Contribution from Rocketdyne, A Division of Rockwell International, Canoga Park, California **91 304,** and the Department of Chemistry, University of Ulm, Ulm, West Germany

Vibrational Spectra and Force Fields of the Tetrafluorooxohalate(V) Anions $CIF₄O⁻$, BrF₄O⁻, and IF₄O⁻

KARL 0. CHRISTE,* RICHARD D. WILSON, E. C. CURTIS, WERNER KUHLMANN, and WOLFGANG SAWODNY

Received June 16, 1977

Improved syntheses are described for BrF_4O^- and IF_4O^- salts, and their vibrational spectra are reported. The spectra of CsBrF40 are simpler than those previously reported for KBrF40 and thus allow more reliable assignments. For comparison, the low-temperature Raman spectrum of CsClF₄O has also been recorded. Normal-coordinate analyses have been carried out for the ClF₄O⁻, BrF₄O⁻, and IF₄O⁻ anions and are compared to those of the structurally related HalF₄⁻ anions and HalF_s molecules and those of XeF_4 , XeF_4O , and XeF_5^+ .

Introduction

The existence of $KBrF_4O$, a salt containing a novel bromine oxyfluoride anion, has recently been reported both by Bougon and co-workers¹ and by Gillespie and Spekkens.² It was obtained either by the reaction¹ of $KBrO₃$ with a large excess of BrF_s at 80 °C in the presence of F_2 or by the reaction² of $KBrF_6$ with $KBrO_3$ in CH₃CN solution. Both methods have drawbacks. Although Bougon's method' can yield a pure product, the course of the reaction is difficult to control and frequently $KBrF₄$ is obtained as the only product (see below). Gillespie's method² produces a mixture of $KBrF₂O₂$ and KBrF40 which must be separated by numerous extractions with CH₃CN. In view of these difficulties, an improved synthetic method for the synthesis of $BrF₄O^-$ was desirable.

Although the crystal structure of $CsIF₄O$ has been reported,³ only a small amount of the material had been obtained accidentally during unsuccessful attempts to crystallize $CSIF_6$ from $CH₃CN$ solution. Furthermore, products containing mixtures of MIF₄O and MIF₂O₂ salts have been prepared⁴ by the interaction of $MIO₃$ or $MIO₂F₂$ with IF₅ or by the controlled hydrolysis of MIF₆ in CH₃CN. However, no suitable method for the preparation of pure $MIF₄O$ has previously been reported.

The vibrational spectra of these HalF_4O^- anions were also of interest. For IF₄O⁻ only spectra of mixtures of IF₄O⁻ and $IF₂O₂$ salts were known,⁴ and for KBrF₄O the previously reported^{1,2} Raman spectra exhibited more bands than permitted for an isolated six-atom species. Interionic dynamic coupling was suggested¹ to account for the large number of bands observed for KBrF40. However, in view of their similar relative intensities, the bands occurring in the 530-390-cm-' region could not be reliably assigned.

In this paper we report improved syntheses for $BrF₄O⁻$ and IF_4O^- salts and their vibrational spectra which allow more reliable assignments for these ions. These assignments are supported by normal-coordinate analyses of 12 structurally closely related species.

Experimental Section

Materials. Bromine pentafluoride (Matheson Co.) was treated with **35** atm of F₂ at 200 °C for 24 h prior to its use. Fluorine (Rocketdyne) was passed through a NaF scrubber for removal of HF. The alkali metal perbromates⁵ and CsClF₄O⁶ were prepared as previously described. Potassium bromate (Baker AR) was used as received. Iodine pentafluoride was purified by distillation and I_2O_5 was prepared from I_2 and HNO₃. The KF was dried by fusion in a platinum crucible.

Apparatus. Volatile materials were manipulated in a well-passivated (with C1F3 and BrF,) **304** stainless-steel vacuum line equipped with Teflon FEP U-traps and bellows-seal valves. Pressures were measured with a Heise Bourdon tube-type gauge $(0-1500 \text{ mm} \pm 0.1\%)$.

* To **whom** correspondence should be addressed at Rocketdyne.

Nonvolatile materials were handled outside of the vacuum system in the dry nitrogen atmosphere of a glovebox.

Infrared spectra were recorded on Perkin-Elmer Model **283** and *577* spectrophotometers. For gases a Monel cell with AgCl windows was used. The spectrum of CsBrF₄O was recorded as a dry powder between AgBr windows in the form of a pressed disk. The pressing operation was carried out using a Wilks minipellet press. The spectrum of KIF40 was recorded as a Nujol mull between CsI windows. Raman spectra were recorded on Cary Model **82** and **83** spectrometers using the **4880-A** exciting line, a Claassen filter' for the elimination of plasma lines, and melting-point capillaries or Kel-F tubes as sample containers. For the low-temperature spectra a previously described⁸ device was used.

