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Applications of optical second harmonic generation (SHG) to the study of solid-state sterochemical problems have been 
recently reported. This paper will describe the use of SHG to distinguish between different types of possible coordination 
polyhedra. In particular, we will show that the iodine coordination in hydrated sodium periodate is not tetrahedral 
(NaI04.3H20) but is octahedral NaH30[I03(OH)J as recently suggested by Poulet and Mathieu from Raman measurements. 

Introduction 
The use of optical second harmonic generation (SHG)  to 

study solid-state sterochemical problems such as tetrahedral 
and distortions of both tetrahedra3 and octahedra4 

in crystals has been recently reported. This paper will 
demonstrate that SHG can also be used to distinguish between 
different types of possible coordination polyhedra. In par- 
ticular, we will show that the iodine coordination in hydrated 
sodium periodate is not tetrahedral (NaI04 .3H20)  but is 
octahedral NaH30[ I03(0H) , ]  as recently suggested by Poulet 
and Mathieu5 from Raman  measurements. 

S H G  is the process whereby light a t  some frequency 2 0  is 
produced as the response of some nonlinear, acentric, medium 
to a driving field a t  frequency w. SHG is usually characterized 
by a macroscopic polarizability dvk (nonlinear coefficient) 
which is a third rank tensor relating second harmonic po- 
larization to terms quadratic in fundamental electric field. The 
nonlinear coefficient tensor is always symmetric for inter- 
change of the last two indices6 and is usually' (within ex- 
perimental uncertainty) fully symmetric (Kleinman* sym- 
metry). Additional symmetries arise due to symmetry of the 
nonlinear medium. 

The bond polarizability model is well established9 for linear 
optical polarizabilities of molecules. This model describes the 
macroscopic linear polarizability as a (tensor) sum of the linear 
polarizabilities of the individual covalent bonds in the medium 

xi, = V-'ailajmalm (1) 

where x and 01 are  macroscopic and microscopic (bond) 
polarizabilities, respectively, V is volume, and (a,)  is a 
transformation matrix. The  extension'0-'2 of this model to 
second-order polarizability begins by recognizing that this 
effect must originate in the valence electrons of the  system 
since their environments are so much more acentric than those 
of the core electrons. Hence, the analogous relation to eq 1 
is 

d i jk  = V-'ailajmakn6lrnn (2) 

where d and p are  respectively macroscopic and microscopic 
bond polarizabilities.20 The  structural dependence of the 
transformation matrix (a,) combined with measurements of 
nonlinear coefficients (dr,k), allows one to obtain structural 
information. 
Theory 

T h e  interaction between light and dielectric media is 
generally described in terms of the induced dipole moment P 
which is expressed as  a power series in field E by 

P=Po + XE + dE2 + I'E3 + . , , (3) 
where Po is a spontaneous dipole moment, x is the  linear 
polarizability, and d, r ... are  hyperpolarizabilities.'O This 
paper will concern itself with the quadratic term d which is 
responsible for two frequency mixing or, in a limiting case, 

second harmonic generation (SHG).  

Eo cos (ut) then 
If we consider a field with harmonic time dependence E = 

E'= '/2E02[1 + COS (2u t ) l  (4) 
Substituting this into eq 3, we see that the first term generates 
the phenomenon of optical rectification, while the second term 
gives rise to second harmonic generation (SHG).  We then 
define a macroscopic nonlinear polarizability dl,k by the re- 
lation 

( 2 u )  = x dtjk ( u l E k  (m) (5  1 
Jk 

where i, J ,  and k refer to coordinate axes. Due to the symmetry 
in eq 5 between indices J and k ,  there can be a t  most 18 
independent components.6 Under these conditions it is 
customary13 to contract dLJk to a 3 X 6 matrix (d,) by the 
method shown schematically by ["" d,12 d122 d123 --f ["Zl . :16 d12 d14 &] 

d, 33 

The  second harmonic polarization is then given by 

P 1 ( 2 ) = d t l E x 2  +dl2EY2 + d t 3 E z 2  + 
2d14EyEz + 2dl,ExEz + 2d16ExEy ( 6 )  

