remaining volatile components were distilled through a U-trap at -45 ^oC. The contents of the trap were then fractionally distilled to afford **1b** as a colorless liquid (13.17 g, 55% yield, bp $29-30$ °C (7 Torr)). The ¹H NMR (δ 0.12, singlet; δ 0.38, doublet, $J_{\text{PH}} = 0.8 \text{ Hz}$), ¹⁹F NMR (+71.7 ppm, doublet, J_{PF} = 965 Hz), and infrared spectral data are in excellent agreement with results reported⁴ previously for **(bis(trimethylsily1)amino)difluorophosphine** oxide **(la).** Anal. Calcd for $C_6H_{18}F_2NOPSi_2$: C, 29.37; H, 7.39. Found: C, 29.55; H, 7.69.

P,P-Dichloro-P-trimethylsiloxy-N-trimethylsilylphosphinmine (2). Using the procedure described by Glemser,⁴ the reaction of $P(O)Cl_3$ with LiN(SiMe₃)₂ afforded compound 2 as a colorless liquid (50%) yield, bp $28-29$ °C (0.1 Torr)) identified by its ¹H NMR and infrared spectra.⁴

P,P-Diphenyl+ trimethylsiloxy-N-trimetkylsilylphosphinimine (3). Diphenylphosphoryl chloride (18.5 mL, 100 mmol) was added slowly to a stirred solution of LiN(SiMe₃)₂ (100 mmol) in ether (125 mL) at 0° C. The mixture was allowed to warm to room temperature and was stirred for ca. 20 min. After filtration and solvent removal, distillation afforded 3 as a low-melting white solid (18.8 g, 52% yield, bp 103-104 °C (0.01 Torr), mp 37-39 °C). Infrared spectrum (KBr disk): 3100 (s), 2950 (m), 2900 (w), 1430 (m), 1290 (s), 1240 **(s),** 1180 **(s),** 1120 (m), 1100 (m), 950 **(s),** 850 (vs), 740 (m), 720 (m), 690 (s) cm⁻¹. The ¹H NMR spectrum (20% CH₂Cl₂ solution) consisted of two Me₃Si singlets $(\delta -0.02$ and 0.21) and a phenyl multiplet centered at δ 7.5. Anal. Calcd for $C_{18}H_{28}NOPSi_2$: *c*, 59.79; H, 7.81. Found: C, 60.03; H, 7.53.

Attempted Preparation of P,P-Dimethyl-P-trimethylsiloxy-N-trimethylsilylphosphinimine (4). A solution of Me₂P(O)Cl (13.9 g, 124 mmol) in benzene (60 mL) was added to a stirred solution of LiN(SiMe₃)₂ (124 mmol) in ether (200 mL) at 0 °C. The mixture was allowed to warm to room temperature and was stirred for ca. 30 min. Solid products (slightly yellow) were removed by filtration and washed with hexane. Distillation of the filtrate gave only solvents and $(Me₃Si)₂NH$ (15 g, 75% yield) which was identified by comparison of its IR and 'H NMR spectra to those of an authentic sample. Elemental analysis (C, 21.87; H, 5.74; P, 19.08) of the solid indicates that it contains phosphorus product(s), the nature of which is still under investigation.

Acknowledgment. The authors thank the United States Army Research Office, the Duke University Research Office, and the donors of the Petroleum Research Fund, administered by the American Chemical Society, for generous financial support.

lb, 66416-57-7; **2,** 41309-94-8; 3, 66416-58-8; **Registry No.** $Me₃SiNPF₂Ph, 61701-83-5; $Lin(SiMe₃)₂$, 4039-32-1; $CIP(O)F₂$,$ 13769-75-0; ClP(O)Ph₂, 1499-21-4; ¹³C, 14762-74-4.