Synthesis of KIF₄O. A mixture of KF and I_2O_5 in a mole ratio of 5:1 was treated with a large excess of IF₅ for 1 h at 25 °C. Volatile products were pumped off, first at **25** "C and then at **100** OC. The white crystalline residue was identified by elemental and spectroscopic analyses asKIF40. Anal. Calcd for KIF40: K, **15.2;** I, **49.2.** Found: K, **15.1;** I, **49.0.**

Syntheses of BrF40- Salts. In a typical experiment, CsBr04 **(2.044** mmol) was placed into a sapphire reaction tube $\binom{1}{2}$ in. o.d. \times 12 in. length, Tyco) which contained a Teflon-coated magnetic stirring bar and was attached to a valve through a Swagelok compression fitting using a Teflon front ferrule and a steel back ferrule. Bromine pentafluoride (14.1 mmol) and F₂ (2.4 mmol) were added at -78 °C. The mixture was stirred at 25 °C for 30 h and then cooled to -196 ^oC. The products volatile at -196 ^oC were pumped off and those volatile at 25 °C were separated by fractional condensation through a series of traps kept at -64, -95, and -196 °C, respectively. On the basis of their infrared and Raman spectra, they consisted of $FBrO₂$, $BrF₅$, and $FBrO₃$, respectively. On the basis of its infrared and Raman spectrum, the white solid residue **(623** mg) consisted of CsBrF40 (weight calculated for **2.044** mmol of CsBrF40 was **623** mg). Similar results were obtained when the reaction was carried out at 70 °C. However, if the reaction was carried in the absence of F_2 , the conversion of $CsBrO₄$ to $CsBrF₄O$ was very low, even after prolonged heating to 80 °C. The influence of HF on this reaction was also studied. The addition of *5* mol % (based on MBr04) HF did not produce significant amounts of $BrF₄O⁻$ in the reaction of $CsBrO₄$ with BrF₅ in the absence of F_2 at 25-50 °C.

For the $KBrO_4-BrF_5-F_2$ reaction system, when studied in the same manner as described above for $CsBrO₄$, higher reaction temperatures were required. For example, at 45 °C for 19 h, essentially all of the KBr04 starting material was recovered unchanged. Heating of the starting materials to 80 °C for 95 h resulted in a conversion of KBrO₄ to KBrF40 of about **70%.**

A sample of $KBrF_4O$ was also prepared from $KBrO_3$ and BF_5 by closely following the procedure published' by Bougon. However, when the reaction conditions or the scale of the reaction were slightly modified, several experiments produced KBrF4 in almost quantitative yield, even when the Brf_5 was prefluorinated with 35 atm of F_2 at 200 °C. No evidence was found for the formation of significant amounts of FBrO₃ in these reactions.

The CsCIF₄O-CIF₃ System. A weighed sample of CsCIF₄O in a tenfold excess of CIF_3 was stirred for 24 h at 25 °C. The volatile products were pumped off and consisted of unreacted CIF_3 and CIF_3O . On the basis of its weight and vibrational spectra,⁹ the white solid

residue consisted exclusively of CsCIF4.

Results and Discussion

Synthesis of XF_4O^- **Salts.** The reaction of I_2O_5 with a large excess of $IF₅$ in the presence of a stoichiometric amount of KF affords essentially pure $KIF₄O$ in a one-step reaction according to

$$
I_2O_s + 3IF_s + 5KF \rightarrow 5KIF_4O
$$

This synthesis is based on the previous report¹⁰ of Aynsley et al. that the reaction of I_2O_5 with IF₅ produces IF₃O.

The KIF_4O prepared in this manner is a white, crystalline solid. It is stable up to about 200 $^{\circ}$ C and hydrolyzes according to

 $KIF₄O + 2H₂O \rightarrow KIO₃ + 4HF$

Attempts to synthesize K_2IF_5O by changing the $KF:I_2O_5$ ratio in the above synthesis were unsuccessful. On the basis of its vibrational spectra, the resulting product was shown to be KIF_4O - $KF.$

For the synthesis of $BrF₄O⁻$ salts, the reactions of $MBrO₄$ with F_2 in BrF_5 solution were found to be most reproducible. Whereas $CsBrO₄$ is fluorinated even at ambient temperature, the reaction of $KBrO₄$ requires heating to about 80 °C. Although the formation of $BrF₄O⁻$ salts in these reactions was shown to be reproducible and quantitative, the amount of the volatile by-products $FBrO₂$ and $FBrO₃$ varied and was never sufficient to account for all of the missing oxygen. The remaining oxygen was probably in the form of O_2 which was pumped off at -196 °C together with the unreacted F_2 . Furthermore, it is remarkable that under the given conditions the reactions did not proceed in the absence of F_2 . This implies that $F₂$ participates in these reactions and does not merely serve the purpose of suppressing a possible reduction of $BrF₅$ to $BrF₃$, as was previously suggested³ for the bromate-BrF₅ system. It was also shown that, contrary to a previous report on the $KBrO₃-BrF₅ system, the addition of small amounts of HF did$ not significantly catalyze the $CsBrO₄-BrF₅$ reaction between 20 and 50 \degree C.

