61618-13-1; $Tm₃Zn⁻$, 63588-53-4; $Bu₄NBr$, 1643-19-2; $ZnBr₂$, 1699-45-8.

Supplementary Material Available: Infrared spectra of THF solutions of NaTm with varying amounts of $(n-Bu)$ ₄NBr added are presented in Figure IS; tables listing equilibrium concentrations determined from NMR spectral measurements in $THF/Et₂O$ solutions of (a) $[\eta^5$ -C₅H₅(CO)₃Mo], (b) η^5 -C₅H₅(CO)₃MoZnBr and Na[η^5 - $C_5H_5(CO)_3M_0$, and (c) $[\eta^5-C_5H_5(CO)_3M_0]_2Z$ n and n-Bu₄Br are given in Tables S-I, S-11, S-111, and **S-IV** (6 pages). Ordering information is given on any current masthead page.

References and Notes

- **(1) J.** St. Denis, W. Butler, M. D. Glick, and J. P. Oliver, *J. Am. Chem. SOC., 96,* 5427 (1974).
- (a) Abbreviations used in this paper: $Tm = \pi C_5H_5(CO)_3Mo$; Bu = C_4H_9 -; Et = C_2H_5 -; Me = CH₃-; THF = tetrahydrofuran; DMF = dimethylformamide; $Me₂SO =$ dimethyl sulfoxide. (b) Standard errors

- for the last digits are given in parentheses. D. E. Crotty, E. R. Carey, T. J. Anderson, M. D. Glick, and J. P. Oliver, *Inorg. Chem.,* **16,** 920 (1977).
-
- J. M. Burlitch and A. Ferrari, *Inorg. Chem.*, 9, 563 (1970).
J. M. Burlitch, *J. Am. Chem. Soc.*, 91, 4562, 4563 (1969).
M. J. Mays and J. D. Robb, *J. Chem. Soc. A*, 561 (1969).
-
-
-
- M. J. Mays and J. D. Robb, *J. Chem. Soc. A*, 329 (1968).
A. T. T. Hsieh and M. J. Mays, *J. Chem. Soc. A*, 2648 (1971).
A. T. T. Hsieh and M. J. Mays, *J. Chem. Soc. A*, 729 (1971).
K. H. Pannell and D. Jackson, *J. Am. C*
- J. M. Burlitch, R. B. Peterson, **H. L.** Condon, and W. R. Robinson, *J. Am. Chem.* **SOC., 92,** 1783 (1970).
- H. L. Condon and W. R. Robinson, *Inorg. Chem.,* **11,** 1527 (1972). Chemical Analyses were obtained from Schwarzkopf Microanalytical (13)
- Laboratory, Woodside, **N.Y.** A. L. VanGeet, *Anal. Chem.,* **40,** 2227 (1968).
- ÀS) J. L. Dye and **V. A.** Nicely, *J. Chem. Educ.,* **48,** 443 (1971).
- E. Carlson, Ph.D. Thesis, Wayne State University, Detroit, Mich., 1973.
- (17) Supplementary material.
- J. P. Oliver, *Adu. Organomel. Chem., 8,* 167 (1970).

Contribution from the McPherson Chemical Laboratory, The Ohio State University, Columbus, Ohio 43210

Stereochemistry of the Cycloaddition Reaction of 1,2-Dicyano- 1,2-bis(trifluoromethyl)ethylene with Transition-Metal Complexes Containing a-Bonded, Unsaturated Hydrocarbon Ligands'

JOHN P. WILLIAMS and ANDREW WOJCICKI*

Receified December 28, *1976* AIC60915W

Several new **transition-metal-cyclopentenyl** and -cyclopentyl complexes were prepared by reactions of appropriate propargyl, allenyl, and η^1 -allyl complexes of η^5 -C₅H₅Fe(CO)₂, Mn(CO)₅, and Re(CO)₅ with *cis-* and *trans*-1,2-dicyano-1,2-bis-(trifluoromethyl)ethylene $(C_6F_6N_2)$. Each cycloaddition reaction affords a mixture of diastereomers, some of which were separated. The ratio of diastereomers was determined by ¹⁹F NMR spectroscopy, and the data were used to calculate percent stereoselectivities of these cycloadditions. The reaction of η^5 -C₅H₃Fe(CO)₂CH₂C=CC₆H₅ with trans-C₆F₆N₂ in benzene at room temperature proceeds with ca. 75% stereoselectivity whereas that of M(CO)₅CH₂C=CC₆H₅ (M = Mn or Re) with trans-C₆F₆N₂ in benzene and acetonitrile, also at ca. 25 °C, occurs with a lower, 32-40%, stereoselectivity. Similar reactions with cis-C₆F₆N₂ appear to proceed substantially, if not completely, via cis-C₆F₆N₂ to trans-C₆F₆N₂ isomerization to give comparable stereoselectivities. The cycloadditions of the metal-allenyl and $-\eta^1$ -allyl complexes did not furnish any reliable or readily interpretable stereochemical data. The results obtained herein rule out the possibility of a concerted mechanism for the reaction of transition-metal-propargyl complexes with $C_6F_6N_2$ and are consistent with the previously proposed two-step pathway.