References and Notes

- R. H. Neilson, R. C.-Y. Lee, and A. H. Cowley, *Inorg. Chem.,* **16,** 1455 (1977).
- L. Kling, C. B. Colburn, and W. E. Hill, *J. Inorg. Nucl. Chem. Suppl.,* (2) **⁵**(1976). **P.** Wisian-Neilson, R. H. Neilson, and A. H. Cowley, *Inorg. Chem.,* **16,**
- 1460 (1977).
- (4) G. Czieslik, G. Flaskerud, R. Hofer, and 0. Glemser, *Chem. Ber.,* **106,** 399 (1973).
-
- E. Fluck and E. Beuerle, *Z. Anorg. Allg. Chem.*, **412**, 65 (1975).
J. C. Wilburn and R. H. Neilson, *Inorg. Chem.*, **16**, 2519 (1977).
G. H. Sprenger and J. M. Shreeve, *J. Fluorine Chem.*, **4**, 201 (1974).
- J. Burdon, J. C. Hotchkiss, and W. B. Jennings, *J. Chem. Soc., Perkin Trans. 2, 1052 (1976).* (8)
- (9) C. H. Ycder, W. C. Copenhafer, and B. DuBeshter, *J. Am. Chem. Soc.,* **96,** 4283 (1974).
- C. H. Yoder and A. D. Belber, *J. Organomet. Chem.*, **114**, 251 (1976).
A. Blaschette, D. Rinne, and H. C. Marsmann, *Z. Anorg. Allg. Chem.*,
- **420, 55** (1976). (12) P. K. G. Hodgson, R. Katz, and G. Zon, *J. Organomet. Chem.*, 117,
- C63 (1976). (a) W. Buchner and W. Wolfsberger, *Z. Naturforsch. E,* **29,** 328 (1974);
- (b) R. H. Neilson, unpublished results
- R. Appel and J. Halstenberg, *Chem. Eer.,* **110,** 2374 (1977).
- See for example (a) R. Keat, *J. Chem. Soc. A*, 1795 (1970); (b) H.
W. Roesky and H. H. Glere, *Z. Naturforsch., B*, **25**, 773 (1970); (c) C. Glidewell, *J. Organomet. Chem.,* **108,** 335 (1976).
- E. H. Amonoo-Neizer, R. A. Shaw, D. *0.* Skovlin, and B. C. Smith, *Inorg. Synth.,* **8,** 19 (1966).
- E. H. Amonoo-Neizer, S. K. Ray, R. **A.** Shaw, and B. C. Smith, *J. Chem. Soc.,* 4296 (1965).
- K. A. Pollart and H. J. Harwood, *J. Org. Chem.,* **27,** 4444 (1962).
- H. Roesky, *Inorg. Synth.,* **15,** 194 (1974).

Contribution from the Paul M. Gross Chemical Laboratory, Duke University, Durham, North Carolina 27706

Preparation and Thermal Decomposition Reactions of Some tert-Butyldimethylsilyl-Substituted Aminoboranes'

JAMES R. BOWSER, ROBERT H. NEILSON, and RICHARD L. WELLS*

Received January 20, 1978

A number of (si1ylamino)boranes containing the bulky tert-butyldimethylsilyl group have been prepared by the reaction of the lithiated silylamines t -BuMe₂SiN(R)Li (R = H, Me, SiMe₃) with various chloroboranes. The products are colorless liquids which in many cases decompose at or above room temperature to form borazines. The thermal stabilities of those compounds where $R = Me₃Si$ is high presumably because of the steric "protection" afforded the boron atom toward nucleophilic attack.

Introduction

Although a large number of acyclic (sily1amino)boranes have been synthesized since the initial report by Burg and Kulijian in 1950 ,² the vast majority have contained only methyl groups bonded to silicon. Thus, aside from a few compounds containing silyl,^{2,3} triethylsilyl,^{4,5} triphenylsilyl,⁴ and various halogenated silyl groups,^{$6,7$} relatively little is known about compounds containing the linkage $R_1(R_2)(R_3)$ Si-N-B (R₁, R_2 , or $R_3 \neq Me$).