Although the reaction of $KBrO₃$ with $BrF₅$ to form $KBrF₄O$ which was previously reported' by Bougon and co-workers was successfully duplicated in our laboratory, it was difficult to accomplish. Frequently, quantitative conversion to $KBrF_4$ was obtained. Since the BrF_5 used in our experiments had been thoroughly prefluorinated with F_2 at 200 °C, it could not have contained sufficient BrF_3 for a quantitative displacement reaction, such as

 $KBrF_aO + BrF_a \rightarrow KBrF_a + BrF₃O$

That such a displacement reaction of Half_4O^- by Half_3 can indeed proceed quantitatively was demonstrated in this study for the system

$$
CsClF_4O + ClF_3 \rightarrow CsClF_4 + ClF_3O
$$

In view of the possibility of such a displacement reaction and the known¹¹ thermal instability of BrF_3O , the presence of a small amount of Brf_3 might be sufficient to catalyze the decomposition of BrF_4O^{\dagger} to BrF_4^{\dagger} according to

$$
BrF_4O^+ + BrF_3 \rightarrow BrF_4^- + BrF_3O
$$

$$
\uparrow
$$

$$
BrF_3 + \frac{i}{2}O_2
$$

Our finding that BrF_4^- can be readily formed in this system confirms the original report¹² by Schmeisser and Pammer but is inconsistent with the recent report² of Gillespie and Spekkens.

From a mechanistic point of view, the reactions of $BrF₅$ with BrO_3^- or BrO_4^- are very interesting since they involve an oxygen-fluorine exchange. On the basis of the observed

Figure 1. Vibrational spectra of KIF₄O: upper trace, infrared spectrum of a NUJOI mull between CsI windows; lower trace, Raman spectrum. The band marked by an asterisk is due to Nujol. The numbers 1-9 designate the assignments to the corresponding fundamentals.

quantitative yields of $BrF₄O₋$, a free-radical mechanism involving the addition of oxygen atoms to bromine fluorides is extremely unlikely. Furthermore, the increased reactivity of the thermally more stable $CsBrO₄$ relative to that of $KBrO₄$ suggests an alkali metal salt catalyzed reaction. A mechanism involving the addition of BrF_5 or BrF_6^- across a Br=O double bond of $BrO₄$ or $BrO₃$ ⁻ followed by $FBrO₃$ or $FBrO₂$ elimination with BrF_4O^- formation appears plausible but requires additional experimental support.

Vibrational Spectra. Vibrational spectra were recorded for $KIF₄O$, CsBrF₄O, KBrF₄O, and CsClF₄O. The spectra of KIF40 (see Figure 1 and Table I) are in fair agreement with those⁴ previously assigned to the MIF₄O part of MIO₂F₂-MIF40 mixtures, except for the relative intensities of the 280 and 365-cm-' infrared bands. This discrepancy is caused by the fact⁴ that $IO_2F_2^-$ possesses a strong infrared band at 360 cm^{-1} .

The vibrational spectra of $CsBrF₄O$ are shown in Figure 2. The spectra of $KBrF₄O$ were in excellent agreement with those^{1,2} previously reported and, hence, are not reiterated. Surprisingly, the vibrational spectra of CsBrF40 significantly differed from those of $KBrF_4O$. Since in the Hal F_4 stretching frequency region the room-temperature Raman spectrum of $CsBrF₄O$ was more similar to that¹³ of CsClF₄O than to that^{1,2} of KBrF40, we have also reexamined the Raman spectrum of CsClF40 (see Figure 3).

By analogy with the previous report² on $KBrF₄O$, it was found that cooling of the samples resulted in much better resolved Raman spectra. The observed frequencies of CsBrF40 and CsC1F40 are summarized in Table I. Attempts to obtain the Raman spectrum of $CsBrF₄O$ in anhydrous HF solution failed owing to the displacement reaction

$$
CsBrF_4O + HF \rightarrow CsHF_2 + BrF_3O
$$

The observed spectrum was in excellent agreement with that recently reported¹¹ for BrF_3O .

The previously reported^{1,2} Raman spectra of $KBrF₄O$ are very complex and contain more bands than expected for an isolated six-atom species. Furthermore, the relative intensities of many bands are too similar to allow conclusive assignments. In view of these complications and in the absence of additional structural data on $\text{Br} F_4O^-$, the proposed^{1,2} C_{4v} structure for $Br F₄O⁻$ had to be considered tentative, although very likely.

Table **I.** Vibrational Spectra of KIF_aO , CsBrF₄O, and CsClF₄O and Assignments for CsBrF₄O: Observed Frequencies (cm⁻¹) and Relative Intensities^a

a Uncorrected Raman intensities (peak heights).