Introduction

The addition of electrophilic reagents, $E=Nu$ ($E = elec$ trophilic part, Nu = nucleophilic part), to η^1 -allyl, propargyl, and allenyl ligands coordinated to transition metals has received considerable attention.^{2,3} The reactions of the propargyl and allenyl fragments yield five-membered rings by $(3 + 2)$ cycloaddition accompanied by 1,2 metal migration, whereas the reactions of the η -allyl moieties usually afford either analogous cycloadducts or insertion products. Support has been demonstrated³⁻⁵ for similar, two-step paths (eq 1-3) of

$$
MCH_{2}C(R) = CR_{2}^{\prime} + E = Nu \longrightarrow M \longrightarrow \begin{bmatrix} CH_{2} & : Nu^{-} \\ \vdots \\ R & R \end{bmatrix} \longrightarrow M \longrightarrow \begin{bmatrix} R_{2} & : Nu^{-} \\ \vdots \\ R & R \end{bmatrix} \longrightarrow M \longrightarrow \begin{bmatrix} R_{2} & : Nu^{-} \\ \vdots \\ R & R \end{bmatrix} \longrightarrow M \longrightarrow \begin{bmatrix} R_{2} & : Nu^{-} \\ \vdots \\ R & R \end{bmatrix} \longrightarrow M \longrightarrow \begin{bmatrix} N_{2} & : Nu^{-} \\ \vdots \\ R & R \end{bmatrix} \longrightarrow M \longrightarrow \begin{bmatrix} N_{2} & : Nu^{-} \\ \vdots \\ R & R \end{bmatrix} \longrightarrow (2)
$$
\n
$$
MCH = C = CHR + E = Nu \longrightarrow M \longrightarrow \begin{bmatrix} CH_{2} & : Nu^{-} \\ \vdots \\ R & R \end{bmatrix} \longrightarrow M \longrightarrow \begin{bmatrix} Nu & \text{N } u \\ \vdots \\ R & R \end{bmatrix} \longrightarrow (3)
$$

such cycloadditions,

Only in reaction 1 has there been any direct evidence for the proposed path: when $E=Nu$ is SO_2 , a dipolar metal- η^2 -olefin species has been recently detected and intercepted.^{3,4} Reaction **2** has been simulated by protonation and treatment of the resultant cationic η^2 -allene derivatives with nucleophiles to give iron-vinyl complexes. $5,6$

To elucidate further the mechanism of these reactions we undertook an investigation of stereochemistry at the E-Nu bond of the formation of the cycloadducts. For that purpose an ideal electrophile is an isomeric olefin for which a physical measurement can differentiate the stereochemistry of the reactant as well as that of the product. Such stereochemical investigations have been conducted by ${}^{19}F$ NMR spectroscopy for several cycloaddition reactions of 1,2-dicyano-l,2-bis- (trifluoromethyl)ethylene $(C_6F_6N_2)$,⁷⁻⁹ whose reactivity was shown to be similar to that of tetracyanoethylene (TCNE).

In this paper are reported the details of our study of the cycloaddition reactions of cis- and trans- $C_6F_6N_2$ with transition-metal- η^1 -allyl, -propargyl, and -allenyl complexes conducted with a view to determining the stereoselectivity of these processes. Part of our work has been described in a preliminary communication.¹⁰

Results and Discussion

Characterization and Properties of Metal-Cyclopentenyl Complexes. Transition-metal-propargyl complexes react with $C_6F_6N_2$ at room temperature to yield 1:1 adducts as indicated by elemental analyses and mass spectrometry. These products

a CH₂Cl₂ solution. Abbreviations: s, strong; m, medium; sh, shoulder. ^b KBr pellet; w = weak. ^c CDCl₃ solution. All signals integrate for the proper number of protons; $J_{\text{H-H}}$ (Hz) in parentheses. Abbreviations: s, singlet; d, doublet; q, quartet; m, multiplet; br, broad.
^d Relative to CFCl₃, $\phi = 0.00$ ppm; $\phi(\text{CFCl}_3) = \phi(C_6H_5CF_3) + 63.75$ ppm

^a Relative to TMS; J_{C-F} (Hz) in parentheses. ^b CDCl₃ used as solvent and lock. ^c (CD₃)₂CO used as solvent and lock; δ (TMS) = δ ((CD₃)₂CO) + 29.22 ppm. ^d Recorded at 195 K. ^e Recorded at 199 K. Recorded at 195 K. **e** Recorded at 199 K. Possible quartet at 6 62.5 (30).

are air-stable, yellow (Fe) or white (Mn and Re) solids, the last two subliming at 70 °C (ca. 0.1 Torr). They are only slightly soluble in pentane but increasingly soluble in benzene, dichloromethane, and acetone.

By analogy with known cycloadducts derived from these propargyl complexes and various electrophiles, 2.3 the isolated products are expected to contain a cyclopentenyl ring σ bonded to the metal. Two diastereomerically related pairs of enantiomeric configurations are possible for the newly formed ring in these derivatives, those of I and 11. These pairs were

separated either partially or completely for $M = n^5$ - $C_5H_5Fe(CO)_2$ and $Mn(CO)_5$ by a combination of chromatography and fractional crystallization.

The gross features of the proposed cyclopentenyl ring structure are confirmed by the infrared, ${}^{1}H$ NMR, and ${}^{13}C$ NMR spectroscopic properties of the adducts, presented in Tables I and 11. The infrared carbonyl stretching frequencies match well those reported for analogous cycloaddition products with various electrophiles.^{5,11-15} The ¹H NMR spectra of these and other $(3 + 2)$ cycloadducts are also quite similar. For example, the chemical shifts of the methylene protons of I and **II** fall in the range τ 6.38-6.66 compared to the values τ 6.30 and 6.41 for the TCNE adducts of the same propargyl complexes of manganese¹⁶ (IIIC) and iron¹⁷ (IIIA), respectively.

However the single most definitive evidence for the proposed gross structures of these products is provided by ^{13}C NMR spectroscopy. Table I1 contains the chemical shift data for

 a Relative to TMS; $J_{\text{C-F}}$ (Hz) in parentheses. b Structural assignment uncertain; see text. C CDCI₃ used as solvent and lock.
 d (CD₃)₂CO used as solvent and lock; δ (TMS) = δ ((CD,),CO) + 29.22 ppm. e Obscured by $(CD_3)_2CO$.

