0 mmol) in THF (15 mL) at room temperature. Immediate reaction took place and an insoluble white solid resulted. This reaction mixture was stirred for 0.5 h and the white solid was removed by filtration. Analysis of the solid revealed that it contained Na and Cl in ratios 1.00:1.02. The filtrate exhibited infrared bands at 2372 and 2158 cm⁻¹ due to B-H stretching.

Anal. Calcd for HMgBH₄: Mg:B:H = 1.00:1.00:5.00. Found: 1.00:1.07:5.09.

Reaction of MgH₂ with Mg(BH₄)₂ in THF in 1:1 Ratio. Mg(BH₄)₂ (4.5 mmol) was prepared in THF by the reaction of diborane (9.0 mmol) with a slurry of magnesium hydride (4.5 mmol). The THF solution of Mg(BH₄)₂ was added dropwise to a well-stirred slurry of MgH₂ (4.5 mmol) prepared freshly in THF. This reaction mixture was stirred for 3 h, and the insoluble solid was filtered and washed with THF and both the insoluble white solid and filtrate were analyzed. Analysis of the insoluble solid showed that it contained Mg, B, and H in ratios 1.07:0.07:2.12. The solid contained about 30% of the total magnesium as magnesium hydride.

Filtrate anal. Calcd. for $HMgBH_4$: Mg:B:H = 1.00:1.00:5.00. Found: 1.00:1.19:5.02. The infrared spectrum exhibited bands at 2378, 2265, and 2158 cm⁻¹ characteristic of B-H stretching vibrations.

Reaction of Diborane with MgH₂ in THF in 1:1 Ratio. To a slurry of MgH₂ (4.60 mmol) in THF was added 5.0 mL of a 0.92 M solution of diborane (4.60 mmol) in THF with stirring. The reaction was exothermic and was stirred for 0.5 h at room temperature resulting in an almost clear solution. The slight turbidity present was removed by centrifuging and separating the supernatant solution. The insoluble solid corresponded to 4-5% of the total magnesium hydride used in the reaction. The supernatant solution was analyzed. Anal. Calcd for $HMgBH_4$: Mg:B:H = 1.00:1.00:5.00. Found: 1.00:1.06:5.10. The infrared spectrum showed strong bands at 2365 and 2160 cm⁻¹ characteristic of B-H stretching vibrations. Other bands were at 2220 (sh), 2055 (sh), 1348 (m), 1110 (m), 805 (w), and 625 (w) cm⁻¹. The solvent from the supernatant solution was removed under reduced pressure and the residue dried in vacuo at 25 °C (0.1 mm) for 1 h to give a highly viscous colorless liquid which could not be further dried. The physical state of this compound looked different than the mixture of MgH_2 and $Mg(BH_4)_2$ which are both solids.

Preparation of ClMgBH₄ in THF Solution.¹¹ To a well-stirred solution of HMgCl (20 mmol) in THF (30 mL) was added BH₃. THF (20 mmol in 30 mL of THF) slowly at room temperature. The reaction was exothermic and resulted in a clear solution. The solution was characterized by its infrared spectrum and elemental analysis. Anal. Calcd for ClMgBH₄: Mg:B:H:Cl = 1.00:1.00:4.00:1.00. Found: 1.00:1.02:4.06:1.03. An infrared spectrum exhibited strong absorption bands at 2375 and 2158 cm⁻¹ characteristic of the B-H stretching.

Reaction of ClMgBH₄ with NaAlH₄ in THF in 1:1 Ratio. Sodium aluminum hydride (7.5 mmol) in THF (12 mL) was added slowly to a well-stirred solution of ClMgBH₄ (7.5 mmol) in THF (35 mL) at room temperature. The reaction was exothermic and an insoluble white solid was formed immediately on addition of the NaAlH₄. The reaction mixture was stirred for 0.5 h and the white insoluble solid separated from the clear supernatant solution by centrifugation followed by removal of the supernatant solution (syringe). Both the insoluble solid and the supernatant solution were analyzed. (Insoluble solid. Anal. Calcd for NaCl: Na:Cl = 1.00:1.00. Found: 1.00:1.02. The NaCl was formed quantitatively. X-ray pattern: 3.26 (m), 2.82 (vs), 2.00 (vs), 1.70 (w), 1.628 (m), 1.410 (w), 1.261 (m), 1.152 (w). Supernatant solution. Anal. Calcd for AlH₄MgBH₄: Mg:Al:B:H = 1.00:1.00:1.00:8.00. Found: 1.00:0.98:1.01:8.06. Infrared spectrum (in THF): 2366 (s), 2220 (sh), 2155 (s), 2050 (w), 1820 (w), 1713 (s), 1370 (m), 1110 (w), 960 (w), 790 (sh), 755 (s) cm⁻¹.)