The microscopic polarizability corresponding to dgJk is P I J k  
(again symmetric in j and k indices). The  bond additivity 
model in this case assumes each bond to be represented by a 
polarizability of the (contracted) form 

0 0 0 631 0 
(7 1 

31 031 633 0 0 O 0 OI 
61, = 0 0 631 r 

where bond symmetry C,  and Kleinman symmetry have been 
assumed. 

The macroscopic (crystal or molecule) polarizability is then 
given as the (tensor) sum of the individual bond polarizabilities. 
Specifically 

where the sum is over bonds, s. Vis the unit cell volume and 
(al j )  is the matrix of the  transformation from the bond co- 
ordinate system21 to the crystal coordinate system. 

A closed form expansion of eq 8 is 

(9 )  

where yi is the ith direction cosine of bond s, 6, is the  Kro- 
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Figure 1. The tetrahedral [IO,] ion. 

necker delta, 6 ,  = 1 if i = j ,  = 0 otherwise. The  direction 
cosines of eq 9 are the structurally sensitive part of the bond 
additivity model. 

Hydrated sodium periodate crystallizes in space group 
R3-C34 with one formula unit per rhombohedral ceIl.l4 The 
nonlinear coefficients (assuming Kleinman symmetry) are 
given by the array13 

d12 0 0 dl, dl6 
d22 0 d 2 4  0 (10) 
d32 d33 0 0 0 

where -dIl = dI2  = 2d26, -d22 = d 2 ,  = 2d16 and d3, = d32 = 
d24 = d15. There are four independent nonlinear coefficients 
here. Using eq 9 these are found to be given by the relations 

where (1, in, n) are the direction cosines of the individual bonds 
with respect to the x, y ,  and z axes, respectively. Since 
nonlinear polarizability is correlated to linear polarizability 
and since the linear polarizability is primarily due to the iodine 
in this system, we can restrict the summation in eq 11-14 to 
the 1-0 bonds. I t  is the sensitivity of these four equations to 
the iodine-oxygen coordination which can be exploited to 
determine whether the iodine is tetrahedrally coordinated as 
originally assumed14 (prior to the present work, the structure 
had not been determined) or octahedrally coordinated as 
asserted by Poulet and M a t h e i ~ . ~  

Assume first that the iodine atom is tetrahedrally coordi- 
nated. In this case, one 1-0 bond must lie on the crystal- 
lographic i axisI4 as depicted in Figure 1. Then the bond 
additivity relations 11-14 are readily evaluated in terms of 
the principal 0-1-0 angle 8, or since we expect this angle to 
be near 109.5' (the tetrahedral angle) it is convenient to 
evaluate these relations as functions of 68 = 0 - 109.5'. The 
details of this are given in the Appendix. One point to notice 
here is that for 68 = 0, that is an undistorted tetrahedron, the 
nonlinear coefficients d33, d22,  and d31 are  in the ratios of 
2:1,41:-1, respectively. This relation is independent of any 
assumption of particular bond polarizabilities. 

In  order to compare this model with experiment. we need 
to know the 1-0 bond polarizabilities. For this, we assume 

A 

- - l O X d 3 6  ( K D P )  

-6 -- 

- I O  -*I 
Figure 2. Calculated nonlinear coefficients for tetrahedral coordination 
in Na(I04).3H20 as a function of the trigonal distortion 68. 
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Figure 3. The octahedrally coordinated [IO,(OH),]*- ion. 

that ,  in the I(+5) compounds, the oxygens have already 
polarized the iodine valence electrons to very near their 
saturation point so that changing to a formal charge of +7 
should not drastically alter the 1-0 bond hyperpolarizability. 
Hence, we assume 1-0 polarizabilities12 of p33 = 34.5 X 
10-28m3d36(KDP) and p31 = 9.65 X 10-28m3d36(KDP). (This 
assumption will be seen to be justified by the subsequent close 
agreement between the calculated and the experimentally 
measured nonlinear coefficients.) The coefficients calculated 
from eq 11-14 and the above bond polarizabilities are shown 
for the tetrahedral model in Figure 2. 