II. As yet unreported ¹³C NMR spectra of the known, related **(3** + 2) cycloaddition complexes 111-V are included for

comparison. Several chemical shift assignments were verified by single-frequency off-resonance decoupled (SFORD) spectra. It is to be noted that the position of the various resonances of I1 matches closely that of the corresponding signals of the TCNE and $CF_3C(O)CF_3$ cycloadducts, III and IV, respectively. The nonequivalence of the carbonyl carbons, observed for IIA, was reported previously for another η^5 -C₅H₅Fe(CO)₂R complex with an asymmetric alkyl ligand R, that with $R =$ $CH(CH_3)C_6H_5.^{18}$

The diastereomerically related pairs of enantiomers (henceforth called diastereomers) I and I1 differ in the relative positions of the CN and CF_3 groups on adjacent carbons: in I the two like substituents are cis whereas in I1 they are trans. These relative orientations are most readily discerned by ¹⁹F NMR spectroscopy as demonstrated earlier for similar organic cycloadducts by Proskow, Simmons, and Cairns.' The spectra of I and II, listed in Table I, show two ¹⁹F resonances for the nonequivalent CF_3 groups in both I and II. However, the $J_{CF_3-CF_3}$ values for nonequivalent cis CF_3 groups are much larger (10-11 Hz) than those for nonequivalent trans CF_3 groups, which appear to be zero, owing to through-space F-F coupling.¹⁹ Thus the spectra of I consist of two 1:3:3:1 equal-intensity quartets whereas the spectra of I1 are comprised of two equal-height singlets, readily distinguishing these diastereomers. Moreover, in all cases the chemical shifts of 11 occur at higher fields than those of I.

The only additional substantial spectroscopic difference between the diastereomers I and I1 occurs in the methylene region of the ¹H NMR spectra. Whereas the diastereomers I exhibit an AB pattern with $J_{H_A-H_B} = 16-17$ Hz, as expected for magnetically nonequivalent geminal protons, the diastereomers I1 show the corresponding resonance as a singlet. This observation may be compared to those made on other **(3** + 2) cycloaddition complexes with chiral centers: the SO_2 adducts^{13a} exhibit magnetic nonequivalence of the CH₂ protons but the CISO₂NCO adducts^{15a} and some $(t-C_4H_9)(CN)$ - $C=C=O$ adducts²⁰ do not. The methylene protons occur at slightly higher fields in I relative to 11.

Preliminary results show that the reaction of η^5 -C₅H₅Fe- $(CO)₂CH=C=CHR$ with trans-C₆F₆N₂ affords 1:1 adducts as indicated by mass spectrometry. When $R = H$, two apparently isomeric solids were isolated in low yield after chromatography. The first solid was obtained in insufficient amount for satisfactory characterization, and the second solid appears from spectroscopic data (Table I) to be a mixture of the two possible diastereomers of VIA. When $R = CH_3$, the

product could not be satisfactorily purified, but its spectra (Table I) indicate the predominance of one of the possible four diastereomers of VIB, with the CN groups trans to the CF_3 groups.

Characterization and Properties of Metal-Cyclopentyl Complexes. Both *cis-* and *trans-* $C_6F_6N_2$ react with several iron- η ¹-allyl complexes to yield 1:1 adducts based on elemental analyses and mass spectrometry. These air-stable, yellow compounds exhibit solubility properties similar to those of the iron-cyclopentenyl derivatives.

The infrared, ${}^{1}H$ NMR, and ${}^{13}C$ NMR spectroscopic properties, entered in Tables I and 111, support the gross features of the proposed iron-cyclopentyl structures of these complexes. The carbonyl stretching frequencies and the chemical shifts in the 'H NMR spectra match well the corresponding data reported for other, similar **(3** + 2) cycloadducts. $^{2,3,11-15}$ Again, however, the most definitive evidence for the assigned ring structures is provided by ^{13}C NMR spectroscopy. Comparison of the spectra of these $C_6F_6N_2$ adducts with those of analogous TCNE adducts, VII, included

in Table 111, reveals close similarity in the chemical shift of the corresponding carbon atoms. The observed agreement is structurally significant as one of the TCNE-derived complexes included for comparison, VIIA, was recently characterized crystallographically.21

The new cyclopentyl complexes can exist in several diastereomeric forms the number of which depends on the nature of the substituent R'. Thus for the more symmetrical molecules ($R = H$ and CH_3 ; $R' = H$), two meso isomers with cis

Table **IV.** Stereochemical Data for the Reaction

M	molof $M - C$ _o H ₇ /				%		$%$ diastereomer ^a		
	$C_6F_6N_2$	molof $C_6F_6N_2$	Solvent	Reacn time, h	Yield product	Recovered $M - CoH2$		п	$%$ stereo- selectivity
$n^5C_5H_5Fe(CO)_2$	Trans	1.03	C_6H_6	0.08	54			91	82
	Trans	0.42	C_6H_6	0.75			16	84	68
	Cis	0.46	C_6H_6	1.25				93	86
	Cis	1.0	CH, CN	0.25				91	82
$Mn(CO)_{s}$	Trans	1.0	C_6H_6	44	48	39	34	66	32
	Trans	1.0	CH ₂ CN	5.5	90		30	70	40
	Cis	$1.0\,$	C_6H_6	68	53	39	43	57	14
$Re(CO)_{s}$	Trans	h	CH ₂ CN	0.08			30	70	40

 $MCH_2C\equiv CC_6H_5 + C_6F_6N_2 \rightarrow MC\equiv CC_6H_5)C(CN)(CF_3)C(CN)(CF_3)CH$

a Values reproducible to within $\pm 3\%$ in duplicate runs under similar conditions. ^b Not calculated.

Table **V.** Stereochemical Data for the Reaction

^a Not observed. ^b Not calculated. ^c The remaining percent consists of an uncharacterized product; see also Table VI, footnoteg.

 $CF₃$ groups and one pair of enantiomers with trans $CF₃$ groups are possible. These three diastereomers are depicted in VIIIA-XA and VIIIB-XB. Only in XA and XB are the CF_3

substituents nonequivalent. For the cycloaddition product with $R = H$ and $R' = CH_3$, four diastereomers (each a pair of enantiomers), VIIIC-XC and XI, can be formed, and all four have nonequivalent CF_3 groups. Fluorine-19 NMR spectroscopy distinguishes some of these configurations.

