The effect of axial ligands on M-M distances has been well documented in connection with $Cr_2(O_2CR)_4$,¹¹ Mo₂(O₂CR)₄,¹⁴ and $Re_2Cl_8^{2-15}$ and naturally requires consideration here. In the $M_2(DMP)_4$ and $M_2(TMP)_4$ molecules the axial positions are rather effectively blocked by the uncoordinated methoxy groups and there is no axial coordination whatever. However, in the present case, no such blocking occurs, and there are Brions along the axial directions, but these Br⁻ ions remain very distant. This could, of course, be due simply to the fact that the anionic $[Cr_2(C_6H_4O)_4]^{\text{+}}$ unit as a whole repels the Br⁻ ions. In other words, the axial positions might be protected electrostatically though not sterically. Thus, we do not yet know what, if any, role axial ligands, or their absence, have to play in these compounds with exceedingly short Cr-Cr bonds.

It is pertinent to note that a "naked" Cr_2 species has been observed in an argon matrix¹⁶ and possibly in the thermal decomposition of $Cr(CO)₆$ ¹⁷ If the species $Cr₂$ has been correctly identified as such under the latter conditions, it can be inferred from its rotational energy levels that the Cr-Cr distance is 1.71 **A.** The bond in this case might, as suggested for Mo_{2} ¹⁸ be of order 6.

Acknowledgment. We thank the Robert **A.** Welch Foundation for support under Grant No. A494.

Registry No. Li₆Cr₂(o -C₆H₄O)₄Br₂-6(C₂H₅)₂O, 66323-53-3; $Cr_2(O_2CCH_3)_4$, 15020-15-2.

Notes

Contribution from the Département de Recherche Fondamentale C.E.A.-C.E.N., Grenoble, 85 X, 38041 Grenoble Cedex, France

Conformation of Triangular Peroxo d⁰ Metalloporphyrins

Y. Ellinger,^{1a,c} J. M. Latour,*^{1b} J. C. Marchon,^{1b,c} and R. Subra^{1a,d}

Receiued August 17, 1977

The detailed nature of the bonding of molecular oxygen to transition-metal complexes has been a subject of increasing interest because it represents a basic step in the function of oxygen carrying and activating metalloproteins in biological systems.² Recently, x-ray structures have been reported for titanium^{3,4} and molybdenum⁵ porphyrin complexes containing dioxygen ligands. It has been found that the $MO₂$ system adopts a triangular edge-on structure, the dioxygen moiety eclipsing two opposite nitrogens of the macrocycle. In the case of the bis(dioxygen)molybdenum complex each N-N diagonal is eclipsed by a dioxygen unit, one above the molecular plane and the other below. Dynamic NMR measurements on the titanium complex⁴ support the view that these features of the solid-state structures are not imposed by crystal packing constraints but rather that they reflect the preferential conformation of the isolated molecules. The aim of this papel is to present a qualitative theoretical model to account for the preferential conformation of these edge-on adducts.

We start with the interaction of a diatomic O_2 with a pyramidal $TiN₄$ fragment. On the basis of the assumptions previously made by Hoffmann, Chen, and Thorn⁶ the orbitals of the metal and of the dioxygen ligand to be taken into account are the four d orbitals of the metal, *z2, xy, xz,* and *yz*, and the $3\sigma_g$, π_u , and π_g levels of the ligand. The ligand contributions and core levels are omitted as well as the high-lying levels σ_u and $x^2 - y^2$.

In the complex, the two conformations E (eclipsed) and S

Supplementary Material Available: **A** listing of structure factor amplitudes (7 pages). Ordering information is given on any current masthead page.

