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Diborane was irradiated with the 973-cm-’ line of a CW C 0 2  laser. The products BI0Hl4, B5H9, B5Hl1, (BH),, and H 2  
resulted in all runs. The number of photons required to produce or transform one molecule of Bl0Hl4, B5H9 + B5Hllr Hz,  
and B2H6 was determined a t  pressures between 64 and 510 Torr with the laser power maintained a t  7.85 W. The yields 
of BloHI5, B,H9 + B5Hll,  and H 2  produced or B2H6 transformed were measured as a function of illumination time at a 
laser power of 8 W and an initial B2H6 pressure of 410 Torr. The number of photons required to produce one molecule 
of BI0Hl4, B5H9 + B5Hl1, and H2 or transform one molecule of B2H6 was determined to be 22000,287, 156, and 156 a t  
time zero, respectively. No evidence for a chain process was found, the reaction was not accompanied by light emission, 
and BZOHI6 was not produced. 

Introduction 
Although available for some time, the advantages of the high 

intensity and monochromacity of the chemical laser are just 
beginning to be realized in synthetic chemi~ t ry .~ -~  The ability 
to enhance desired reaction channels is one of the goals of any 
synthetic chemist. The multitude of reaction channels opened 
by thermoequilibrium processes often results in not only many 
undesirable products but products that may be difficult to 
separate from those desired. The laser has great potential for 
simplifying as well as enhancing the yield of desired product 
during chemical transformation. This intense monochromatic 
source enables multiple photon absorption which can enhance 
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rate constants orders of magnitude by effectively decreasing 
the activation energy. 

Kompa et al. presented interesting data in 1 9 7 4  in which 
CW C 0 2  laser experiments on diborane were outlined.6 Using 
the R-16 (973  cm-’) line for excitation, they excited the v-14 
wagging mode of B2H6.7 They reported that upon lasing B2H6 
at various initial B2H6 pressures and laser power 11 out of 14 
experiments resulted predominantly in the production of 
icosaborane (B20H16). They reported that when was produced luminescence was also observed and the reaction 
appeared to be a high quantum yield chain process. However, 
in 3 out of 14 experiments they reported a slower process not 
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resulting in icosaborane production, but pentaborane(9) (B5H9) 
and decaborane (BloH14). No explanation was offered for the 
occurrence of two different sets of reactions under the same 
experimental conditions. Decaborane is a starting material 
for the synthesis of carboranes, which have application as burn 
moderators for solid propellants. Since Kompa et aL6 ex- 
periments reported some B10H14 product, we thought it 
worthwhile to repeat the work to determine if we could en- 
hance the occurrence of the slower reaction resulting in B10H14 
formation in preference to B20H16. Our results disagree with 
those Kompa et al. reported. 
Experimental Section 

The diborane, obtained from Callery Chemical Co., was stated to 
be a t  least 99 mol % pure at the time of shipment. Shipment a t  
ambient temperatures and storage in a freezer between runs results 
in some decomposition. A minimum of four trap-to-trap distillations 
were made utilizing a glass vacuum manifold before a sample was 
considered acceptable. Diborane was first separated from non- 
condensable H2 by application of a liquid nitrogen (77  K) trap and 
subsequent pumping. This was followed by several dry ice-acetone 
(195 K) to liquid nitrogen transfers to remove higher molecular weight 
boranes. Infrared8s9 and mass spectral0 of the purified diborane did 
not indicate the presence of any impurities. When the purified diborane 
was not in use it was retained in a vacuum bulb in a 193 K freezer. 
The foregoing purification process was always repeated even on the 
previously purified 193 K stored diborane before each days' run. 

The laser cell design required vacuum operation and quick dis- 
assembly for cleaning. The laser cells were constructed from 17/8 
in. 0.d. and 11/2 in. i.d. Pyrex glass pipe. They were fitted with a 
vacuum stopcock and a detachable side-arm vial for condensations. 
Ends of the cells were fitted with 6.5 mm thick NaCl windows. Each 
window was vacuum sealed to ground glass ends of the cells by two 
Viton O-rings fitted into a stainless steel O-ring retainer grooved on 
both sides. The windows were held in place by aluminum end caps 
secured end to end by four rods and bolts. Each assembly has a path 
length of approximately 10 cm and a volume of 126-132 cm3. Only 
Kel-F halocarbon grease was utilized. The cells were vacuum leak 
checked prior to use, always purged with 75-100 Torr of purified B2H6 
for several minutes, reevacuated, and then charged with the desired 
B2H6 pressure. Pressure was determined with a simple Hg manometer. 