The ¹⁹F NMR spectrum of the cyclopentyl product mixture with $R = R' = H$ shows two small singlets of different intensity and a 1:3:3:1 quartet and a multiplet of equal intensity. The two singlets are assigned to the equivalent CF_3 groups of VIIIA and IXA but the correspondence between the signals and the diastereomers cannot be ascertained. The other resonances are ascribed to XA. Separation of these diastereomers was successful enough to demonstrate the existence of three different complexes as detailed in the Experimental Section.

The ${}^{19}F{^1H}$ NMR spectrum of XA collapsed the multiplet into a 1:3:3:1 quartet, indicating that one of the nonequivalent $CF₃$ groups was proton-coupled. The coupled hydrogen may be that on the carbon bonded to the metal. Similar long-range H-F coupling has been reported in the literature.²² The coupling constant ${}^5J_{CF_3-CF_3(trans)} = 2.8$ Hz for XA may be compared with the reported^{9 5} $J_{CF_1-CF_3(trans)}$ = 4-6 Hz for some bicyclic [4.2.1] derivatives of iron obtained from $C_6F_6N_2$ and coordinated cycloheptatrienes.

Only two diastereomers were observed in the 19F NMR spectra of the cycloadducts with $R = CH_3$ and $R' = H$ and with $R = H$ and $R' = CH_3$. When $R = CH_3$ and $R' = H$, XB and either VIIIB or IXB were detected and subsequently separated chromatographically. When $R = H$ and $R' = CH_3$, only the two trans diastereomers, XC and XI, were observed, in unequal amounts. They were successfully separated by column chromatography. Thus it appears that the undetected cis diastereomers for the cycloadducts with $R = CH_3$ and R' $=$ H and with R = H and R' = CH₃ are at best formed in insufficient quantities to be spectroscopically observable. Steric factors associated with the presence of the substituent methyl groups may be involved in this selectivity when $R = H$ and $R' = CH_3$.

Stereoselectivity of Cycloaddition Reactions. Stereochemical data for the cycloadditions in point were obtained by allowing the metal complexes to react with *cis*- or *trans*- $C_6F_6N_2$ in benzene or acetonitrile at room temperature for various lengths of time. The ratio of the diastereomeric products was then determined by the integration of the appropriate resonances in the 19F NMR spectrum of the reaction mixture. These data are listed in Tables IV and V.

The isomer trans- $C_6F_6N_2$ reacts with η^5 -C₅H₅Fe-(C0)2CH2C=CC6H5 to form predominantly, with ca. *75%* stereoselectivity, the cyclopentenyl complex in which the $CF₃$ groups are trans, IIA. Likewise, trans- $C_6F_6N_2$ undergoes cycloaddition reaction with each of $Mn(CO)_{5}CH_{2}C=C_{6}H_{5}$ and $\text{Re(CO)}_5\text{CH}_2\text{C}\equiv \text{CC}_6\text{H}_5$ to afford mainly the cyclopentenyl complexes with trans CF_3 groups, IIB and IIC, respectively, but with lower stereoselectivities of ca. **32-40%.**

The isomer cis -C₆F₆N₂ reacts more slowly than *trans*- $C_6F_6N_2$ with the iron and manganese propargyls to yield predominantiy IIA and IIB, with stereoselectivities similar to those given above. It was further noted that the thermodynamically less stable cis-C₆F₆N₂⁷ isomerizes to trans-C₆F₆N₂ in the course of its reaction with $Mn(CO)_{5}CH_{2}C\equiv CC_{6}H_{5}$. These observations suggest that the similar stereoselectivities of the corresponding cycloadditions of *trans*- and cis -C₆F₆N₂ are likely the result of the predominant, if not exclusive, reaction of trans- $C_6F_6N_2$ with the propargyl ligand in both cases.

An equilibrium mixture of $C_6F_6N_2$ is reported⁷ to contain a transicis ratio of greater than 95:5. Since cis -C₆F₆N₂ isomerizes to trans- $C_6F_6N_2$ during the reactions studied, conversely some cis -C₆F₆N₂ is expected when one starts with *trans*- $C_6F_6N_2$. Although no *cis*- $C_6F_6N_2$ was observed by VPC, its presence in the reaction mixtures cannot be precluded. Notwithstanding this, one can rule out the possibility that all of the observed I results from direct reaction of cis -C₆F₆N₂ formed via isomerization of the starting trans- $C_6F_6N_2$. As noted in Table IV, cis -C₆F₆N₂ reacts with the propargyl moiety more slowly than does *trans*- $C_6F_6N_2$. Even if the cis-trans equilibrium were rapidly established in reactions of trans- $C_6F_6N_2$ —and this does not occur for cis- $C_6F_6N_2$ —a 100% stereospecific reaction of all the cis -C₆F₆N₂ available would limit the amount of I formed to less than *5%.*

It was further ascertained that there is no epimerization of the products subsequent to the reaction. The cycloadducts were found to display configurational stability toward prolonged storage in chloroform or benzene solution with or without added excess $C_6F_6N_2$ and toward chromatography on alumina. Thus the observed loss in stereochemistry about the carbon-carbon bond in the reaction of trans- $C_6F_6N_2$ with metal-propargyl complexes must take place during the cycloaddition itself.

The products from reaction of trans- $C_6F_6N_2$ with the iron-allenyl complexes were not characterized as unequivocally as I and 11. However, the I9F NMR spectrum of **VIA** indicates that a mixture was formed of the cyclopentenyl diastereomers with the CF_3 groups both cis and trans. By arguments similar to those invoked for the cycloaddition of metal-propargyl complexes, a loss in stereochemistry may be occurring during the reaction.