If we assume, on the other hand, that  the iodine is octa- 
hedrally coordinated, then we consider the system shown in 
Figure 3. W e  expect that O1 and d 2  are near 54.74 and 
125.26', respectively, Le., 614 - 5'. Hence it is convenient 
to solve eq 11-14 in terms of a 1  = 0, - 54.74' and 6 2  = O 2  - 
125.26O. One particular feature of this solution is that the 
ratios of the nonlinear coefficients are strictly fixed by the 
ratios of the bond polarizabilities and are  independent of 6 ,  
and The  details of this a re  also given in the Appendix. 

Again assuming 1-0 polarizabilities as in the tetrahedral 
model we find solutions to 11-14 shown graphically in Figure 
4 as a function of the "average" distortion given by 68 = (6, 
+ 6,)/2. Comparison of Figure 2 with Figure 4 indicates that 
measurement of the nonlinear coefficients of this material 
ought to immediately reveal which is the correct iodine co- 
ordination. This is even more apparent from Figures 5 and 
6 which show the ratios of the nonlinear coefficients calculated 
from the two models. 

One experimental difficulty. however, must be dealt with. 
The coordinate systems used to solve eq 11-14 were chosen 
for convenience so as to have one of the 1-0 bonds in the (y, 
z )  plane. 
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Figure 4. Calculated nonlinear coefficients for octahedral coordination 
as a function of the average trigonal distortion angle 66’. 
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Figure 5. The calculated ratio d31/d33 compared for the tetrahedral 
and octahedral models. 

22 _. 

Figure 6. The calculated ratio d22/d33 compared for the tetrahedral 
and octahedral models. 

Since we do  not know the  relation of this “molecular” 
coordinate system (mol) to the crystallographic coordinate 
system or the laboratory coordinate system (lab) we must 
reevaluate eq 11 and 12 in the laboratory system. Assuming 
that this system is related to the “molecular” system by a 
rotation of C$ (about the  3 axis) it is readily shown that 

dll( lab) = dz2(mol) sin (3G) (1 5 )  

and 
dz2(lab) = dz2(mol) cos (3$) 

Hence it is the quantity 

{dl12(lab) + dz22(lab))”2 = dzz(mol) (17) 

- 
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Figure 7. Schematic of the experimental apparatus 

which is to be compared with the curves of Figures 2 and 4. 

Experimental Section 
Two ~ - 2 . 5 ~  wedges of the crystal were prepared, one with face 

normal to the 2 axis and the other with its face normal to the 9 axis. 
A general requirement for sample preparation is that the surfaces 
be flat to within a small fraction of the smallest coherence length to 
be measured and smooth enough to allow reasonable beam trans- 
mission. The first wedge allowed measurement of coefficients d2*, 
d32 (=&), and d33 while the second allowed measurement of dl l ,  djI, 
and dJ3.  To measure a nonlinear coefficient, the wedge was placed 
in one branch of the dual beam optical system of Figure 7. The second 
harmonic light from the crystal and the reference crystal (phase 
matched LiI03) were detected by photomultipliers and twin boxcar 
integrators, and the ratio of the outputs was recorded as the wedge 
was translated across the beam. The resulting set of maxima and 
minima are a measure of the nonlinear coefficient and coherence length 
I,,, the latter being related to the translation distance At between 
maxima (or minima) and the wedge angle 8 by 

IZc I = ‘/2 At tan 0 (18) 

Relative nonlinear coefficients were then found from the peak second 
harmonic intensities by the equationI5 

where nA(w) is the index of refraction of crystal A at frequency w. 
The sign of coefficient d,, was determined by interference methods16 
to be the same as d3).  In order to determine the magnitude of the 
nonlinear coefficients, the second harmonic intensities were compared 
(via eq 19) to the second harmonic from a quartz wedge standard. 
The experimental results are given in Table I where we have used 
d l l ( a - S i 0 2 )  = 0.8&(KDP).l7 The uncertainties were determined 
from the signal to noise ratio of the experiments. 