When about 15 mL of THF from this solution was removed under vacuum, some insoluble white solid precipitated from solution. The solid and the filtrate were analyzed. (Insoluble white solid: Anal. Found: Mg:Al:B:H = 1.00:1.27:0.83:8.11. The total magnesium in this solid was about 10% of the initial magnesium involved in the reaction. X-ray pattern: 8.7 (w), 7.4 (w), 7.1 (w), 6.4 (vw), 5.25 (vw), 4.15 (vw), 3.80 (vw). These weak lines correspond to $Mg[AlH_4]_2$ 4THF. Filtrate. Anal. Calcd for AlH₄MgBH₄: Mg:Al:B:H = 1.00:1.00:1.00:8.00. Found: 1.00:0.94:1.05:8.01. An infrared spectrum of the filtrate exhibited absorption bands at 2365 (s), 2220 (sh), 2155 (s), 2050 (w), 1715 (s), 1380 (m), 792 (sh), 755 (s), and 670 (m) cm⁻¹.) The filtrate was then concentrated to 8 mL by removing solvent under vacuum and the resulting insoluble solid separated from the clear supernatant. Both solid and supernatant were analyzed. (Insoluble solid. Anal. Calcd for AlH₄MgBH₄·2THF: Mg:AI:B:H:THF = 1.00:1.00:1.0018.00:2.00.Found: 1.00:1.05:0.99:8.14:1.95. X-ray pattern: 9.85 (m), 8.80 (m), 7.90 (m), 7.40 (m), 7.10 (w), 5.65 (w), 5.32 (m), 5.25 (w), 4.90 (vw), 4.15 (m), 3.91 (w), 2.80 (vw), 2.75 (vw) Å. Supernatant solution. Anal. Calcd for AlH_4MgBH_4 : Mg:Al:B:H = 1.00:1.00:1.00:8.00. Found: 1.00:0.82:1.17:7.93.)

Reaction of Mg(BH₄)₂ with Mg(AlH₄)₂ in THF. When a THF solution of Mg(BH₄)₂ (3.05 mmol) was added dropwise to a well-stirred slurry of Mg(AlH₄)₂ (3.82 mmol) in THF and the reaction mixture stirred at room temperature for 2 h, an almost clear solution resulted. The slight insoluble solid was filtered and analyzed. The analysis showed that it contained Mg, Al, B, and H in ratios 1.00:1.52:0.35:7.78. It contained about 15% of the initial magnesium taken as Mg(AlH₄)₂.

Filtrate anal. Calcd for $A1H_4MgBH_4$: Mg:A1:B:H = 1.00:1.00:1.00:8.00. Found: 1.00:0.91:1.10:7.97. An infrared spectrum of the filtrate exhibited bands at 2368 and 2155 cm⁻¹ characteristic of B-H stretching vibrations and a strong band at 1715 cm⁻¹

characteristic of Al-H stretching vibrations.

Results and Discussion

Some time ago⁴ we attempted to prepare HMgAlH₄ and HMgBH₄, the half complex metal hydrides of $Mg(AlH_4)_2$ and $Mg(BH_4)_2$. The major interest was to impart solubility to a Mg-H compound so that it might find utility as a soluble reducing agent toward organic substrates. In addition it would be reasonable to suppose that such compounds would be more thermally stable than either $Mg(AlH_4)_2$ or $Mg(BH_4)_2$ due to their Mg-H component and therefore, their resemblance to MgH₂ (320 °C dec). Although we failed in our initial attempts to prepare these compounds, new attractive routes opened up recently when we found that MgCl₂ and MgBr₂ will react with an active form of MgH_2 in THF to form a clear, colorless solution of HMgCl and HMgBr, respectively. We immediately considered the possibility that HMgAlH₄ and HMgBH₄ could be prepared by the reaction of one of these HMgX compounds with NaAlH₄ and NaBH₄ to produce the desired compounds (eq 4-6). The active form of MgH₂ used

$$MgH_2 + MgCl_2 \xrightarrow{1HF} 2HMgCl$$
 (4)