The reactions of the iron- η^1 -allyl complexes with *trans*- $C_6F_6N_2$ afford only very small amounts of the cyclopentyl diastereomers with cis $CF₃$ groups. Thus one cannot conclude unequivocally whether these diastereomers arise during the reaction itself or result from prior isomerization of *trans*- $C_6F_6N_2.$

Since it has been shown that the formation of metal-cyclopentenyl derivatives with cis CF_3 groups, I, from trans- $C_6F_6N_2$ and metal-propargyl complexes occurs during the reaction itself, the observed loss in stereochemistry requires that the cycloaddition be nonconcerted. Thus these data are consistent with the two-stcp mechanism in eq **4,** which is

180° about the indicated carbon-carbon bond and rapid inversion of configuration at the carbanion carbon in the dipolar intermediate XII. The appreciable enhancement of the rate of reaction between $Mn(CO)$, $CH_2C=CC_6H_5$ and *trans*- $C_6F_6N_2$ on going from benzene to the more polar acetonitrile solvent is in accord with such a two-step mechanism.

In conclusion, the possibility of a concerted mechanism for the reaction of metal-propargyl compounds with $C_6F_6N_2$ has been ruled out; the results are in agreement with the proposal that coordinated η ¹-allyl and propargyl ligands undergo cycloaddition through strictly analogous pathways.

Experimental Section

Analyses and Physical Measurements. Elemental analyses were performed by Galbraith Laboratories, Inc., Knoxville, Tenn. Melting points were taken in evacuated tubes on a Thomas-Hoover capillary melting point apparatus and are uncorrected. Vapor-phase chromatography (VPC) was carried out on a Varian Associates Aerograph Autoprep Model 700 instrument using a 25 ft \times ³/₈ in. column packed with 15% QF-1 on Chrom W treated with a methylsilylating agent.

Hydrogen-1 NMR spectra were recorded on Varian Associates A-60A and HA-100 spectrometers using tetramethylsilane (TMS) as an internal reference. Fluorine-19 NMR spectra were measured on a Varian Associates HA-IO0 spectrometer at 94.1 MHz using $C_6H_5CF_3$ as the solvent and lock, or on a Bruker HX-90 spectrometer at 84.6 MHz using CDCl₃ as the solvent and lock and $C_6H_5CF_3$ as an internal reference. Carbon-13 NMR spectra were recorded on the Bruker HX-90 at 22.625 MHz in a Fourier transform mode. All spectra recorded on the Bruker HX-90 were obtained with the assistance of Dr. C. E. Cottrell and Mr. J. M. Geckle.

Tabulated infrared v_{CO} and v_{CN} values were obtained using a Beckman IR-9 spectrophotometer; routine infrared spectra were recorded on a Perkin-Elmer Model 337 spectrophotometer. Mass spectra were obtained at 70 eV on an AEI Model MS-9 spectrometer by Mr. C. R. Weisenberger.

Materials. 1,2-Dicyano-1,2-bis(trifluoromethyl)ethylene $(C_6F_6N_2)$ was prepared by the literature method⁷ using an alternative procedure for the synthesis of the precursor trifluoroacetaldehyde cyanohydrin.²³ The isomers were separated by VPC at $75 °C$.

Tetrahydrofuran (THF) and pentane were distilled under nitrogen from LiAlH₄ and CaH₂, respectively, prior to use. Other commercially procured chemicals and solvents were reagent grade quality and were used without further purification.

Reactions were carried out under a slight positive pressure of dry nitrogen and solvents were saturated with nitrogen before use.

The compounds η^5 -C₅H₂Fe(CO)₂CH₂C(R)= $\tilde{CR'}_2$ (R = R' = H;²⁴ $R = CH_3$, $R' = H;$ ¹¹, $R = H$, $R' = CH_3^{25}$), $MCH_2C \equiv CC_6H_5$ (M = η^5 -C₅H₅Fe(CO)₂,²⁶ Mn(CO)₅¹²), and η^5 -C₅H₅Fe(CO)₂CH=C=CHR $(R = H, CH₃^{26,27})$ were prepared by known literature procedures. The hitherto unreported $\text{Re}(\text{CO})_5\text{CH}_2\text{C}\text{=}\text{CC}_6\text{H}_5$ was synthesized by an analogous method. **A** THF solution (50 mL) of NaRe(CO), from 2.00 $g(3.07 \text{ mmol})$ of $\text{Re}_2(\text{CO})_{10}$ and 0.180 g (7.82 mmol) of Na in 100 mL of Hg was slowly added to a stirred solution of C_6H_5 -C=CCH₂Cl (1.11g, 7.29 mmol) in 20 mL of THF at 0 °C. The resulting solution was allowed to warm to room temperature overnight. Removal of the solvent and chromatography on alumina (neutral, 6% H_2O) using pentane eluent first yielded $Re_2(CO)_{10}$ and then a mixture of $\text{Re(CO)}_5\text{CH}_2\text{C} \equiv \text{CC}_6\text{H}_5$ and $\text{C}_6\text{H}_5\text{C} \equiv \text{CCH}_2\text{Cl}$. The latter effluent was concentrated to an oil (1.7 g) and cooled to -78 °C to give off-white crystals of $\text{Re(CO)}_5\text{CH}_2^\circ\text{C}\equiv\text{CC}_6\text{H}_5$ which were collected and washed with cold pentane; yield ca. 25 mg, mp 56-58 °C. The solid is stable under nitrogen at -15 °C but turns to an oil in air at 25 °C: IR $\nu_{\text{CO}}(\text{pentane})$ 2065 (sh), 2033 (vs), and 1990 (m) cm⁻¹; ¹H NMR (CDCl₃) τ 2.67 br and 8.33 s. The mass spectrum (source temperature 45 °C) shows a peak at m/e 442 of the parent ion ${}^{187}Re(CO)_{5}C_{9}H_7^+$

Preparation of Cycloaddition Complexes. A typical synthesis is described for η^5 -C₅H₅Fe(CO)₂CH₂C= CC_6H_5 and trans-C₆F₆N₂. Details of the preparation of other cycloaddition products, as well as analytical data and physical properties, are furnished in Tables IV-VI.