Table **II.** Comparison of the Frequencies (cm⁻¹) of the Fundamental Vibrations of the HalF₄O⁻ Anions with Those of Similar Molecules and Ions

	Approx description of mode for XF_4Y in point group C_{4U}	$CIFaO-$	CIF.	CIF_{κ}	BrF_4O^-	BrF_{4}^-	BrF _s	IF $\overline{4}$	IF_4O^-	IF.	XeF .	XeF_AO	XeF^+
A_{1} ν_{1}	$\nu(XY)$ v_2 v_{sym} (XF ₄) v_3 δ_{sym} (out-of-plane XF ₄)	1203 456 339	505 425	708 539 495	930 500 302	523 317	682 587 369	522 271	887 537 279	710 616 318	543 291	926 576 294	679 625 355
Β,	v_4 v_{sym} (out-of-phase XF ₄) v_s $\delta_{\text{asym}}(\text{out-of-plane } XF_4)$	356	417	480	417 205	449	535	455	480	604	502	527	610 261
	B_2 v_6 δ_{sym} (in-plane XF ₄)	278	288	375	235	246	312	195	219	276	235	233	300
Е v_{τ}	$\nu_{\rm asym}(\rm{XF}_{4})$ $v_{\rm s}$ δ (YXF _a) v_9 δ asym(in-plane XF ₄)	578 414 194	590	725 484 299	505 395 179	478 1831	644 415 237	448	482 374 140	631 372 200	586	608 361 161	652 410 218

Consequently, a detailed analysis of the simpler $CsBrF₄O$ spectrum and its comparison with those of CIF_4O^- and $IF_4O^$ were expected to provide additional support for the proposed $C_{4\nu}$ model.

Assignments for BrF₄O⁻. For an isolated BrF₄O⁻ anion of symmetry C_{4v} nine fundamental vibrations should be observed. These are classified as $3 A_1 + 2 B_1 + B_2 + 3 E$. All nine modes should be Raman active, whereas only the A_1 and E modes should be infrared active. For a solid salt, such as $CsBrF₄O$, the actual site symmetry of the anions is expected to be lower than C_{4v} . This symmetry lowering can cause a splitting of the E modes into their degenerate components and violations of the above given selection rules. Furthermore, if the unit cell contains more than one anion, the number of internal modes can increase by a factor *2,* where *2* is the number of anions per unit cell. On the basis of tentative unit-cell dimensions reported' by Bougon for KBrF40, *2* is estimated to be about 32. Assuming that $CsBrF₄O$ has a similar crystal structure, each mode could be split into many components. However, only a much lower number of bands are usually observed since these correlation splittings are

relatively small and usually do not exceed 1-2% of the mode frequency.

Assignments for $BrF₄O⁻$ can be made by comparison with the known vibrational spectra of the structurally related species $CIF_4O^-, ^{13}ClF_4^-, ^{9}ClF_5, ^{14-17}BrF_4^-, ^{18}BrF_5, ^{14,16}IF_4^-, ^{19}IF_5, ^{14,16}$ XeF_4 ,^{19,20} XeF_4O ,¹⁴ and XeF_5 ^{+ 21} All of these species are pseudooctahedral with an approximately square-planar XF4 group. A summary of the frequencies of their fundamental vibrations is given in Table 11.

Qn the basis of its high frequency and relative intensity, the Br= O stretching mode $\nu_1(A_1)$ must be assigned to the band at 930 cm-I. Of the remaining bands, the symmetric in-phase $BrF₄ stretching mode ν_2 (A₁) should be the most intense$ Raman band and by comparison with the known assignments for CIF_4^- , CIF_4O^- , BrF_4^- , IF_4^- , and IF_4O^- should have a frequency in the vicinity of about 500 cm^{-1} . It therefore must be assigned to the Raman band at 500 cm^{-1} . The symmetric out-of-phase $\text{Br} F_4$ stretching mode ν_4 (B₁) should be the second most intense Raman band and, by comparison with the known frequencies of the closely related $BrF₄$ anion (see Table II), is predicted to occur about 80 cm⁻¹ below ν_2 (A₁). Conse-

Figure 2. Vibrational spectra of CsBrF₄O: upper trace, infrared spectrum of the dry powder in an AgBr disk, the broken line indicating absorption due to the window material; lower traces, Raman spectra recorded at different temperatures and gain settings with a spectral slit width of 2 cm⁻¹.

quently, this mode must be assigned to the band at about 417 cm^{-1} . The last stretching mode, the antisymmetric BrF₄ stretch, ν_7 (E), is expected to result in a very strong and broad infrared band in the 450-550-cm⁻¹ frequency region. Such an infrared band has been observed (see Figure 2) and is consequently assigned to ν_7 . In the Raman spectrum, there are three bands at 482 , 471 , and 444 cm⁻¹, respectively, which are assigned to the degenerate ν_7 (E) mode for the following reasons. Their frequencies are too high for a deformation mode and differ by too much from those of the nondegenerate ν_2 and ν_4 modes in order to be accounted for by correlation splittings of the latter. The splitting of ν_7 into three components can be explained by Fermi resonance (see below).