 $HMgCl + NaAlH_{4} \xrightarrow{THF} HMgAlH_{4} + NaCl$ (5)

$$HMgCl + NaBH_{a} \xrightarrow{IHF} HMgBH_{a} + NaCl$$
(6)

to prepare HMgCl was obtained by reaction of $LiAlH_4$ with diethylmagnesium in ether (eq 7). Indeed when $NaAlH_4$ in

$$LiAlH_4 + (C_2H_5)_2Mg \rightarrow MgH_2 + LiAlH_2(C_2H_5)_2$$
(7)

THF was added to a THF solution of HMgCl, NaCl precipitated quantitatively and the remaining clear colorless solution analyzed for the compound HMgAlH₄. If instead a mixture of MgH₂ and Mg(AlH₄)₂ was formed, both compounds would have precipitated from solution since both of these compounds are insoluble in THF. The infrared spectrum showed the Al-H stretching absorption in HMgAlH₄ to be at 1715 cm⁻¹; however, it was not possible to observe the Mg-H absorption band. When the THF solvent was removed from the solution of HMgAlH₄ and the solid material analyzed by x-ray powder diffraction, the data clearly showed that some disproportionation had taken place according to eq 8. Since

$$2HMgAlH_4 \rightarrow MgH_2 + Mg(AlH_4)_2 \tag{8}$$

 MgH_2 and $Mg(AlH_4)_2$ have such a high heat of formation and are so insoluble in THF, it seems reasonable that when the THF solvent is removed from $HMgAlH_4$ the compound would disproportionate.

Likewise, HMgBH₄ was prepared in a similar manner (eq 6) to HMgAlH₄, that is, by the reaction of HMgCl with NaBH₄ in THF. The reaction was quantitative and HMgBH₄ formed as a clear colorless solution in THF. An infrared spectrum showed absorption bands at 2365 and 2160 cm⁻¹ due to terminal and bridging B-H stretching vibrations. Unlike HMgAlH₄, when THF is removed from a solution of HMgBH₄, it appears that disproportion does not take place.

It was also possible to prepare $HMgAlH_4$ and $HMgBH_4$ by the reactions of an active form of MgH_2 with AlH_3 in THF and BH_3 in THF, respectively (eq 9 and 10). When a clear

$$MgH_2 + AlH_3 \xrightarrow{THF} HMgAlH_4$$
 (9)

$$M_gH_2 + BH_3 \xrightarrow{THF} HM_gBH_4$$
 (10)

solution of either AlH₃ in THF or BH₃ in THF was added to a slurry of MgH₂ in THF, the MgH₂ dissolved within a matter of a few minutes. The infrared spectra of these solutions were identical with the solutions of HMgAlH₄ and HMgBH₄ prepared earlier from the reaction of HMgCl with NaAlH₄ and NaBH₄, respectively. Elemental analysis indicated the correct empirical formulas for $HMgAlH_4$ and $HMgBH_4$ as would be expected since the MgH_2 dissolved in equal molar proportions with respect to the AlH_3 and BH_3 . Once again when THF solvent was removed from the solution of $HMgAlH_4$, MgH_2 and $Mg(AlH_4)_2$ ·4THF were detected by x-ray powder diffraction analysis. On the other hand, when the THF solvent was removed from a solution of $HMgBH_4$, a viscous liquid was formed from which no further THF could be removed. The infrared spectrum of this liquid was different from that of a prepared mixture of MgH_2 and $Mg(BH_4)_2$.

An attempt was made to prepare HMgAlH₄ by the reaction of MgH₂ with Mg(AlH₄)₂ in THF. When these reagents were stirred at room temperature for 4 h, only 60% of the initial magnesium taken as MgH₂ dissolved. However, the analysis of the solution showed HMgAlH₄ to be present. Similarly, when MgH₂ and Mg(BH₄)₂ were allowed to react in THF for 3 h, about 30% of the MgH₂ reactant remained unreacted. The solution contained both HMgBH₄ and Mg(BH₄)₂ as characterized by elemental and infrared analysis. The above reactions cannot be carried out for longer periods of time in order to ensure complete reaction without some THF cleavage taking place. Because of incomplete reaction, it appears that the reactions of HMgCl with NaAlH₄ or NaBH₄ or the reaction of MgH₂ with AlH₃ or BH₃ are better for the preparation of HMgAlH₄ and HMgBH₄.