The isomer trans- $C_6F_6N_2$ (0.450 g, 2.10 mmol) in 25 mL of benzene was added to a stirred benzene solution (25 mL) of η^5 -C₅H₅Fe- $(CO)₂CH₂C=CC₆H₅$ (0.634 g, 2.17 mmol) under nitrogen. The

strictly analogous to the general mechanism presented in eq *2.* The loss in stereochemistry would result from rotation of

Table VI. Analytical Data and Physical Properties of Cycloaddition Complexes

^a Calculated for the most common isotopic species. ^b Parent ion in the mass spectrum at 70 eV. ^c Mixture of diastereomers. ^d l
time 1.5 h; trans-C₆F₆N₂. ^e Another, brown isomer (m/e 430) separated by chrom tion time 0.1 h; trans C₆F₆N₂. ^g Major trans diastereomer. Uncharacterized mixture also obtained: v_{CO} 2016, 1962 cm⁻¹; ¹H NMR (7)
5.12, 6.8–8.2, 8.61, 8.72, 8.84, 8.92, 8.96; ¹⁹F NMR (¢) 69.98 s, 73.09 s, 7 Reaction Reac-Compound not analytically pure.

reaction appeared complete in *5* min as inferred by infrared spectroscopy. The solvent was then removed and the residue was introduced onto a 2×12 cm column of alumina (neutral, 10% H_2O) with a minimum of benzene. Elution with pentane developed a yellow band which yielded unreacted η^5 -C₅H₅Fe(CO)₂CH₂C $=$ CC₆H₅ (0.030 g, 0.010 mmol) upon removal of the solvent, whereas elution with 1:1 pentane-benzene developed a broad yellow band. Removal of the solvent afforded 0.577 g (54% yield) of yellow 1:l cycloaddition product.

The reaction mixtures containing $Mn(CO)$ ₅CH₂C $=CC₆H₅$ and $C_6F_6N_2$ were examined periodically by VPC. trans- $C_6F_6N_2$ showed no evidence of isomerization in these experiments; however, cis -C₆F₆N₂ did isomerize gradually as the reaction progressed (e.g., a ca. 1:l mixture of isomers was detected after 20 h in benzene solution).

Separation of Diastereomers. (a) Metal-Cyclopentenyl Complexes. This was accomplished by a combination of column chromatography and fractional crystallization from benzene-pentane.

The more abundant isomers IIA and IIB were obtained by chromatography of the respective reaction mixtures on a 2 **X** 14 cm column of alumina (neutral, 6% H₂O) using 2:1 pentane-benzene eluent. Collection of ca. half of the resulting broad band and fractional crystallization of the solid content from pentane-benzene afforded pure IIA and IIB as the less soluble isomers.

Pure IB was obtained by combining the last one-fourth of the band from two separate chromatographies as above and rechromatographing their contents. The trailing one-fourth of the eluted band contained 97:3 1B:IIB. Fractional crystallization of this sample from pentane-dichloromethane yielded pure IB.

Because of the low yield of IA in every reaction, only a partial separation of IA from IIA was achieved. The trailing half of the chromatographic band from IA-IIA was collected and the material was rechromatographed. The back one-fourth of the band was collected and set aside whereas the remaining portion was rechromatographed again. This last procedure was repeated twice, all three back fractions were combined, and the resultant material was fractionally crystallized from 2: 1 pentane-benzene, Removal of the solvent from the filtrate yielded ca. 90:lO 1A:IIA.

The diastereomers VIA were separated from another, minor isomer by chromatography of the reaction mixture on a 2 **X** 14 cm column of alumina (neutral, 6% H₂O). Elution with pentane-benzene yielded the minor isomer whereas elution with benzene afforded VIA.

The product VIB could not be separated into the expected isomers either by chromatography on alumina (neutral, 6% H₂O) or by crystallization from 2:1 pentane-benzene and 4:1 pentane-dichloromethane.

(b) Metal-Cyclopentyl Complexes. In a typical separation ca. 0.57 g of the cycloadduct from the reaction of *trans*- $C_6F_6N_2$ with η^5 - $C_5H_5Fe(CO)_2CH_2CH=CH_2$ was introduced onto a 2.2 \times 14 cm column of Florisil and eluted with 5:2 pentane-dichloromethane to give a broad yellow band. Most of this band was collected and solvent was removed to give yellow crystals of XA (ca. 0.50 g). The remaining portion of the band was similarly rechromatographed and yielded two slightly separated bands. The first was identified to contain XA whereas the second consisted of 69% VIIIA, 6% IXA, and 25% XA. Fractional crystallization from pentane-benzene resulted in the isolation of a small amount of yellow crystals shown to be a mixture of VIIIA (82%) and XA (18%).

Stability of Metal-Cyclopentenyl Complexes. Although a small amount of decomposition material was sometimes observed upon chromatography of reaction mixtures, no other metal carbonyl species were ever detected. Elution of a 22:78 mixture of IA-IIA on a 2 **X 12** cm column of alumina (neutral, 6% **HzO)** with 3:l pentane-benzene for 2 h afforded the same 22:78 mixture. No change in the isomer ratio was observed after these complexes had been stored in CDCl₃ or C_6D_6 solution for 24 h.

Addition of a fourfold excess of trans- $C_6F_6N_2$ to a 94:6 mixture of IB-IIB in CDCl₃ and storage of the resultant solution for 5 days at 25 °C also did not alter the isomer ratio.

Determination of Ratio of Diastereomers in Mixtures. The ratio of the diastereomeric products was determined by integrating the appropriate resonances in the 19 F NMR spectrum of the reaction mixture. With the spectra recorded on the Varian HA-100, the average of four integrations was used to calculate the ratio of the isomers. With those recorded on the Bruker HX-90, calculation of the isomeric ratio was made from instrument-computed areas. The integrations were found to be reproducible to $\pm 2\%$.