The same charging vacuum manifold was utilized subsequent to 
the runs to determine the pressure of H2, pentaborane, and B2H6 by 
a simple differential pressure technique which only required applying 
liquid nitrogen, dry ice-acetone, and room temperature baths to the 
detachable side-arm vial and reading respective cell pressures. 
Evacuation of the cell enable condensation of the BIOH14 into the 
detachable side a rm a t  salt-ice bath temperatures which could be 
weighed. BI0Hl4  purity was determined by infrared spectroscopy' 
and melting point," (BH)n was characterized by noting its infrared 
spectrum, lack of a melting point, deliquescence properties, and reaction 
with H 2 0  to form an acid solution.12 The B5H9 and BSHI1 mixture 
was characterized by infrared spectroscopy and mass ~pectrometry. '~  

The laser was a Coherent Radiation Model 42 C W  C02 laser fitted 
with a Model 435 grating. Single-line operation was monitored with 
an Optical Engineering C 0 2  spectrum analyzer. Power was monitored 
with Coherent Radiation power meters whose output was displayed 
on a strip chart recorder. Power was maintained at a constant level 
during runs by placing a beam splitter prior to the reaction cell which 
enabled monitoring of approximately 3% of the power irradiating the 
cell. Power loss by reflection and absorption through each NaCl 
window was 0.5-0.65 watts. Beam diameter was nominally 0.9 cm. 

Results and Discussion 
W e  have exposed B2H6 to the 973-cm-' R-16 line of a C W  

C02 laser more than 40 times. Not once was luminescence 
observed or evidence of a chain process noted as found by 
Kompa et aL6 Icosaborane, B20H16, was never found as a 
product. W e  found the slower reaction produced a B5H9 + 
B5Hll mixture and B10H14 in all experiments. A material 
which we identify as the infamous yellow solids polymer (BH), 
was also produced in all runs.I2 

Temperature increases of as much as 10 O C  were noted at 
times in the higher pressure runs with the glass cells. Several 
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Figure 1. Number of photons required to produce one molecule of 
B10H14, @, as a function of initial B2H6 pressure. Laser power 7.85 
W .  
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Figure 2. Number of photons required to produce one molecular unit 
of B5H9 + B5H1I mixture, @I ,  as a function of initial BzH6 pressure. 
Laser power 7.85 W.  
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Figure 3. Number of photons required to produce one molecule of 
H 2  (circles) or to convert one molecule of B2H6 (squares), +-I ,  as a 
function of initial BzH6 pressure. Laser power 7.85 W.  
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Figure 4. Yield of BIOH14 in milligrams as a function of time. Initial 
B2H6 410 Torr. Laser power 8 W.  Initial slope gave a value of 22000 
photons required for each B10H14 molecule produced, @,,-I. 

runs made initially in heavy stainless cells (large heat sink) 
showed no signs of temperature increase and the same products 
were produced. 

Figures 1, 2 ,  and 3 depict the variation in the number of 
photons required to produce a product molecule of B1OH14, 
B5H9 + B5HI1, and H, or to transform a molecule of B2H6, 
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extrapolated through the origin because B10H14 crystals were 
visible as early as 30 s into the runs although not measurable 
by our technique. The initial slopes are related to the initial 
photon requirements, aO-l, indicated on the figures. The 
magnitude of the initial photon requirements also do not 
support a chain-type mechanism. The fact that B10H14 initial 
photon requirements are higher than those averaged over time 
seems to imply a multistep mechanism and/or a thermal 
process. Pentaborane yields are nearly 50% of maximum after 
2 min as compared to less than 10% for B10H14. Similar early 
H2 formation and B2H6 conversion yields with identical 
also indicate the pentaboranes are produced at  a faster rate 
initially than B1OH14 and both or one may be required as a 
stable intermediate for B10H14 formation. 

We have not concluded whether the process is thermal or 
not. Whereas B4H10 and B5Hll are both generally associated 
with thermal processes only the latter was detected.I4 Ex- 
periments are underway to determine if a thermal process is 
involved. No explanation can be offered at  this time why these 
results differ from those reported previously by Kompa et a1.6 
Increasing intensity to 169 W cm2 or introducing approxi- 
mately 2 Torr of O2 (to emulate leaky cells) did not result in 
the chain process they reported. 
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Figure 5. Yield of pentaborane mixture in Torr as a function of time. 
Initial B2H6 pressure 410 Torr. Laser power 8 W. Initial slope gave 
a value of 287 photons required for each pentaborane molecular unit 
produced, 00-l. 
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Figure 6. Yield of H2 (squares) and of B2H6 (circles) converted in 
Torr as a function of time. Initial B2H6 pressure 410 Torr. Laser 
power 8 W. Initial slope gave a value of 156 photons required per 
H2 molecule produced or B2H6 molecule converted, a.0’. Triangle 
indicates same value. 

respectively, as a function of initial B2H6 pressure. Laser input 
power after the first window was nominally 7.85 W and in- 
tensity was 12.3 W cm-’. All show a pronounced requirement 
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decreases. Photon requirements appear to be too high to 
support a chain mechanism interpretation. Figures 4, 5, and 
6 show yields for formation of B10H14, B5H9 + BSHllr and H2 
and transformation of B2H6, respectively, as a function of time. 
Initial B2H6 was 410 Torr. B1&14 chemical yields varied from 
5 to 1396, with the higher yields coming at higher initial B2H6 
pressures. Laser power and intensity were maintained at 8 
W and 12.6 W cm-2, respectively. In Figure 4 the yield was 
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