The indices of refraction to be used in eq 19 were estimated by 
measuring the visible birefringence with a Zeiss polarizing microscope 
and Ehringhaus compensator which yielded ne - no = 0.036 (no = n, 
= ny; ne = nz). The mean index ( n )  = 1/3(ne + 2n0) was estimated 
via the DaleGladstone formula’* to be 1.652. Combining these results 
gives ne(0.53 p )  N 1.676 and no (0.53 p) E 1.640. These indices 
were then combined with the measured coherence lengths lg3 and Ijl 
to give indices of refraction at 1.064 p via 

These indices were ne( 1.06 p )  = 1.644 and no( 1.06 p) = 1.6 14. These 
indices were then used to calculate the reflection corrections of eq 
19 and to calculate the unobserved coherence lengths ll, and 1?* given 
in Table 1. The upper limits for dll  and d22 were then obtained by 
assuming that the corresponding second harmonic intensities Ill and 
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Table I. Nonlinear Coefficients, djj,' and Coherence Lengths, 
l i j ,  for NaH,O[IO,(OH),] 

1 1 1  10.2 p b  d ,  L <o. 1 
4.2  10.2 p b  dzz <o. 1 
1 3 3  8.1 8 p  d33 4.5 
1 3 1  4.3 op d3, 1.4 

a djj in units of d3,(KDP) i30% ( d 3 3 / d 3 1  accurate to 10%). 
Calculated from indices of refraction. 

122 were less than or equal to the noise measured under the appropriate 
experimental conditions. 
Conclusions 

Examination of the nonlinear coefficients of Table I shows 
two particularly significant points: first, d33 +3d3,, second, 
dz2 (and dl l )  are very small (Le., 50.02d33). By comparison 
with the predictions of Figures 2, 4, 5, and 6, it is apparent 
that the iodine must be octahedrally rather than tetrahedrally 
coordinated. Furthermore, from the magnitudes of these 
coefficients, we see from Figure 4 that this does not require 
a large distortion of the octahedron, Le., 68 E 2'. I t  is also 
interesting to note the internal consistency of the octahedral 
model and the experimental results. Specifically, in the model 
assumed we do not actually know the bond polarizabilities P33 
and p3, .  Nonetheless, in this model, solving eq 12 through 14 
gives us dZ2 as a function of d33 and d31. 

This expression is 

The  experimental observation that d22 N 0 then implies that 
d33 E 3d31 which agrees (within experimental uncertainty) 
with the observed ratio d33 = 3.3d31. Upon completion of this 
work, the crystal structure determination was undertaken by 
Bernstein, Abraham, and Lissalde. Their results confirm the 
octahedral coordination in this system." 

In summary, we have demonstrated that nonlinear optics 
or, in particular, second harmonic generation can be used as 
a simple, definitive tool for structural chemistry. Specifically, 
we have shown here that SHG can be used to determine 
coordination polyhedra. Additionally, when used in con- 
junction with conventional techniques, such as X-ray dif- 
fraction, to study the details of solid-state phase transitions 
the tool (SHG) may be particularly useful since once the 
structure is known at  a particular temperature, changes with 
temperature can be more readily monitored optically than with 
X-rays; hence one can study rotations and deformations of 
coordination polyhedra in crystal phase transitions. Fur- 
thermore, since the bond polarizability does in fact depend only 
on the valence or bonding electrons which are in asymmetric 
environments, a better understanding of bond polarizability 
will afford deeper insights into the nature of bonding forces 
themselves. The  possibilities in transition element materials 
are as yet largely unexplored. However, as long as the material 
is reasonably transmitting (Le., crystal thinner than the ab- 
sorption length) for the fundamental and the second harmonic, 
it is hoped that SHG might be a useful tool here as well. 
Appendix 