The assignments for the $BrF₄O⁻$ deformation modes can be made by comparison with those of BrF_5 and BrF_4^- . In this type of molecule, the umbrella deformation mode ν_3 (A_1) always results in a very intense infrared band and, consequently, is assigned to the strong infrared band at 301 cm^{-1} . Then the 236- and 178-cm⁻¹ bands must be due to the symmetric and the antisymmetric in-plane $XF₄$ deformation

Figure 3. Raman spectra of CsClF₄O recorded at different temperatures and gain settings with a spectral slit width of 2 cm-'.

modes, ν_6 (B₂) and ν_9 (E), respectively, with ν_6 (see Table II) always having the higher frequency. The $OBrF₄$ deformation mode ν_8 (E) is assigned to the remaining Raman bands at 421, 401 , and 390 cm⁻¹ which show the expected counterparts of medium intensity in the infrared spectrum. The last yet unassigned deformation mode is the antisymmetric out-ofplane XF_4 deformation ν_5 (B₁). This mode is expected to be of very low intensity and usually is not observed for similar species. Of the compounds listed in Table 11, it has only been observed for XeF_5 ⁺ at 261 cm⁻¹. Since the related ν_3 (A₁) mode of XeF_5 ⁺ exhibits a frequency higher by 53 cm⁻¹ than that of ν_3 of BrF₄O⁻, the frequency of ν_5 of BrF₄O⁻ might be expected to occur around 210 cm-'. **A** careful inspection of the Raman spectrum of $CsBrF₄O$ shows indeed a very weak band at 205 cm⁻¹ which is therefore assigned to ν_5 (B₁) of $BrF₄O⁻$. The two bands at 80 and 62 cm⁻¹, respectively, observed in the Raman spectrum of CsBrF40 occur at too low a frequency for internal $BrF₄O⁻$ vibrations and must be assigned to lattice modes.

The splittings, best observed in the low-temperature Raman spectrum of CsBrF_4O , can be readily accounted for by assuming a splitting into two components for each of the three doubly degenerate E modes. The additional splittings observed for ν_7 and ν_8 can be readily explained by Fermi resonance of ν_7 and ν_8 with the E mode combination bands $(\nu_3 + \nu_9)$ and $(\nu_6 + \nu_9)$, respectively. Similarly the splitting observed for ν_3 might be explained by Fermi resonance with a combination band of a lower frequency mode and a lattice vibration. Since bromine contains two naturally occurring isotopes $(^{79}Br$ and 81Br) in almost equal abundance, we have computed the approximate isotopic splittings to be expected for BrF_4O^- . In all cases the computed isotopic splittings were considerably smaller than those observed and the relative intensities did not exhibit the correct 1:l ratio. Consequently, the observed splittings cannot be attributed to the bromine isotopes.

The assignments proposed for CsBrF40 are summarized in Tables I and 11. When compared to those of the related

Table **111.** Assumed Molecular Parameters for ClF,O-, BrF,O', and **IF40-**

Parameter	$CIFAO-$	$BrF. O^-$	IF_4O^-
R , A (ax)	1.42	$1.56 -$	1.72
r , A (eq)	1.75	1.88	1.965
β , deg (<oxf)< td=""><td>90</td><td>90</td><td>90</td></oxf)<>	90	90	90
α , deg (\leq FXF)	90	90	90

compounds of Table II, these assignments for $BrF₄O⁻$ result in very satisfactory frequency trends. Additional support for the assignments comes from the results of a normal-coordinate analysis (see below).

On the basis of the above assignments for $CsBrF₄O$, the previously reported^{1,2} vibrational spectrum of $KBrF₄O$ can be reassigned in the following manner (cm⁻¹): 930 (ν_1) ; 529 (ν_2) ; **506, 486, 481, 459 (~7); 434** (~4); **421, 409, 399** (~8); **314 (~3); 248, 239** *(Yg);* **196, 184, 161** *(Ug).*

Assignments for CIF_4O^- and IF_4O^- . The assignments previously proposed¹³ for CIF_4O^- have been confirmed by this study. In view of the low-temperature splittings observed for BrF₄O⁻, we have examined the low-temperature Raman spectrum of CsClF40 for similar effects. In general, the assignments for chlorine fluorides are more difficult than those of the corresponding bromine and iodine compounds. This is caused by a well-documented²² overlap of the frequency ranges of the stretching and the deformation modes. This frequently results in coincidences of fundamental vibrations and, if they belong to the same symmetry species, in their mixing.

Although the room-temperature Raman spectra of $CsBrF₄O$ (see Figure **2)** and CsC1F40 (see Figure **3)** in the HalF4 stretching frequencies region appear at first glance to be quite analogous, this first impression is somewhat misleading. For ClF₄O⁻, the antisymmetric ClF₄ stretching mode ν_7 has a frequency considerably higher than those of the two symmetric stretching modes ν_2 and ν_4 , whereas for BrF_4O^- the frequency of ν_7 falls between those of ν_2 and ν_4 . Therefore, for ClF₄O⁻ the bands belonging to ν_7 are well isolated and can be assigned with confidence. The remaining assignment of the $ClF₄O$ spectrum has previously been discussed in detail¹³ and, therefore, is not reiterated.