References and Notes

- (1) F. **A.** Cotton, S. Koch, and M. Millar,J. *Am. Chem. SOC.,* 99,7372 (1977).
- **(2)** F. **A.** Cotton and M. Millar, *Inorg. Chim. Acta, 25,* L105 (1977). (3) F. A. Cotton and B. E. Hanson, in preparation.
-
- (4) F. Hein, R. Weiss, B. Heyn, K. H. Barth, and D. Tille, *Monatsber. Dtsch. Akad. Wiss. Berlin,* 1, 541 (1959).
- (5) F. Hein and D. Tille, *Monatsber. Dtsch. Akad. Wiss. Berlin,* 4,414 (1962).
- (6) F. Hein and D. Tille, *2. Anorg. Allg. Chem.,* 329, 72 (1964). (7) R. P. A. Sneeden and H. H. Zeiss, *J. Organomet. Chem.,* 47, 125 (1973).
- (8) H. Gilman and C. E. Arntzen, *J. Am. Chem. SOC.,* 69, 1537 (1947).
- (9) Data reduction, structure solution, and refinement were carried out using the Enraf-Konius structure determination package on a PDP 11/45 computer owned by the Molecular Structure Corporation, College Station, Texas.
- (10) J. J. Daly, F. Sanz, R. P. **A.** Sneeden, and H. H. Zeiss, *Helti. Chim. Acta,* 57, 1863 (1974).
- (11) F. **A.** Cotton, M. W. Extine, and G. W. Rice, *Inorg. Chem.,* 17, 176 (1978).
-
- (12) J. Krausse, G. Marx, and G. Schödl, *J. Organomet. Chem.*, **21**, 159 (1970).
(13) G. Albrecht and D. Stock, Z. Chem., 7, 321 (1967); T. Aoki, A. Furusaki, T. Y. Tomie, K. Ono, and K. Tanaka, *Bull. Chem. Soc. Jpn.*,
-
-
- (15) F. **A.** Cotton and W. T. Hall, *Inorg. Chem.,* 16, 1867 (1977). (16) Yu, M. Efremov, A. N. Samoilova, and L. **V.** Gurvich, *Opt. Spectrosc. (USSR),* 36, 381 (1974).
- (17) E. P. Kundig, M. Moskovits, and G. **A.** Ozin, *Nature (London),* **254,** 503 (1975); W. Klotzbucher and G. A. Ozin, *Inorg. Chem.,* 16,984 (1977).
- (18) J. *G.* Korman, H. G. Kolari, H. B. Gray, and W. C. Trogler, *Inorg. Chem.,* 16, 987 (1977).

(staggered) belong to the C_{2v} point group. The fundamental difference appears in the fact that the plane containing the metal and the O_2 moiety is the yz plane in E whereas it bisects the *xz, yz* dihedron in S. Then, the constitutive orbitals of the fragments are distributed among the different irreducible representations as shown in Table I. Indices \parallel and \perp characterize the π orbitals parallel and perpendicular to the *z* axis, respectively. According to experimental data3,4 the complex is best described by a peroxotitanium(1V) electronic structure. The number *n* of electrons to be placed in the molecular levels of the complex are given for each symmetry besides the corresponding label.

Let us now focus on what is changed in going from one conformation to the other. It appears clearly that for B_1 and $B₂$ representations all interactions are retained along the deformation coordinate since the symmetry-adapted orbitals of the $[TiN_4]_S$ fragment can be deduced from those of $[TiN_4]_E$ by a unitary transformation in the subspace of the degenerate levels of the metal. **As** concerns the **A,** representation, interactions between z^2 and the $3\sigma_g$ and π_u ^{||} orbitals are invariant during the rotation around the *z* axis, the orbitals being themselves symmetric with respect to the rotation axis. The supplementary interaction between *xy* and the $3\sigma_{\rm g}$ and $\pi_{\rm u}^{\rm ll}$ orbitals which appears in S is small as a consequence of the large energy gap between the metal and diatomic levels and the weakness of their mutual overlaps.6 The deciding difference can be found in the A_2 representation. In E, interaction

of *xy* and π_{g}^{\perp} splits the levels into a bonding-antibonding pair, the lower combination $xy + \pi_g^2$ being occupied by two electrons. On the contrary in S, dioxygen π_{β} ^{\perp} finds no metal orbital with which to interact. The resulting loss of binding energy in the staggered conformation compared with the eclipsed one (Figure 1) clearly favors the latter conformation.

For the bis(dioxygen)molybdenum complex the problem is more complicated because the three plausible limiting conformations to be considered belong to different symmetry groups. In the E_xE_y conformation, the upper and lower

oxygen molecules lie in the *yz* and *xz* planes, respectively. In the *SS* conformation the position of the two dioxygen ligands is obtained from the preceding conformation by rotation of $\pi/4$ around the *z* axis. In the E_yE_y conformation both ligands are in the *yz* plane.

Let us consider the interaction of the two diatomics O_2 with a planar $MoN₄$ fragment⁷ in the E_xE_y and SS conformations. The projection of the constitutive orbitals of the interacting fragments in the different irreducible representations of the symmetry groups are shown in Table 11. In order to simplify the problem we assume that interactions between the diatomics can be neglected. This seems reasonable in view of the large distance (3.66 Å) between the two O_2 units. If we adopt as a trial the above restriction, the situation offers no new features beyond those discussed for the titanium complex. The bonding constraints which are imposed by symmetry appear now in the

Figure 1. Simplified interaction diagram and schematic drawing of the occupied levels of A_2 symmetry for the dioxygen complex $[TiN_4O_2]$ in the eclipsed (left) and staggered conformations (right).