Since a report by Corey⁸ the tert-butyldimethylsilyl moiety has come into common use in organic synthesis as a "blocking group" for many alcohols and amines for which the trimethylsilyl group does not provide sufficient protection. The ability of this substituent to lower chemical reactivity is evidenced by the fact that the primary aminosilane *t-* $BuMe₂SiNH₂ can be isolated at room temperature. This is$ in contrast to several less hindered primary and secondary aminosilanes (eq 1).⁹ 2R₃SiN(H)R' $\frac{-NH_2R'}{2B_S}$ - H) $\frac{1}{2}$ can be isolated a

2R₃SiN(H)R' $\frac{-NH_2R'}{2B_S}$ (R₃Si)₄NR' $\frac{1}{2}$

2R₃SiN(H)R' $\frac{-NH_2R'}{2B_S}$ (R₃Si)₄NR' R = H; R' = H, Me

$$
2R_3 \text{SiN(H)}R' \xrightarrow{-NH_2R'} (R_3 \text{Si})_2 \text{NR'}
$$

\n
$$
R = H; R' = H, \text{Me}
$$

\n
$$
R = \text{Me}; R' = H
$$

\n(1)
\n
$$
R = H; R' = H
$$

The presence of large substituents in aminoboranes has occasionally led to the isolation of relatively rare four- $10-14$ and eight-membered¹⁵⁻¹⁷ ring systems instead of the more common borazine structure. For example, the thermal decomposition of [**tert-butyl(trimethylsilyl)amino]dichloroborane** resulted in

0020-1669/78/ 13 17-1 882\$01 *.OO/O 0* 1978 American Chemical Society

 m/e values for molecular ions (except where noted) containing the most abundant isotopes of all atoms. ^a m/e values for molecular ions (except where noted) containing the most abundant isotopes of all atoms. ^o Samples run in 20% (v/v)
solutions of CCl₄; values in ppm relative to Me₄Si 0.00, negative values upfield (see text). ^f Decomposition observed during distillation. $\frac{d}{ }$ None due to Iow thermal stability. ^h For molecular ion minus Me. ⁱ For molec-None observed. ular ion minus H. *j* For molecular ion minus *t*-Bu.

the formation of **B-tetrachloro-N-tetra-tert-butylborazocine** $(eq 2).17$

It is of CCI₄, values in point relative to me₄51 0.00, hegative values

(t). ^T Decomposition observed during distillation. ^a None during

1 minus H. ¹ For molecular ion minus t-Bu.

1.¹⁷

N-B
 $\frac{C1}{120 \text{ °C}}$ $Me_{3}Si$ Cl $150^{\circ}C$ $t - Bu$

As an extension of previous work in these laboratories on the decomposition of (silylamino)boranes^{14,17,18} it was of interest to prepare a series of aminoboranes containing the tert-butyldimethylsilyl group in the hope of gaining information on the effect of sterically hindered groups on the chemical properties of (silylamino) boranes.

Experimental Section

Dichlorodimethylsilane and chlorotrimethylsilane (Peninsular Chemicals, Gainesville, Fla.) were distilled prior to use. Ammonia, methylamine, dimethylamine, and trichloroborane (Matheson Co, East Rutherford, N.J.), n-butyllithium and rert-butyllithium (Alfa **In**organics, Beverly, Mass.), and tetraphenylstannane (Eastman Organic Chemicals, Rochester, N.Y.) were used as received.

Dichloro(pheny1)borane was prepared from trichloroborane and tetraphenylstannane by the method of Jolly;¹⁹ chlorobis(dimethylamino)borane, **dichloro(dimethylamino)borane,** and chloro(dimethy1amino)phenylborane were prepared by redistribution reactions.2o The preparation of tert-butylchlorodimethylsilane was adapted from the procedure described by Corey and Venkateswarlu.8

Solvents were purified by distillation from calcium hydride immediately prior to use.

High-resolution mass spectra were recorded on an MS-902 spectrometer; calculated *m/e* values were obtained from the masses of the most abundant isotopes of the element present. Proton NMR spectra were obtained on a JEOL MH-100 spectrometer. A Perkin-Elmer 137 spectrophotometer was used for IR spectra.

The boiling points, 'H NMR data, and high-resolution mass spectral data obtained for all of the compounds reported here are summarized in Table I.