The starting point for evaluating eq 11-14 in the text is the 
set of bond direction cosines. For the tetrahedron of Figure 
1, the complete set is the set of vectors (0,  0, l ) ,  (0, mo, no), 
[(3/4)'I2mO, -1/2mo, no], and [-(3/4)'12mo, -1/2mo, no] where 
the latter two vectors are obtained by 120' rotations of the 
second vector around the i axis. I t  then follows that 

cI" = 21 = E m  = 0 

It follows immediately that dl, (via eq 11) is identically zero. 
N-ext we recognize that 

(AI)  

E m 3  = 314m03 

2n3 =3n: + 1 

Z n  = 3no + 1 
Zn12 = 3/2nomo2 

In fact, eq A2-A5 contain only one independent variable, 
namely, no, since mo2 = 1 - no2. 

We  proceed further by setting no = cos 8 and expanding 
around 0 = 109.5'. Then 

no = C O S  (109.5' + se) = C O S  (109.5') COS 68 - 
sin (109.5') sin 6 8  (A61 

and for 8 very small 

no =- I13  + 6n 

where 

6n  - 68 sin (109.5') (A71 

n03 = -  (1 /3)3 t 3( 1 /3)' 6n (A81 

Then to first order 

It  then follows that explicit solutions to eq 12-14 are  re- 
spectively , 

For the octahedral case, we consider the bonds with direction 
cosines of (0, ml ,  n l )  and (0, m2, n2) where mi,  m2 and nl ,  n2 
a re  of opposite sign and nearly equal magnitudes. The re- 
maining two pairs of bond vectors are found again by 120° 
rotations about the d axis. I t  is obvious that (Al )  still holds 
and that consequently dll is still zero. Equations A2-A5 are 
then modified to 

As in the tetrahedral case, we let n l  = cos 8 ,  and n2 = cos O 2  
and expand around O 1  = 54.7' and O 2  = 125.3' and make use 
of relations analogous to eq A7, namely, 

1 
n1 =p + 6n1 

1 
n 2  =-p + Fn, 
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where 6n1,2 = (sin 54.7O) 681,2 and using the first-order ex- 
pansion analogous to AS we “solve” eq 12-14 as 
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3(2l”) 

4 
d,, =-(sin 54.7°)V1@33 - 3p31)(681 + 66,) (A18) 

d33 = -3(sin 5 4 . 7 O ) ~ ~ p ~ ~ ( 6 8 ,  + 68,) 
d31 = -3(sin 5 4 . 7 O ) ~ l p ~ ~ ( 6 6 ~  + 6BZ) 

(A1 9 )  

(A20) 
Registry No. NaI04.3H20, 13872-31-6; NaH30[103(0H)3], 

34410-79-2. 
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Low-temperature absorption and luminescence spectra are reported for the 4A2s - 4T2g transition of CrC163- doped into 
the elpasolite salt CszNaInC16. Four magnetic dipole origins are assigned at 11 882, 11 890, 11 904, 11 91 6 cm-l, and the 
vibronic sidebands of the luminescence spectra are assigned to progressions in alg and eB modes on t,, and t2” false origins 
with frequencies 297, 240, 187, and 120 cm-I. The splitting 6f the 4T2g state is smaller than expected from calculations 
using the full d3 matrix. Using the effective Hamiltonian formalism, we>how that the splittings may be reproduced by 
introducing a Ham reduction factor for off-diagonal matrix elements of Herr The Jahn-Teller interaction is compatible, 
with the presence in the luminescence of a progression in the eg (Jahn-Teller active) mode. The Jahn-Teller energy calculated 
from the observed splittings is 310 cm-I and that from intensity ratios in the eB progression 264 cm-’, justifying the treatment 
of the spin-orbit interaction as small compared with EJT. 

