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and the BH4 group may be described as 11’ (Cotton), 2 (Sloan and Busch), 
or a bidentate ligand designated “tetrahydridoborate-H,H”’ (IUPAC). 
Should one choose to write the grouping 

(8) 

H 
Ru ->B 

H 
it becomes q3 (Cotton), 7’ (Sloan and Busch), or (IUPAC). 

(9) 
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It has been customary to use small Greek letters to denote designators. 
I have used capital omega because it is unlikely to be confusing and the 
available small Greek letters are unsatisfactory. Should a small letter 
be insisted upon, I propose theta (e).  
This does not prevent the informal description of a ligand as Q’, OS, etc., 
as appropriate, however many atoms may compose the ligand part, but 
unless the usage for nomenclature purposes is severely restricted, 
considerable difficulties can arise. 
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The application of Pblya’s counting theorem to determine the number of isomers possible owing to variations in absolute 
configuration of sites of stereoisomerism is presented. The method described, which is applicable even when different types 
of stereoisomerism are present, partitions the isomers into classes according to the distributions of absolute configurations 
among the stereoisomeric sites for a more complete enumeration and permits a determination of whether pseudoasymmetry 
is possible. Counting functions which allow a facile count of the total isomers possible and a computation of the number 
of meso structures when only chiral sites have a variable configuration are also presented. The method is illustrated by 
application to three series of compounds containing multiple sites of dissymmetry-octahedral chelates of bidentate ligands, 
dihydroxydicarboxylate-bridged binuclear complexes, and trans-octahedral and square-planar complexes of macrocycles. 

Introduction 
A number of papers have discussed the application of 

combinatorial methods to the enumeration of permutational 
isomers by means of PBlya’s counting or the al- 
ternative formulation of Lunn and S e n i ~ r . ~ , ~  It has not been 
recognized, however, that a treatment similar to that used to 
count permutational isomers can be applied to isomer counting 
for compounds containing multiple sites of stereoisomerism. 
In this application, rather than permuting ligands on a mo- 
lecular skeleton, one permutes absolute configuration des- 
ignations. In this way, isomerism arising from stereoisomeric 
elements within the molecular framework itself can be ex- 
amined. 

In this paper, we develop this method and apply it to an 
enumeration of isomers for three series of complexes containing 
multiple chiral sites which have been counted in the literature 
by other, more laborious techniques. Although the present 
technique is illustrated only for metal ion complexes with 
dissymmetric sites, it can be used for other systems with other 
types of stereoisomerism under the restrictions discussed herein. 
Procedure 

The isomers which may be enumerated by the methods 
developed here are those which arise owing only to variations 
in absolute configuration in one or more molecular elements 
of stereoisomerism.8 Isomers resulting from other factors such 
as ligand permutations and skeletal rearrangements must be 
enumerated separately. We employ the terms “elements of 
stereoisomerism” and “stereoisomeric sites” interchangeably 
since the only elements which can be treated by the method 
described are those which occupy a definite molecular site 
(though not necessarily a stereoisomeric center8). In general, 
the terms “site” and “element” are restricted to those elements 
whose absolute configurations are allowed to vary for the 
isomer enumeration. Invariant elements are included in the 
skeleton (vide infra). All variable stereoisomeric elements 
taken into account in one specific step of an isomer enu- 
meration must have the same number ( k )  of possible con- 
figurations. In most cases, and in all examples given here, k 
= 2. The elements must be such that their absolute con- 
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figurations could be unambiguously specified using either 
accepted descriptors such as “R,S” or “E,Z” l o  or any ar- 
bitrary but unambiguous designations. An absolute config- 
uration designation for one stereoisomeric site must in no way 
depend upon the designations of configuration at other sites. 

We define the molecular skeleton as the entire molecule 
whose isomers are to be enumerated with the symmetry it 
would have if all of the variable-configuration elements were 
of such a geometry that stereoisomerism were impossible. In 
the case of chiral elements this is best realized by treating each 
such element as though it were planar. Skeletons defined in 
this way are related to the more restrictive two-dimensional 
projection formulas employed by others to enumerate isomers 
in some selected bridged chelates.” That the skeletal sym- 
metry may change once absolute configurations are assigned 
(e.g., planar, achiral elements become nonplanar and chiral) 
is of no more or no less significance than the fact that the 
symmetry of a molecule for which permutation isomers are 
counted by standard combinatorial may change 
with a permutation of the ligands. Only the initial skeletal 
symmetry needs to be considered. 