Amino-terf-butyldimethylsilane (1). A 1 .O-L flask equipped with a -78 °C condenser and magnetic stirrer was thoroughly flushed with N_2 . tert-Butylchlorodimethylsilane (54.2 g, 0.359 mol) in pentane (500 mL) was introduced into the flask and cooled to -78 °C. Excess ammonia (17.9 mL, 0.86 mol) was slowly distilled into the stirred solution. Following completion of addition and warming to room temperature, the product was filtered free of solid, stripped of solvent, and distilled at $75-79$ °C (200 Torr). The colorless distillate (36.9 g, 78%) crystallized to a white solid upon cooling (mp 59-60 $^{\circ}$ C).

tert-Butyldimethyl(methy1amino)silane *(2).* In a similar procedure to that given above tert-butylchlorodimethylsilane (30.6 g, 0.203 mol) was allowed to react with excess methylamine (24 mL, 0.59 mol) in pentane (300 mL) at -78 °C. After stirring for 2 h at room temperature, filtration, solvent removal, and distillation gave *2* (17.7 g, $60%$, bp 87 °C (180 Torr)).

(**fert-Butyldimethylsilyl)(trimethylsilyl)amine (3).** A 1 .O-L flask equipped with a reflux condenser, stirring bar, and rubber septum and containing a solution of **1** (52.4 g, 0.40 mol) in hexane (400 mL) was cooled to $0 °C$. *n*-Butyllithium (167 mL, 0.40 mol) was added via syringe and the resulting mixture was stirred for 30 min. Chlorotrimethyisilane (51 mL, 0.40 mol) was then added to the system. After stirring for 12 h the mixture was filtered, stripped of solvent, and distilled to yield 3 (60.6 g, 74%, bp 43 °C (4.0 Torr)).

Preparation of (Si1ylamino)boranes by Lithiation. A representative procedure used for the synthesis of this type of compound is given here for **tert-butyl(dimethylsilylamino)(dimethylamino)phenylborane** *(5).* **A** 500-mL flask equipped with a reflux condenser, stirring bar, and rubber septum was thoroughly flushed with N_2 . Compound 1 (5.37 g, 0.041 mol) in hexane (170 mL) was poured into the flask followed by addition of *n*-butyllithium (0.041 mol) via syringe. After stirring for 30 min the system was cooled to -78 °C and chloro-**(dimethy1amino)phenylborane** (6.5 mL, 0.041 mol) added via syringe. Upon warming to room temperature and stirring for 4 h the product was filtered free of solid and the solvent was removed under reduced pressure. Vacuum distillation then yielded *5* (8.50 g, 79%, bp 69-71 $^{\circ}$ C (0.01 Torr)).

Aminolysis of (Si1ylamino)chloroboranes. A representative procedure for this type of reaction is given here for amino(tert-butyl-

a No decomposition observed under the conditions stated.

dimethylsilyl(methy1)amino)phenylborane (17). A stirred solution of compound 12 (6.22 g, 0.023 mol) in hexane (150 mL) was allowed to react with excess ammonia (2.0 mL, 0.096 mol) at -78 °C. After warming to room temperature, filtration and solvent removal were performed, followed by distillation to give **117** (2.57 g, 45%, bp 84-85 $^{\circ}$ C (0.01 Torr)).

Thermal Decomposition Experiments. Neat samples (generally 4-8 g) of compounds 4-26 were heated in an inert atmosphere, the temperature being slowly increased until evidence of reaction (evolution of gas or formation of solid material) was observed, Generally no effort was made to force decomposition by heating beyond 200 $\,^{\circ}\text{C}$. The experimental times and temperatures are summarized in Table 11.

Results and Discussion

Synthesis. The reaction of tert-butylchlorodimethylsilane with ammonia and methylamine has been used to prepare the aminosilanes **1** and **2** (eq 3).

$$
t\text{-BuMe}_2\text{SiCl} + 2\text{RNH}_2 \xrightarrow{-\text{RNH}_3\text{Cl}} t\text{-BuMe}_2\text{SiN(H)R}
$$
\n
$$
-78^\circ\text{C}
$$
\n
$$
1, \text{R} = \text{H}
$$
\n
$$
2, \text{R} = \text{Me}
$$
\n
$$
(3)
$$

Compound **1,** like its chlorosilane precursor, is a crystalline solid while **2** is colorless liquid at room temperature. Neither aminosilane exhibits any tendency to undergo condensation below $100 °C$. 1, R = H

2, R = Me

2, R = Me

Compound 1, like its chlorosilane precursor, is a crystalline

solid while 2 is colorless liquid at room temperature. Neither

animosilane exhibits any tendency to undergo condensation

bel

The treatment of **1** with n-butyllithium followed by reaction with chlorotrimethylsilane results in the formation of the unsymmetrical disilylamine 3 in \sim 75% yield (eq 4).