 B_1 and B_2 representations, all remaining interactions being unchanged during rotation. Again, one representation, here B1, is determining. In the **SS** conformation *xy* interactions with π_{u} ^{ll} and σ_{g} levels are small for the same reason as in [TiN₄O₂]_S while the π_{g}^{\perp} levels do not interact with the metal in B_1 . By contrast, they are strongly interacting with xy in the E_xE_y conformation in the same way as in $[TiN_4O_2]_E$ leading to a larger stabilization as compared to the **SS** conformation.

In the E_yE_y conformation, the complex belongs to D_{2h} symmetry so that the fragment orbitals are distributed as shown in Table 111.

Comparison of the relative stability of E_xE_y and E_yE_y conformation can now be analyzed as follows. Interactions which combine z^2 and xy with the appropriate symmetry orbitals of the diatomics are unchanged with the assumption of noninteracting ligands. Symmetry orbitals belonging to A_2 and B_2 in E_xE_y and to A_u and B_{1u} in E_yE_y do not interact with the metal. Thus all these orbitals provide no energetic differential between the two conformations. The deciding difference between E_xE_y and E_yE_y comes from the symmetry properties of the four remaining levels of the ligands. In E_xE_y two $(\pi_u^{u\perp}, \pi_g^{u\parallel})$ are symmetric with respect to the *xz* plane, and two $(\pi_u^{\perp} \bar{f}, \pi_g^{\perp})$ are symmetric with respect to the *yz* plane, each level involving only one of the two ligands. These two groups are equivalent and all the interactions of *xz* with one group are equal two by two to the interactions of *yz* with the other group, whereas the cross interactions are all zero. Each of these interactions leads to a bonding-antibonding pair of MO's involving a metal orbital and one of the two diatomics. In E_yE_y the levels of the ligands are distributed quite differently. Two (B_{2g}, B_{3u}) are symmetric with respect to the *xz* plane, two (B_{3g}, B_{2u}) are symmetric with respect to the *yz* plane, each level implying now the two ligands simultaneously. Let us focus on the π_{g} ^{||} levels. One (B_{3g}) combines with *yz* to give bonding and antibonding MO's both involving the metal

 α The superior indices u and 1 refer to the upper and lower O_2 groups, respectively.

Figure 2.

orbital and the two diatomics. The remaining level (B_{2u}) is a typical nonbonding MO (i.e., no interaction with the metal). The resulting system is then formed by three molecular levels. The qualitative energy diagram arising from the combination of the π_{g} ^{\parallel} with their matching symmetry orbitals of the metal in the two conformations is presented in Figure 2.

In the bis(dioxygen) complex, the molybdenum d levels $⁸$ will</sup> lie close to the ligand π_{g} ^{II} orbitals.⁹ Since d orbitals interact equally with the upper and lower molecules, one obtains a characteristic "allylic" type diagram for E_yE_y and two usual "ethylenic" type diagrams for E_xE_y . In both conformations, two of these levels are to be occupied by four electrons. The total energy is well-known'0 in that case to be lower for two ethylenic systems compared to an allylic one so that the E_xE_y conformation will be the favored one.

The preceding arguments similarly apply to the interactions involving the π_{u}^{\perp} levels giving an "allylic" system for E_yE_y vs. two "ethylenic" ones for E_xE_y . Thus the eclipsed conformation found in the dioxygen complexes of titanium and molybdenum porphyrins are well accounted for by simple group-theoretical considerations.

Finally it should also be mentioned that a recent ab initio calculation by Rohmer and Veillard¹¹ found the eclipsed conformation of a dioxygen titanium porphyrin to be more stable than the staggered one. The calculated energy difference is 5 kcal/mol in agreement with the value of 10 kcal/mol evaluated from dynamic NMR measurements.⁴

Acknowledgment. The authors are grateful to M. M. Rohmer and **A.** Veillard for communication of their unpublished results and to U. Mueller-Westerhoff for fruitful discussions.