For IF_4O^- , the assignments⁴ proposed by Milne and Moffett have been adopted, except for ν ⁹ (E). This mode results in a very weak and broad Raman band. On the basis of frequency correlations with related molecules and force constant arguments, a frequency of about **140** cm-' appears more plausible than the value of 124 cm^{-1} previously proposed.⁴

Table I1 lists the frequencies of **12** species containing an approximately square-planar $XF₄$ group. The given assignments are all consistent with each other, thus rendering any gross misassignments for any of these species highly unlikely. The trends observed within this group of 12 species will be discussed in terms of their force constants (see below) rather than in terms of their frequencies since the frequencies of some of the modes are strongly influenced by the mass of the central atom.

Force Constants. The plausibility of the above assignments for the XF_4O^- anions was examined by computations of modified valence force fields and by their comparison with those of the structurally related XF_4 and XF_5 species. The required potential and kinetic energy metrics were computed by a machine method²³ using the geometries listed in Table 111. For BrF_4O^- and ClF_4O^- the exact geometries are unknown and therefore idealized bond angles of **90'** were assumed. The bond lengths of BrF_4O^- were estimated by comparison with those known for the related species $BrF_4^{-,24}$ BrF_5^{25} and BrO_4^{-26} For ClF₄O⁻ the previous estimates¹³ were adopted. For IF_4O^- the exact geometry is known.³ Since the observed OIF bond angle of 89° is very close to the 90° estimates used for CIF_4O^- and BrF_4O^- and since the OXeF bond angle in $XeOF_4$ was found to be larger than 90° (91.8°),²⁷ we have also used a 90° bond angle for IF₄O⁻. This simplifies the computations and makes the resulting force fields more comparable. The force constant definitions used are those¹⁴ of Begun et al. Literature values, for which the deformation coordinates had been weighted by unit (1 **A)** distance, were converted back to unweighted values to allow a better comparison. The force constants were adjusted by trial and error, assuming the simplest possible modified valence force field, to give an exact fit between the observed and computed frequencies. The potential energy distribution showed that for the XF_4O^- anions all of the vibrations were highly characteristic **(99-loo%),** except for the E block. However, introduction of small F_{78} terms resulted in the E-block vibrations also becoming highly characteristic **(9** 1% or higher). The resulting force fields are summarized in Table IV.

As can be seen from Table IV, the force constants are all very reasonable. **A** few very minor deviations can be readily explained. For example, f_{rr} of BrF₄⁻ appears somewhat high. This is caused by using for the antisymmetric stretching mode the relatively low frequency value of **478** cm-' observed for the solution spectrum.¹⁹ For the solid, the band due to this vibration is extremely broad¹⁸ with its band center being closer

Table **IV.** Comparison of the Symmetry and Internal Force Constants^a of 12 Species Containing an Approximately Square-Planar XF₄ Group Using the Assignments and Frequency Values of Table 11

		CIF_4O^-	CIF_a^{-b}	CIF_s^c		$BrF_4O^{\dagger}BrF_4^{\dagger}b$	BrF _s	IF_4 ^{-b}	IF_4O^-	IF, c		XeF_4^b XeF_4^d XeF_5^e	
	$A_1 \tF_{11} = f_R$ $F_{22} = f_r + 2f_{rr} + f_{rr'}$ $F_{33} = f_{\beta} + 2f_{\beta\beta} + f_{\beta\beta}'$	9.38 2,33 0.415	2.853 0.630	3.51 3.24 1.20	6.70 2.80 0.470	3.06 0.577	4.02 3.81 0.805	3.052 0.514	6.56 3.23 0.575	4.82 4.22 0.72	3.302 0.597	7.08 3.60 0.601	4.35 4.38 0.875
	B_1 $F_{44} = f_r - 2f_{rr} + f_{rr'}$ $F_{ss} = f_{\beta} - 2f_{\beta\beta} + f_{\beta\beta}$	1.38	1.946	2.59	1.95 0.682	2.258	3.21	2.319	2.58	4.08	2.822	3.11	4.17 0.764
	B_2 $F_{66} = f_{\alpha} - 2f_{\alpha\alpha} + f_{\alpha\alpha}$	0.216	0.232	0.389	0.154	0.169	0.271	0.106	0.134	0.217	0.155	0.152	0.260
E	$F_{77} = f_r - f_{rr}$ $F_{88} = f_{\beta} - f_{\beta\beta}$ $F_{99} = f_{\alpha} - f_{\alpha\alpha'}$ $F_{78} = f_{r\beta} - f_{r\beta}$	1.81 0.494 0.157 0.246	1.86	2.43 0.772 0.382 0.185	1.91 0.386 0.142 0.128	1.794 0.143	2.97 0.635 0.249	1.755	2.01 0.444 0.091 0.087	3.39 0.526 0.192	3.048	3.16 0.418 0.122	3.65 0.595 0.232
$\frac{f_{\bm R}}{f_{\bm r}}$ frr $\begin{bmatrix} f_{rr}^{\prime} \ f_{\alpha}^{\prime} f_{\beta}^{\prime} \end{bmatrix}$		9.38 1.838 0.238 0.028 0.187 0.46	2.13 0.23 0.27 ~ 0.2 ~ 0.6	3.51 2.674 0.161 0.244 0.385 0.98	6.70 2.142 0.213 0.232 0.148 0.428	2.227 0.20 0.433 0.156 ~ 0.5	4.02 3.24 0.15 0.27 0.260 0.720	2.221 0.183 0.466 ~ 0.1 ~10.46	6.56 2.458 0.163 0.447 0.113 0.510	4.82 3.77 0.035 0.38 0.205 0.623	3.055 0.120 0.007 ~ 0.13 ~ 0.49	7.08 3.258 0.123 0.098 0.137 0.509	4.35 3.968 0.053 0.318 0.246 0.735