$$
t\text{-BuMe}_2\text{SiNH}_2 \xrightarrow{\text{1. } n\text{-BuLi}} t\text{-BuMe}_2\text{SiN(H)SiMe}_3 \tag{4}
$$

In a similar procedure the lithiated derivatives of **1** and **2** have been treated with a series of chloroboranes to prepare the new compounds **4-13** (eq *5)* in good yields (typically *>60%).*

In contrast to certain similar compounds containing the trimethylsilyl group,^{18,21} 4-13 are stable to distillation at moderate temperatures under reduced pressure (Table I).

The treatment of **6, 7, 11,** and **12** with excess ammonia resulted in the formation of the primary aminoboranes **14-17** (eq *6).*

Although it was possible to prepare the lithium salt of **3,** this intermediate was considerably less reactive than its $R =$ H and $R = Me$ analogues. Thus the two (disilylamino)boranes **18** and **19** could not be prepared according to eq 7 and al-

though compounds **20-22** were formed, the reactions proceeded to completion only after stirring for relatively long periods (5-15 h) at room temperature.

Even after refluxing hexane solutions overnight in attempts to prepare **18** and **19,** only a small quantity of lithium chloride was precipitated. Moreover, distillation of the product mixture gave, surprisingly, the unreacted lithium salt, which crystallized to a moisture-sensitive white solid. 'The observed boiling point $(110 \, \text{°C} (0.01 \, \text{Tor})$ of this silylamide is somewhat higher than the literature value for the structurally similar lithium bis(trimethylsilyl)amide (80–84 °C (0.01 Torr)).²²

'The relatively low reactivity of this intermediate can be attributed to a combination of steric and electronic factors. The presence of two large substituents would be expected to reduce the likelihood of electrophilic attack at the central nitrogen on steric grounds. In addition, Sujishi and Witz^{3,23} have demonstrated that the basicity of amines decreases upon successive addition of silicon-containing groups, presumably because of an electron-withdrawing effect.

Nevertheless the synthesis of compounds **18** and **19** was accomplished by aminolysis reactions similar to those used to prepare the primary aminoboranes **23** and **24** (eq 8).

These reactions, like those described by eq 6, proceeded rapidly at -78 °C to give quantitative amounts of amine hydrochloride and good yields *(66-77%)* of silylaminoboranes, which were isolated by distillation as colorless liquids.

It was also of interest to determine whether two or three bulky tert-butyldimethylsilyl groups could be incorporated into **tert-Butyldimethylsilyl-Substituted** Aminoboranes

one molecule by use of the proper mole ratios of reagents. It was found that compounds **25** and **26** could be prepared from lithiation reactions (eq 9 and 10). 23, R = H, X = NMe₂
24, R = H, X = Ph
24, R = Ph
24, R = Ph
25
27-BuMe₂SiN(H)Li + Cl₂BPh $\frac{-2 \text{LiCl}}{25}$
25 one molecule by use of the proper mole ratios of reagents. It
was found that compounds **25** and **26** could be prepared from
lithiation reactions (eq 9 and 10).
2t-BuMe₂SiN(H)Li + Cl₂BPh $\frac{-2 \text{LiCl}}{25}$
[t-BuMe₂SiN(

$$
2t \text{-BuMe}_2 \text{SiN(H)} \text{Li} + \text{Cl}_2 \text{BPh} \xrightarrow{-2 \text{LiCl}} [t \text{-BuMe}_2 \text{SiN(H)}]_2 \text{BPh} \tag{9}
$$

$$
3t \cdot \text{BuMe}_2 \text{SiN(H)} \text{Li} + \text{Cl}_3 \text{B} \xrightarrow{\text{-3LiCl}} [t \cdot \text{BuMe}_2 \text{SiN(H)}]_3 \text{B} \tag{10}
$$

Boiling points and mass spectral and 'H NMR data for these and the other previously unreported compounds are compiled in Table I.