We have recently reported¹¹ the preparation of $ClMgBH_4$ by the reaction of HMgCl with diborane in THF (eq 11). We

$$2HMgCl + B_2H_6 \xrightarrow{HHP} 2ClMgBH_4$$
(11)

now find that when a THF solution of NaAlH₄ is added to a THF solution of ClMgBH₄ in 1:1 ratio, a white solid is produced which analyzes as pure NaCl. Since Mg(AlH₄)₂ is insoluble in THF, the presence of a clear solution of empirical formula H₄AlMgBH₄ represents the formation of this stable and soluble "triple metal hydride". An infrared spectrum of the product solution exhibited absorption bands at 2366 and 2155 cm⁻¹ due to terminal and bridging B-H stretching vibrations and a strong band at 1713 cm⁻¹ characteristic of the Al-H stretching vibration. Since Mg(BH₄)₂ in THF shows B-H absorptions at 2380 and 2270 cm⁻¹ and Mg(AlH₄)₂ is not soluble in THF, it is clear that H₄AlMgBH₄ is a true compound and not a mixture of Mg(AlH₄)₂ and Mg(BH₄)₂.

In an attempt to determine something about the integrity of $H_4AlMgBH_4$ in the solid state, a fractional crystallization of a THF solution of H₄AlMgBH₄ was carried out. Four fractions were collected. By elemental analysis it was shown that the first solid fraction was enriched with $Mg(AlH_4)_2$ and by x-ray powder pattern analysis it was shown that some $Mg(AlH_4)_2$ was present. The middle two fractions analyzed were for H₄AlMgBH₄ and the x-ray powder patterns showed the absence of $Mg(AlH_4)_2$ (all lines being other than those ascribed to $Mg(AlH_4)_2$). The middle fractions (H₄AlMgB- H_4 ·2THF) were shown to be completely soluble in benzene, once again demonstrating the integrity of these fractions as a single compound since $Mg(AlH_4)_{2}$ 4THF is not soluble in benzene. The product AlH₄MgBH₄ could also be prepared in almost 90% purity by the reaction of $Mg(AlH_4)_2$ with $Mg(BH_4)_2$ in THF. When $Mg(BH_4)_2$ in THF was added

$$Mg(AlH_4)_2 + Mg(BH_4)_2 \xrightarrow{\text{THF}} 2AlH_4MgBH_4$$
(12)

dropwise to a well-stirred slurry of Mg(AlH₄)₂ in THF, an almost clear solution resulted after 2 h. An infrared spectrum of the solution showed the presence of B-H and Al-H stretching bands at 2368, 2155, and 1715 cm⁻¹, respectively. The vacuum DTA-TGA of AlH₄MgBH₄·2THF is shown in Figure 1. AlH₄MgBH₄·2THF decomposes evolving condensable gas (THF) at 125 °C and noncondensable gases (H₂) at 165 and 300 °C. The first decomposition is endothermic,

the second decomposition is exothermic followed by an endothermic effect, and the third decomposition is a broad endotherm. The first gas evolution is attributed to the evolution of solvated THF. The second decomposition at 165 °C, accompanied by noncondensable gas evolution, can be attributed to decomposition of AlH₄MgBH₄ to BH₃-AlH₃ and MgH₂ with simultaneous decomposition of BH₃·AlH₃ to give H_2 . The last endotherm is due to the decomposition of MgH₂. The steps involved in the decomposition are shown below. No

step 1:	AlH₄MgBH₄·2THF →	AlH₄MgBH₄ + 2THF	(13)
---------	------------------	------------------	------

step 2:
$$AlH_4MgBH_4 \rightarrow Al\cdot B + MgH_2 + 3H_2$$
 (14)

tep 3:
$$MgH_2 \rightarrow Mg + H_2$$
 (15)

THF cleavage was observed during the thermal decomposition process.

Registry No. HMgA1H4, 12693-01-5; HMgCl, 22106-77-0; NaCl, 7647-14-5; HMgBH₄, 12693-03-7; ClMgBH₄, 62816-03-9; AlH₄-MgBH4, 62881-85-0; AlH3, 7784-21-6; MgH2, 7693-27-8; NaAlH4, 13770-96-2; Mg(AlH₄)₂-4THF, 25610-40-6; NaBH₄, 16940-66-2; Mg(BH₄)₂, 16903-37-0; diborane, 19287-45-7; BH₃-THF, 14044-65-6.