Acknowledgment. The authors gratefully acknowledge financial support of this research by the National Science Foundation. **A.W.** also acknowledges a fellowship from the John Simon Guggenheim Memorial Foundation.

Registry No. IA, 59247- 17-5; IB, 59247-1 8-6; IC-IIC, 63730-29-0; IIA, 59218-80-3; IIB, 59218-81-4; IIIA, 63703-83-3; IIIB, 53261-31-7; IIIC, 63703-84-4; IVA, 54774-69-5; IVB, 54657-50-0; V, 40196-28-9; VIA, 63703-85-5; VIB, 63703-86-6; VIIA, 34676-40-9; VIIB, 63703-81-1; XA, 63783-43-7; XB, 63730-27-8; XC, 63703-82-2; XI, O), $CH_2C \equiv CC_6H_5$, 23626-46-2; Re(CO), $CH_2C \equiv CC_6H_5$, 59094-53261-30-6; VIIIA, 63783-42-6; VIIIB or VB, 63703-80-0; IXA, 63730-28-9; η^5 -C₅H₅Fe(CO)₂CH₂C= CC_6H_5 , 33114-75-9; Mn(C-87-0; η ³-C₅H₅Fe(CO)₂CH₂CH=CH₂, 38960-10-0; η ³-C₅H₅Fe- $(CO)_2CH_2CH(CH_3)=CH_2$, 31781-60-9; η^5 -C₅H₅Fe- $(CO)₂CH₂CH₂CH=C(CH₃)₂$, 38905-70-3; Re₂ $(CO)₁₀$, 14285-68-8; 2167-32-0; "C, 14762-74-4. $C_6H_5C\equiv CCH_2Cl$, 3355-31-5; trans- $C_6F_6N_2$, 2167-31-9; cis- $C_6F_6N_2$,

References and Notes

- (1) Presented in part at the 169th National Meeting of the American Chemical Society, Philadelphia, Pa., April 1975; see Abstracts, No. INOR 151. (2) (a) A. Wojcicki, *Adv. Organomet. Chem.,* 12,31 (1974); (b) A. Wojcicki, *Ann. N.Y. Acad. Sci.,* 239, 100 (1 974).
- (3) (a) M. Rosenblum, *Acc. Chem. Res.,* **7,** 122 (1974); (b) A. Cutler, D.
- Ehntholt, W. P. Giering, P. Lennon, S. Raghu, A. Rosan, M. Rosenblum, **J.** Tancrede, and D. Wells, *J. Am. Chem. Soc.,* **98,** 3495 (1976).
- **(4)** L. **S.** Chen, S. R. Su, and A. Wojcicki, *J. Am. Chem. Soc., 96,* 5655 (1974). (5) D. W. Lichtenberg and A. Wojcicki, *J. Organomet. Chem.,* 94,311 (1975).
-
- (6) (a) **S.** Raghu and **M.** Rosenblum, *J. Am. Chem.* Soc., 95, 3060 (1973); (b) P. Lennon, M. Madhavarao, A. Rosan, and M. Rosenblum, *J. Organomet. Chem.,* 108, 93 (1976).
- (7) **S.** Proskow, H. **E.** Simmons, and T. L. Cairns, *J. Am. Chem. Soc.,* **88,** 5254 (1966).
- J. Ashley-Smith, M. Green, and D. C. Wood, *J. Chem. Soc. A,* 1847 (1970).
- (9) M. Green, S. Heathcock, and D. C. Wood, *J. Chem. Soc., Dalton Trans.,* 1564 (1973).
- J. P. Williams and A. Wojcicki, *Inorg. Chim. Acta,* **15,** L21 (1975).
- **S.** R. **Su** and **A.** Wojcicki, *Inorg. Chin?. Acta,* **8,** 55 (1974). J.-L. Roustan and C. Charrier, *C. R. Hebd. Seances Acad. Sei., Ser.*
- *C,* **268,** 2113 (1569).
- (a) J. E. Thomasson, P. W. Robinson, D. A. Ross, and **A.** Wojcicki, *Inorg. Chem.,* **10,** 2130 (1971); (b) W. D. Bannister, **B.** L. Booth, R. N. Haszeldine, and P: L. Loader, *J. Chem.* Sot. *A,* 930 (1971).
- (a) D. W. Lichtenberg and A. Wojcicki, *Inorg. Chim. Acra,* 7,311 (1973); (b) J.-L. Roustan, J.-Y. Merour, J. Benaim, and C. Charrier, C. R. Hebd.
Seances Acad. Sci., Ser. C, 274, 537 (1972).
(a) Y. Yamamoto and A. Wojcicki, *Inorg. Chem.*, 12, 1779 (1973); (b)
- W. P. Giering, **S.** Raghu, M. Rosenblum, A. Cutler, D. Ehntholt, and R. W. Fish, *J. Am. Chem.* SOC., **94,** 8251 (1972).
- J. P. Williams, Ph.D. Thesis, The Ohio State University, 1975.
- D. W. Lichtenberg, PhD Thesis, The Ohio State University, 1973.
- T. Yu. Orlova, P. V. Petrovskii, **V.** N. Setkina, and D. N. Kursanov, *J. Organomef. Chem.,* **67,** C23 (1974).
- **S.** Ng and C. H. Sederholm, *J. Chem. Phys.,* **40,** 2090 (1964).
- (20) L. S. Chen, D. W. Lichtenberg, P. W. Robinson, Y. Yamamoto, and A. Wojcicki, *Inorg. Chim. Acta*, in press.
- M. R. Churchill and **S.** W. *-Y.* N. Chang, *J. Am. Chem.* Soc., **95,** 5931 (1973).
- (a) K. L. Williamson and J. C. Fenstermaker, *J. Am. Chem. Soc.*, 90, 342 (1968); (b) P. C. Myhre, J. W. Edmonds, and J. D. Kruger, *ibid.*, 88, 2459 (1966); (c) J. P. N. Brewer, H. Heaney, and B. A. Marples, *Chem. Commun*
- S. H. Burstein and H. J. Ringold, *Can. J. Chem.,* **39,** 1848 (1961).
- M. L. H. Green and P. L. I. Nagy, *J. Chem. SOC.,* 189 (1963).
- (25) R. L. Downs, Ph.D. Thesis, The Ohio State University, 1968.
- J. -L. Roustan and P. Cadiot, *C. R. Hebd. Seances Acad. Sci., Ser. C,* **268,** 734 (1969).
- (a) P. W. Jolly and R. Pettit, *J. Organomer. Chem.,* **12,** 491 (1968); (27) (b) **M.** D. Johnson and C. Mayle, *J. Chem. Soc. D.,* 192 (1969).