Thermal Decomposition Reactions. It was found that those (sily1amino)boranes which underwent thermal degradation below 200 °C gave borazines as decomposition products. Several chlorine-containing compounds eliminated tert-butylchlorodimethylsilane as shown in eq 11.

$$
t\text{-BuMe}_2\text{Si} \times \text{NBS} \rightarrow t\text{-BuMe}_2\text{SiCl} + \frac{1}{3}(\text{RNBX})_3 \tag{11}
$$
\n
$$
\begin{array}{c}\n\text{NBS} \\
\text{R} \\
\text{
$$

This result parallels observations that have been made on analogous systems containing the trimethylsilyl
group, 13,18,21,24-28

A somewhat similar reaction was observed upon heating compounds **15** and **17** (eq 12), with the elimination products now being the silylamines **1** and **2.**

$$
t-BuMe2Si
$$
 Ph
\nNB
\n
$$
t+BuMe2SiN(H)R + 1/s(NHBPh)3
$$
 (12)
\nR
\n1, R = H
\n15, R = H
\n17, R = Me

This decomposition can only occur through the cleavage of a boron-nitrogen bond. Interestingly, the isolation of **2** and B-triphenylborazine from the degradation of **17** indicates that the central B-N bond is ruptured in preference to the terminal $B-NH₂$ moiety. Relief of steric strain can be suggested as a possible explanation for this observation.

Upon standing under **N2** at 25 "C, compounds **14** and **16** slowly eliminated dimethylamine and crystallized to the novel borazines **27** and **28** (eq 13).

This condensation is analogous to that reported for amino(dimethylamino)phenylborane²⁹ as well as to those recently observed for certain primary amino-substituted diborylamines.30

The thermal decompositions of compounds **6** and **11** resulted in the isolation of redistribution products as well as borazines and **tert-butylchlorodimethylsilane** (eq 14).

$$
t \cdot \text{BulMe}_2 \text{Si} \xrightarrow{\text{NMe}_2} t \cdot \text{BulMe}_2 \text{Si} \xrightarrow{\text{NMe}_2} t \cdot \text{BulMe}_2 \text{Si} \xrightarrow{\text{NMe}_2} + \text{NBr} + \text{NBr
$$

This result can be rationalized if one assumes that the initial step of the reaction involves an exchange of substituents between two molecules (eq **15),** followed by the decomposition of **8** or **13** as in eq 11.

High-resolution mass spectral data obtained for **6** and **11** offered supporting evidence for this decomposition pathway. Neither gave the predicted molecular ion peaks; rather, the parent ion clusters were centered at m/e 229 and 243, respectively, which correspond to the more stable rearrangement products **4** and **9.**

Similar redistribution reactions involving the exchange of chloro and dimethylamino substituents at boron are well documented and are often synthetically useful.20 In this specific instance the reaction may be driven toward the formation of the dichloroborane since its subsequent decomposition effectively removes that species from the system.

It was found that a number of (sily1amino)boranes did not undergo decomposition when heated to \sim 200 °C for prolonged periods and thus for purposes of this study are considered to be "stable". These included compounds **4,5,** 9, **10,** and **18-26.** It is worth noting that all of the compounds studied for which $R =$ SiMe₃ were unaffected by heating. Electron diffraction³¹ and NMR³² data on similar compounds have supported the suggestion that such bulky silyl groups can cause nonplanarity in aminoboranes. Molecular models of compounds **18-24** indicate that the least hindered configuration available to these systems is that in which the Si₂N moiety is rotated \sim 90° from the plane defined by the three bonds to boron.

In this geometry the boron atom is protected from nucleophilic attack in, above, and below the molecular plane. Thus steric "protection" afforded by such a configuration can be advanced as a reasonable explanation for the high thermal stabilities observed for **18-24** relative to other (sily1amino) boranes.

Acknowledgment. The mass spectral data were obtained at the RTI Center for Mass Spectrometry, partially supported by the National Institutes of Health. Financial assistance from the Duke University Research Council is gratefully acknowledged.