References and Notes

- (1) We are indebted to the Office of Naval Research, Contract No. N00014-67-A-0419-005AD and contract authority No. 093-050/7-11-69 (473), for support of this work.

- (473), for support of this work.
 (2) G. B. Barbaras, C. Dillard, A. E. Finholt, T. Wartik, K. E. Wilbach, and H. I. Schlesinger, J. Am. Chem. Soc., 73, 4585 (1951).
 (3) E. C. Ashby and R. G. Beach, Inorg. Chem., 9, 2300 (1970).
 (4) E. C. Ashby and R. D. Schwartz, Inorg. Chem., 11, 925 (1972).
 (5) Metallgesellschaft, British Patents 840 572 863 491 (1961); E. Wiberg and G. Schrauzer, German Patent 1066 553 (1960); E. Wiberg and U. Nurvien, Orange Detat, 1206 257 (1960); E. Wiberg and U. Neumeier, German Patent 1 080 527 (1960).
- E. C. Ashby and W. E. Foster, J. Am. Chem. Soc., 88, 3248 (1966).
- E. C. Ashby, R. A. Kovar, and K. Kawakami, Inorg. Chem., 9, 317 (1970). (8) E. C. Ashby, R. D. Schwartz, and B. D. James, Inorg. Chem., 9, 325
- (1970).
- (9) H. C. Brown and N. M. Yoon, J. Am. Chem. Soc., 88, 1466 (1966).
 (10) E. C. Ashby and R. C. Arnott, J. Organomet. Chem., 14, 1 (1968).
 (11) E. C. Ashby and A. B. Goel, Inorg. Chem., in press.

Contribution from the Research School of Chemistry, Australian National University, Canberra, ACT 2600, Australia, and the Department of Chemistry, University of Georgia, Athens, Georgia 30602

S₄: An ab Initio Study

JAMES KAO

Received November 2, 1976

The relative stability of ten possible electronic and conformational states of S_4 has been studied by ab initio STO-3G and 44-31G calculations. The STO-3G optimized geometry is significantly different from the 44-31G optimized geometry and the standard routine to carry out single 4-31G calculations at STO-3G optimized geometries is not appropriate here. Based on the present study in conjunction with previous experimental and theoretical enthalpies of formation for S_4 , the triplet helix diradical is predicted to be the most stable among all possible forms including the $c-S_4$. The branched molecule, sulfur trithiotrioxide (trigonal S_4), which has been proposed by extended Hückel calculations, seems unlikely to exist according to the present study. The validity of the use of molecular total overlap population to explain the order of relative stability is also examined.

Elemental sulfur,^{1,2} which has been known and used for several thousand years, can exist in a polymeric form and as a variety of rings containing different numbers of sulfur atoms. Many of them have been isolated and structurally elucidated. However, the structure of S4 remains an interesting unsolved problem.1,2

The S_4 molecule is known to exist in the gas and the liquid phase. Several possible structures have been proposed including a ring, a diradical, a bipolar compound, or a chain with double bonds. But, none of these has been experimentally determined. Recent extended Hückel calculations,^{1,3} based on spectroscopic atomic parameters, gave a special stability to a branched structure, sulfur trithiotrioxide. Our molecular mechanics calculations⁴ suggest that the existence of cyclotetrasulfur as the most stable structure is unlikely since it is highly strained with a steric energy almost 10 times that found in cyclo-hexasulfur and an S-S bond energy about 12 kcal/mol smaller than the corresponding value for cyclo-hexasulfur. However, thermodynamic⁵ and photoionization⁶ data seem to favor the ring although they are insufficient to determine the structure of S_{4} .¹ It seems to us that there is no unique answer so far about the most stable structure of the S_4 molecule.

An alternative way to attack this problem is ab initio molecular orbital theory which has been described in detail elsewhere.⁷ In this paper, ab initio molecular orbital theory is employed to study the structures and stabilities of ten possible electronic and conformational states of S₄.

Computational Aspects and Results

The results presented here were obtained using the Gaussian 70 system of programs.^{8,9} The linear-chain, branched-chain, branched-ring, and single-ring forms were all examined at the STO-3G level since its small size permits full optimization under reasonable cost for a molecule as large as S_4 . This

AIC60781M