a All values in mdyn/A. **b** Data from ref 19. **c** Data from ref 16. **d** Data from ref 14. **e** Data from ref 21; values of f_{rr} and $f_{rr'}$ in Table **V** of ref 21 should be exchanged. f Assuming $f_{\alpha\alpha} = 0$. **Assuming** $f_{\beta\beta} = 0$.

to 500 cm⁻¹. If this higher frequency value is chosen, f_{rr} of $BrF₄$ ⁻ becomes more similar to those of $BrF₄O⁻$ and $BrF₅$. Similarly for the lighter central atoms, the off-diagonal symmetry force constants in the E block become more important, thus increasing the uncertainties in these numbers which were obtained from underdetermined force fields.

General Trends. Inspection of Table IV reveals the following trends. Whereas the values of the XF stretching force constants either are similar (within the $XF₄⁻$ series) or increase in the direction Cl < Br < I (for XF_4O^- and XF_5), the XO stretching force constant in CIF_4O^- is much higher than those in both BrF_4O^- and IF_4O^- . Since the values of the XO force constants within the ClO₄⁻, BrO₄⁻, IO₄⁻ series (8.24, 6.05, 5.90) mdyn/A^{28} exhibit the same trend, this seems to reflect a general characteristic of XO bonds. In the $XO₄$ series, the central **X** atom does not possess any free valence electron pair or fluorine ligands, and therefore no special resonance or bonding effects should be invoked. The bond-weakening effect of a formal negative charge in the anions and the bondstrengthening effect of a positive charge in the cations are as expected. The negative charge increases the $X^{\delta+}-F^{\delta-}$ polarity of the XF4 bonds, thus weakening them. The reverse is true for a positive charge. This effect can also account for most of the observed increase in the force constants when going from an iodine species to the corresponding isoelectronic xenon species which differ by one formal charge.

A comparison of the $XF_4 = XF_4O^-$ pairs for each halogen shows that for X being chlorine, an oxygen substituent releases electron density to the more electronegative CIF_4 group, thus increasing the polarity of the $CIF₄$ bonds and decreasing the C1-F stretching force constant. For X being bromine, there is little change in the X-F stretching force constant indicating comparable electronegativities for oxygen and the $BrF₄$ group. For **X** being iodine, oxygen becomes more electronegative than the IF₄ group, thus withdrawing electron density from IF₄ and increasing the covalency of the IF_4 bonds.

The $X\dot{F}_4$ deformation constants f_α show the expected trend. With decreasing size of the central atom, the mutual repulsion among the ligands increases and the bonds become more difficult to deform. The FXO angle deformation constant, f_{β} , does not appear to change significantly when going from chlorine to iodine. However, for a given halogen atom, f_{β} appears to follow the same trends exhibited by the corresponding XF_4 stretching force constants, f_r .

Acknowledgment. We are grateful to Drs. C. J. Schack and L. R. Grant for helpful discussions and to the Office of Naval Research, Power Branch, for financial support of the work done at Rocketdyne.

Registry No. CsCIF40, 39018-38-7; CsBrF40, 65391-03-9; KIF4O, 59654-71-6; KF, 7789-23-3; I₂O₅, 12029-98-0; IF₅, 7783-66-6; CsBrO₄, 33259-95-9; BrF₅, 7789-30-2; F₂, 7782-41-4; KBrF₄O, 60995-34-8; CIF₃, 7790-91-2; CsCIF₄, 15321-04-7; CIF₅, 13637-63-3; BrF₄⁻, 19702-38-6; IF₄⁻, 19702-40-0; XeF₄, 13709-61-0; XeF₄O, 13774-85-1; XeF_s ⁺, 42879-72-1.