Registry No. 1, 41879-37-2; **2,** 61012-64-4; **3,** 66417-55-8; **4,** 66411-56-9; **5,** 66417-57-0; *6,* 66417-58-1; **7,** 66417-59-2; **8,** 66417-60-5; **9,** 66417-61-6; **10,** 66417-62-7; **11,** 66417-63-8; **12,** 66417-64-9; **13,** 66417-65-0; **14,** 66417-66-1; **15,** 66417-67-2; **16,** 66417-68-3; **17,** 66417-69-4; **18,** 66417-70-7; **19,** 66417-71-8; **20,** 66417-12-9; **21,** 66417-32-1; **22,** 66417-33-2; **23,** 66417-34-3; **24,** 66417-35-4; **25,** 66417-36-5; **26,** 66417-37-6; **27,** 66417-38-7; **28,** 66417-39-8.

References and Notes

- (1) Taken in part from the Ph.D. dissertation of J. R. Bowser, Duke University, Durham, N.C., 1976.
(2) A. B. Burg and E. S. Kulijian, J. Am. Chem. Soc., 72, 3103 (1950).
-
-
-
- (2) A. B. Burg and E. S. Kulijian, *J. Am. Chem. Soc.*, **72**, 3103 (1950).
(3) S. Sujishi and S. Witz, *J. Am. Chem. Soc.*, **79**, 2447 (1957).
(4) H. Jenne and K. Niedenzu, *Inorg. Chem.*, 3, 68 (1964).
(5) A. L. Alsobrook (1965).
- (6) U. Wannagat and P. Schmidt, *Inorg. Nucl. Chem. Letr.,* 4,355 (1968).
- (7) K. Barlos and H. Noth, *Chem. Ber.,* **110,** 2790 (1977).
-
- (8) E. J. Corey and A. Venkateswarlu, *J. Am. Chem. Soc.*, 94, 6190 (1972).
(9) C. Eaborn, "Organosilicon Compounds", Academic Press, New York, N.Y., 1960.
- (10) M. F. Lappert and M. K. Majumdar, *Proc. Chem. SOC., London,* 88 (1963).
- (1 1) M. F. Lappert and **M.** K. Majumdar, *Ada Chem. Ser.,* **No. 42** (1964).
- (12) C. **R.** Russ and A. G. MacDiarmid, *Angew. Chem., Int. Ed. Engl.,* **3,** 509 (1964)
- \- , (13) P: Geymayer, E. G. Rochow, and **U.** Wannagat, *Angew Chem., Int. Ed. Engl.,* **3,** 633 (1964).
- (14) R. L. Wells and A. L. Collins, *Inorg. Chem.*, 7, 419 (1968).
(15) H. S. Turner and R. J. Warne, *J. Chem. Soc.*, 6421 (1965).
(16) H. S. Turner and R. J. Warne, *Adv. Chem. Ser.*, **No. 42** (1964).
-
-
- (17) R. H. Neilson and R. L. Wells, *Synrh. Inorg. Mer.-Org. Chem.,* **3,** 283 (1973).
-
- (18) R. H. Neilson and R. L. Wells, *Inorg. Chem.*, **13**, 480 (1974).
(19) W. F. Jolly, "The Synthesis and Characterization of Inorganic
Compounds", Prentice-Hall, Englewood Cliffs, N.J., 1970.
(20) K. Niedenzu and J. W.
- Springer-Verlag, Berlin, 1965.
- (21) H. Noth, *Z. Nuturforsch.* E., **16,** 618 (1961).
- (22) E. H. Amonoo-Neizer, R. A. Shaw, **D.** 0. Skovlin, and B. C. Smith, *Inorg. Synth.,* **8,** 19 (1966).
- (23) S. Sujishi and S. Witz, *J. Am. Chem. SOC.,* **76,** 4631 (1954). (24) H. Noth and W. Storch, *Chem. Ber.,* **107,** 1028 (1974).
-
- (25) E. W. Abel, D. A. Armitage, R. P. Bush, and G. **R.** Wiley, *J. Chem.* Soc., 62 (1965).
- (26) P. Geymayer and E. Rochow, *Monatsh. Chem.,* **97,** 429 (1966).
-
- (27) H. Noth and M. J. Sprague, *J. Orgunomet. Chem.,* 23, 323 (1970). (28) G. Elter, 0. Glemser, and W. Herzog, *Chem. Ber.,* 105, 115 (1972). (29) R. H. Neilson, Ph.D. Dissertation, Duke University, 1973.
-
- (30) R. L. Wells, H. L. Paige, D. M. Graham, and J. R. Bowser, to be submitted for publication.
- (31) A. Robiette, G. Sheldrick, and W. Sheldrick, *J. Mol. Struct.,* 5,423 (1970).
- (32) R. H. Neilson and **R.** L. Wells, *Inorg. Chem.,* **16, 7** (1977).