Introduction 
The  elpasolite salts Cs2NaMC16, containing octahedral 

MC163- complexes, are useful high-symmetry host lattices for 
the study of trivalent transition-metal ions. The  visible and 
M C D  spectra of Cr3+ doped into Cs2NaYC16 and Cs2NaInC16 
have been extensively studied.’,2 In CrC163- the value of Dq 
is low and the 4T2, state is found to be the first excited state, 
12 000 cm-’ above the 4A2, ground state. W e  have obtained 
the luminescence spectrum of this transition and the absorption 
spectrum of a thick crystal in the same region. The 4T2, state 
splits into E’, U’(5/2), U’(3/2), and E” states under the in- 
fluence of spin-orbit coupling. The  M C D  and absorption 
spectra a re  thus complicated superpositions of the vibronic 
intensity from all four transitions whereas the luminescence 
spectrum at  low temperature contains only vibronic structure 
from the lowest energy electronic transition. The  sensitivity 
of the luminescence experiment is such that we can measure 
the vibronic spectrum due to lattice modes in the crystal. 

In spite of the observation of progressions in the eg mode 
as  well as the a l g  mode of CrC163- in the M C D  spectra, 
previous work has neglected the Jahn-Teller interaction in the 
interpretation of this transition. W e  find our results can only 
be explained by considerable quenching of the spin-orbit 
interaction due to the H a m  effect, as  observed in other TZg 
and T1, states of octahedral 3d  ion^.^^^ 
Experimental Section 

Cs2NaInC16:Cr was kindly prepared by Wo~dwark .~  The crystal 
was grown by the Bridgeman technique. Analysis for chromium using 
atomic absorption spectroscopy showed a concentration around 5 atom 

%. The boule contains a considerable percentage of Cr2t,6 which we 
observe as a strong broad band in the near-IR absorption spectrum. 
The Cr3+ concentration may well be less than 5%. Absorption spectra 
were measured on 2 and 5 mm thick crystals with a Cary 17 
spectrophotometer, equipped with a red-sensitive photomultiplier tube 
(RCA C31025C). Luminescence spectra were excited with a 150-W 
sealed-beam Xe arc (Varian) filtered with a Spex Minimate. The 
luminescence was dispersed with a 3/4-m single Spex monochromator, 
with a grating blazed at 750 nm. An EM1 9684B photomultiplier 
(S1 response) cooled to -70 OC was used to detect the luminescence. 
High-resolution spectra were recorded between 830 and 880 nm using 
a RCA C31034 photomultiplier cooled to -30 “C. The crystals were 
cooled using a helium gas flow technique. 
Results 

Figure 1 shows the broad-band luminescence spectrum. W e  
assign this in terms of the weak pure electronic transitions, 
two strong vibronic false origins, and progressians in a l g  and 
eg modes. Figures 2 and 3 show the detailed absorption and 
luminescence spectra in the region where these overlap. The  
four bands at  11 882, 1 1 890,11904, and 11 916 cm-I are found 
in absorption and luminescence spectra. The  oscillator 
strengths in absorption a re  1.6, 1.6, 0.9, and 0.9 X for 
the four origins. In the luminescence spectrum the intensities 
vary with temperature according to a Boltzmann distribution 
among levels a t  0, 8, 21, and 34 cm-’. The vibronic sideband 
a t  the right of Figure 3 shows a similar temperature de- 
pendence, hot bands appearing at  the high-energy side of the 
band with equal spacing and similar relative intensity as the  
origins. The  second intense false origin a t  187 cm-’ gives a 
similar pattern. W e  cannot assign the hot bands in the lu- 
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