References and Notes

- (1) (a) Lahoratoire de Chimie Organique Physique E.R.A. No. 20. (b) Laboratoire d'Electrochimie Organique et Analytique E.R.A. No. 675. (c) Member of Centre National de la Recherche Scientifique. (d) Member of Université Scientifique et Médicale de Grenoble.
- **(2)** (a) F. Basolo, B. M. Hoffman, and J. **A.** Ibers, *Acc. Chem. Res.,* **8,** 384 (1975), and references therein; (h) J. H. Fuhrhop, *Angew. Chem., Int. Ed. Engl.,* **15,** 648 (1976), and references therein.
- **(3)** R. Guilard, M. Fontesse, P. Fournari, C. Lecomte, and J. Protas, *J. Chem. Soc., Chem. Commun.,* 161 (1976).
- R. Guilard, J. M. Latour, C. Lecomte, J. C. Marchon, J. Protas, and D. Ripoll, *Inorg. Chem.* **17,** 1228 (1978).
- B. Chevrier, T. Diebold, and **R.** Weiss, *Inorg. Chim. Acta,* **19,** L57 (1976). R. Hoffmann, M. M. L. Chen, and D. L. Thorn, *Inorg. Chem.,* **16,** 503
- (6) (1977).
- (7) In fact the **MoN4** fragment is slightly distorted but this does not modify the development of the symmetry treatment.
- (8) S. Fraga, J. Karwowski, and K. M. S. Saxena, "Handbook of Atomic Data", Elsevier, Amsterdam, 1976.
- (9) R. J. Buenker, S. D. Peyerimhoff, and J. L. Whitten, *J. Chem. Phys.,* **46,** 2029 (1967).
- A. Streitwieser, "Molecular Orbital Theory for Organic Chemists", Wiley, New York, **N.Y.,** 1961, pp 39-40. M. M. Rohmer and **A.** Veillard, private communication.
-

Contribution from the Department of Chemistry, The University, Lancaster, England

Facile Synthesis of the Lower Valent Halides of Gallium, Ga_2X_4 (X = Cl, Br, I) and Ga_4I_6

J. C. Beamish, M. Wilkinson, and I. J. Worrall*

Received March 1, 1977

The lower valent halides of gallium are usually prepared by the reduction of gallium(II1) halides at temperatures in the region of 180 °C for the chloride and bromide and 212 °C for the iodide.^{1,2} The temperatures are often critical since disproportionation reactions easily occur.

Very pure Ga_2Cl_4 and Ga_2Br_4 may be prepared by the rather tedious process of fractionally freezing the compounds at their melting points.¹ This method cannot be used for $Ga₂I₄$ since the following disproportionation reaction occurs at its melting point:² $3\overline{G}a_2\overline{I}_4 \rightarrow \overline{G}a_4\overline{I}_6 + \overline{G}a_2\overline{I}_6$.

We have found that the halides Ga_2X_4 (X = Cl, Br, I) and $Ga₄I₆$ may be easily prepared by reducing the relevant gallium(III) halide with gallium metal at 60 \degree C in benzene solution.

Experimental Section

Preparation of Ga₂I₄. Stoichiometric amounts of gallium(III) iodide $(4.73 \text{ g}, 7.17 \text{ mmol})$ and gallium metal $(0.25 \text{ g}, 3.505 \text{ mmol})$ were shaken with benzene in an evacuated glass vessel at $60 °C$ in an oven. After 1 day all of the metal had been consumed and an insoluble yellow solid of Ga_2I_4 remained. After the mixture was cooled, the benzene was removed by vacuum distillation.

Anal. Calcd for Ga_2I_4 : Ga, 21.5; I, 78.5. Found: Ga, 21.4; I, 78.1.

Raman spectrum: 143 (vs), 214 (w), 235 (w) cm⁻¹.

Preparation of Ga₄I₆. The method was identical with that described for the diiodide except that an excess of gallium metal was added to the gallium(II1) iodide in benzene. For gram quantities of product the reaction was complete in 24 h. A yellow-green solid of Ga_4I_6 was formed.

Anal. Calcd for Ga₄I₆: Ga, 26.8; I, 73.2. Found: Ga, 26.9; I, 72.8.

Raman spectrum: 292 **(s),** 186 (w), 124 (vs), 79 (m) cm-I.

Preparation of Ga₂Cl₄ and Ga₂Br₄. Gallium(III) halide and excess gallium metal were heated with benzene in an evacuated glass vessel at 60 $^{\circ}$ C for 24 h. After this time two liquid layers had formed. These layers are characteristic of the halides which form benzene complexes.⁴ The benzene was removed by vacuum distillation and white crystalline solids remained.

Anal. Calcd for Ga_2Cl_4 : Ga, 49.6; Cl, 50.4. Found: Ga, 49.4; Cl, 50.1. Calcd for Ga₂Br₄: Ga, 30.4; Br, 69.6. Found: Ga, 30.1; Br, 70.1. Melting points: Ga_2Cl_4 , 172 °C; Ga_2Br_4 , 166 °C.

Raman spectra: Ga_2Cl_4 377 (m), 347 (vs), 174 (w), 150 (m), 115 (w); $Ga₂Br₄$ 273 (w), 269 (w), 210 (vs), 109 (m).

Drying of Benzene. Since the halides are very susceptible to moisture, "sodium dried" benzene was refluxed for 12 h with lithium hydride and fractionally distilled. The solvent was then tested by the addition of a small amount of gallium "dihalide". Minute traces of