Contribution from the Department of Chemistry, University of California at San Diego, La Jolla, California 92093

Coordination Isomers of Antibiotic Thiohydroxamate-Metal Complexes. Geometrical Isomers of Tris(N-methylthioformohydroxamato)rhodium(III) and Bis (N-methylthioformohydroxamato) platinum(I1)

JOHN LEONG* and STUART J. BELL

Received January *17,* 1978

The low molecular weight bacterial products **bis(N-methylthioformohydroxamato)copper(II)** (fluopsin C) and tris(N**methylthioformohydroxamato)iron(III)** (fluopsin F) display broad-spectrum antibiotic activity against both gram-positive and -negative bacteria and fungi. The kinetic lability of these complexes precludes the isolation of cis and trans geometrical coordination isomers in each case. Replacement of these metal ions with ions possessing large crystal field stabilization energies induces kinetic inertness and thereby allows the possibility of isomer separation. In the series of octahedral tris(N-methylthioformohydroxamate)-metal ion substituted complexes, $M(th)$, $(M = Fe, Co, Cr, Rh)$, the latter two complexes were sufficiently substitution inert to permit the isolation and characterization of cis and trans geometrical isomers. Geometric isomerism occurs with a half-life of several hours for the chromium(II1) complex and several days for the rhodium(II1) complex. cis-Rh(th)₃ has NMR signals for the coordinated ligand at 3.70 ppm (CH₃N) and 7.17 ppm (HC(S)), whereas trans-Rh(th), has corresponding signals at 3.51, 3.52, and 3.76 and 7.09, 7.46, and 7.53 ppm, respectively. The cis isomer has a visible absorption maximum at 437 nm (ϵ 490), whereas the trans isomer has the same band at 452 nm (ϵ 725). In the series of square-planar $\text{bis}(N\text{-methylthioformohydroxamate)}-\text{metal ion substituted complexes}, M(\text{th})_2$ (M = Cu, Ni, Pd, Pt), cis and trans isomers were isolated and characterized in the last case. The infrared spectra of the two platinum(I1) isomers are virtually superimposable except in the vicinity of 675 and 875 cm⁻¹. In these regions the trans isomer has absorption bands at 686 and 878 cm^{-1} , whereas the cis isomer has absorptions at 649 and 681 cm⁻¹ and 874 and 893 cm⁻¹. The cis isomer has a visible absorption maximum at 429 nm (e 126), whereas the trans isomer has the same absorption at 439 nm *(e* 116). Geometric isomerism occurs with a half-life of several days.

Introduction

Certain low molecular weight bacterial products which contain cupric or ferric ion display broad-spectrum antibiotic activity against both gram-positive and -negative bacteria and fungi.' **Bis(N-methylthioformohydroxamato)copper(II)** (also known as fluopsin C, antibiotic YC 73, or antibiotic B_1) and **tris(N-methylthioformohydroxamato)iron(III)** (fluopsin F) have been isolated from the culture supernatant fluids of *Pseudomonas fluorescens KY* 4032² and MCRL 10107,³ *Pseudomonas reptilivora* N-51968,⁴⁻⁶ and *Streptomyces* ATCC *21715.'* In *P. reptiliuora* N-51968 the production of

the cupric complex is dependent on the amount of cupric ion in the culture medium.6 Unless the ferric to cupric ion ratio is significantly increased in the culture medium of *P. fluorescens* KY 4032, the cupric complex is the dominant product, suggesting that it has the higher formation constant.¹

Ferric complexes of chemically synthesized N-substituted thioformohydroxamic acids, which are analogues of thioformin (N-methylthioformohydroxamic acid), and the native ferric and cupric complexes exhibit comparable antibiotic activity against *Bacillus subtilis* PCI 219, *Staphylococcus aureus* 209P, *Escherichia coli* NIHJ, and *Klebsiella pneumoniae*