References and Notes

- **(1)** R. Bougon, **T.** B. Huy, P. Charpin, and G. Tantot, C. *R. Hebd. Seances Acad. Sci., Ser. C,* 283, 71 (1976).
- *(2)* R. J. Gillespie and P. Spekkens, *J. Chem. Soc., Dalton Tram.,* 2391 (1976).
- *(3)* R. R. Ryan and L. B. Asprey, *Acta Crystalbgr., Secr. E,* 28,979 (1972).
- (4) J. B. Milne and D. M. Moffett, *Inorg. Chem.,* **15,** 2165 (1976). (5) E. H. Appelman, *Inorg. Chem.,* 8, 223 (1969).
-
- (6) K. 0. Christe, C. J. Schack, and D. Pilipovich, *Inorg. Chem.,* **11,** ²²⁰⁵ (1972).
-
-
- (7) H. H. Claassen, H. Selig, and J. Shamir, *Appl. Spectrosc.*, **23**, 8 (1969).
(8) F. A. Miller and B. Harvey, *Appl. Spectrosc.*, **24**, 291 (1970).
(9) K. O. Christe and W. Sawodny, Z. Anorg. Allg. Chem., **357**, 127 (19 374, 306 (1970).
- (10) E. E. Aynaley, R. Nichols, and P. L. Robinson, *J. Chem. Soc.,* 623 (1953). (1 1) R. Bougon and T. B. Huy, C. *R. Hebd. Seances Acad. Sci., Ser. C,* 283, 461 (1976).
- (12) M. Schmeisser and E. Pammer, *Angew. Chem.. 69,* 781 (1957).
- (13) K. 0. Christe and E. C. Curtis, *Inorg. Chem.,* **11,** 2209 (1972).
- (14) *G.* **M.** Begun, W. H. Fletcher, and D. F. Smith, *J. Chem. Phys.,* 42, 2236 (1965).
-
- (15) K. O. Christe, *Spectrochim. Acta, Part A*, **27a**, 631 (1971).
(16) K. O. Christe, E. C. Curtis, C. J. Schack, and D. Pilipovich, *Inorg. Chem.*, **11**, 1679 (1972).
-
-
-
- (17) P. Goulet, R. Jurek, and J. Chanussot, *J. Phys. (Paris*), 37, 495 (1976).
(18) K. O. Christe and C. J. Schack, *Inorg. Chem.*, 9, 1852 (1970).
(19) K. O. Christe and D. Naumann, *Inorg. Chem.*, 12, 59 (1973).
(20) H. *85,* 1927 (1963).
- *(2* 1) K. 0. Christe, E. C. Curtis, and R. D. Wilson, *Inarc. Nucl. Chem. Lett.,* **12,** 159 (1976).
- (22) K. O. Christe and W. Sawodny, *Z. Anorg. Allg. Chem.*, 357, 125 (1968).
- (23) E. C. Curtis, *Spectrockim. Acta, Part A,* 27a, 1989 (1971).
- (24) A. J. Edwards and *G.* R. Jones, *J. Chem. Soc. A,* 1936 (1969).
- (25) **A.** G. Robiette, R. H. Bradley. and P. N. Brier, *Chem. Commun.,* 1567 (1971)
- (26) **S.** Siegel, B. Tani, and E. Appelman, *Inorg. Chem.,* **8,** 1190 (1969). (27) J. F. Martins and E. B. Wilson, *J. Mol. Spectrosc.,* 26, 410 (1968).
-
- (28) L. C. Brown, *G.* M. Begun, and *G.* E. Boyd, *J. Am. Ckem. SOC.,* **91,** 2250 (1969).

Contribution from the Chemical Research Institute of Non-aqueous Solutions, Tohoku University, Sendai 980, Japan

A Spectroscopic Reexamination of a Series of $\text{Bis}(\beta$ -diketonato)copper(II) Complexes

HIROSHI YOKOI

Received July 21, 1977

ESR and optical absorption studies of a series of bis(α -substituted β -diketonato)copper(II) complexes (the substituent is ESR and optical absorption studies of a series of bis(α -substituted β -diketonato)copper(II) complexes (the substituent is
the alkyl or trifluoromethyl group) in toluene or cyclohexane have been carried out systemati analyzed by computer simulation. The coordination bondings as well as the energies and intensities of the metal \leftarrow ligand charge-transfer transitions of B_{3u} and B_{2u} \leftarrow B_{1g} in D_{2h} and those of d-d transitions attention to the correlation of them with the pK_a of the ligands, and their mutual relationships have been explained satisfactorily in terms of covalency in the σ bonding.

Introduction

Many studies on the ultraviolet and visible spectra of $bis(β -diketonato)copper(II) complexes have been carried out$ primarily in order to assign spectral bands.²⁻¹¹ Various ambiguities, however, still remain because conclusive data have not been available. On the other hand, many ESR studies of the complexes also have been done since Maki and McGarvey's excellent work in 1958 .¹²⁻¹⁶ The ESR results so far obtained not only for the complexes but also for many other planar copper(I1) complexes, however, do not seem entirely satisfactory. This is because there have not been many cases in which direct comparison among the planar complexes in their ESR results is of significance. Inaccuracies in some data may also be responsible for this situation.

One method for improving the situation is to reinvestigate systematically a series of planar copper(I1) complexes of