Contribution from the Department of Chemistry, Parsons Hall, University of New Hampshire, Durham, New Hampshire 03824

Formation of Transient $(CH_3)_2\text{Zn}$ **,** $(CH_3)_2\text{Cd}$ **, and** $(CH_3)_2\text{Pb}$ **Species via Methylation of En²⁺**, Cd²⁺, and Pb²⁺ by a *trans*-Dimethylcobalt Complex

MARK W. WITMAN and JAMES H. WEBER*

Received March 11, 1977 AIC70192W

The methylation reactions in i -C₃H₇OH of Zn^{2+} , Cd²⁺, and Pb²⁺ by an excess of the *trans*-dimethylcobalt complex, (CH3)2Co(BDMl ,3pn), are discussed. (BDMl,3pn is a mononegative, tetradentate dioxime diimine ligand formed by the condensation of 2 mol of 2,3-butanedione and 1 mol of 1,3-propanediamine.) With a 2:1 complex:metal ratio a very rapid
reaction forms CH₃Co(BDM1,3pn)⁺ and CH₃M⁺ (M²⁺ = Zn²⁺, Cd²⁺, and Pb²⁺). Then in a slowe with a second mole of $(CH_3)_2CO(BDM1,3pn)$ to form unstable $(CH_3)_2M$ species. These compounds rapidly react yielding CH_4 and a variety of nonvolatile products such as $[CH_3Cd(i-C_3H_7O)]_4$. The progress of the reactions was followed by the absorbance decrease of $(CH_3)_2Co(BDM1,3pn)$ and a GC analysis of CH₄.

Introduction

Reactions in which alkyl groups are transferred from synthetic monoalkylcobalt complexes to metal electrophiles have been the subject of intensive investigations in recent years. Interest in these reactions has been heightened by the demonstrated microbiological methylation of mercury,¹ lead, 2.3 and selenium⁴ in the aquatic environment. Studies on organocobalt complexes include alkyl transfer from $RCo^H(chel)⁵$ and alkylcobalamins to Hg^{2+} , Cr^{2+} , and $T1^{3+}$. ⁶⁻¹³ These reactions invariably exhibit a 1:l stoichiometry and result in the products shown in eq 1.

$$
RCo^{III}(chel) + Hg^{2+} \rightarrow Co^{III}(chel)^{+} + RHg^{+}
$$
 (1)

Despite the ready cleavage of the Co-C bond by Hg^{2+} , Cr^{2+} , and $T1^{3+}$ a surprising number of other electrophilic reagents including H_3O^+ , CH_3Hg^+ , Zn^{2+} , Cd^{2+} , Pb^{2+} , and Al^{3+} are unreactive toward monoalkylcobalt chelates.¹⁴ Consequently, we became interested in studying the reactions of the trans-dimethyl complex $(CH_3)_2Co(\overline{B}DM1,3pn)$ (structure I)

with light¹⁵ and selected metal electrophiles. This interest was heightened by earlier studies with monomethylcobalt complexes which established the superior σ -donor and trans-labilizing character of CH₃ relative to other Lewis bases.^{16,17} Our thinking in this regard was that one methyl group would

be extremely susceptible to electrophilic attack and that methyl-transfer reactions with previously unreactive electrophiles might be made to occur.

In a recent paper we described the results of a detailed study on the 1:1 reactions of I with Zn^{2+} , Cd^{2+} , and Pb^{2+} in *i*-C₃H₇OH.¹⁸ We reported that I reacts nearly instantaneously with a stoichiometric amount of all three metal ions to give quantitative yields of the corresponding monomethylcobalt derivative, $CH₃Co(BDM1,3pn)⁺$, and surprisingly stable organometallic products of the type $CH₃M⁺$ (eq 2). These quantitative yields of the corresponding monometh
derivative, CH₃Co(BDM1,3pn)⁺, and surprisingl
organometallic products of the type CH₃M⁺ (eq 2).
(CH₃)₂Co(BDM1,3pn) + M²⁺ ^{fast} CH₃Co(BDM1,3pn)⁺ +
CH.M⁺

$$
(CH3)2Co(BDM1,3pn) + M2+ \xrightarrow{185} CH3Co(BDM1,3pn)+ + CH3M+
$$
 (2)

fast

results are of particular interest since no reaction has been previously reported in which these metal ions bring about the cleavage of a Co-C bond in complexes of macrocyclic ligands. In the present work we will discuss the $2:1$ (complex:metal) reactions of I with these same metal ions and present evidence for the formation of transient $(CH_3)_2Zn$, $(CH_3)_2Cd$, and $(CH₃)₂Pb$ species.

Results and Discussion

The anaerobic 2:1 (complex:metal) reactions of I with $\mathbb{Z}n^{2+}$, Cd^{2+} , and Pb²⁺ in *i*-C₃H₇OH are markedly different from the 1:l reaction of I with these same metal ions. Instead of a single instantaneous reaction *(eq* 2) a two-step reaction was observed in which an initial fast step was followed by a second slower reaction which was complete in a matter of minutes. The biphasic nature of this reaction was confirmed using the stopped-flow technique to follow the decrease in absorbance of I at 412 nm (ϵ 8380).

The presence of isosbestic points at 490 and 450 nm indicate that only one complex product was formed in solution. In