Once a skeleton has been chosen, it must remain invariant. 
Each change involving the absolute configuration of an element 
of stereoisomerism which has not been included among the 
variable-configuration elements or involving any change in 
connectivity of atoms requires that another count be made with 
the new basic skeleton. 

A key point in the enumeration of isomers owing to the 
presence of elements of stereoisomerism of more than one kind 
is the following. A descriptive label for absolute configuration 
can be considered to have meaning only when it is associated 
with a particular site. Thus, we can label sites as “possibility 
I”, “possibility 2”, ..., “possibility k” and relate these labels, 
if desired, to more familiar designations once the site associated 
with each label is considered. This permits us to permute all 
designations among all sites of stereoisomerism rather than 
restricting, e.g., E,Z descriptors to cis-trans sites. Without 
this convention, the method presented would be much less 
useful, We will employ the Configuration designations CY and 
0 in the examples presented. An extension to (rare) molecular 
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Isomer Enumeration 

systems where all elements of stereoisomerism have k pos- 
sibilities ( k  > 2 )  using descriptors a, @, y, ... is obvious. 

A partition P d  = {r,s,t ,... I, where r + s + t + ... = d,  of the 
d stereoisomeric sites of a molecule can be used to designate 
the set of isomers possible when there are r sites of one absolute 
configuration, s sites of another, t sites of a third, etc. We 
can then refer to the set of isomers belonging to the partition 
P d .  Often we will employ the partition {r,s,t, ...I as though it 
were unordered since the number of isomers for a particular 
partition does not depend upon the actual kinds of absolute 
configurations present but only on the numbers of each type 
-at least for systems that we can treat by the present method. 

Given a set S of mappings, Pdlya’s counting method permits 
one to determine the number of equivalence classes with 
respect to a permutation group G of order IC1 and degree d .  
In the enumeration of permutational isomers, the number of 
equivalence classes of the set of all mappings of ligands onto 
skeletal sites is In the enumeration of isomers 
owing to variations in absolute configurations at stereoisomeric 
sites, the number of equivalence classes of the set of all 
mappings of configuration labels onto skeletal elements of 
stereoisomerism is determined. In either case, one starts with 
a function Z(C) ,  the cycle index, which is obtained from the 
cycle structures of the skeletal site permutations corresponding 
to the symmetry group of the skeleton.’ 
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into classes, each of which contain mappings equivalent under 
proper rotations only (if G”is used) or under both proper and 
improper rotations (0. Each of the latter classes can contain 
mappings corresponding to enantiomeric pairs of isomers while 
the former cannot. Thus utilization of counting polynomials 
obtained from both Z(G’3 and Z(G3 allows separate counts 
of all isomers and geometric isomers only for permutations 
of point ligands. The difference between the two counts is the 
number of enantiomeric pairs. 

When chiral ligands and chiral designators are permuted 
among ligand sites and elements of stereoisomerism, re- 
spectively, the method just discussed does not give an enu- 
meration of enantiomeric pairs. Although Z(G”)  permits a 
count of all isomers, as in the permutation of point ligands, 
Z(G3 allows only a count of the classes obtained combining 
isomeric pairs which would be enantiomeric were each chiral 
ligand or element achiral and distinct from any ligands or 
elements enantiomeric to it. When chiral ligands are involved, 
the difference in the counts gives the number of pairs of 
isomers which have enantiomeric “assemblies of differentiated 
atoms” as defined by Hirschmann and Hanson.* Since a chiral 
assembly has been proposed as one of the two requirements 
for pseudoasymmetry,8 the difference in counts, when doubled, 
gives the maximum number of isomers which could be 
pseudoasymmetric. If we can extend the definition of an 
assembly to include differentiated elements of stereoisomerism, 
we can use counts with respect to G’and G”to determine when 
pseudoasymmetry could be present in systems of the type 
discussed in this paper. 

While Pdlya’s method in its usual form does not permit a 
determination of enantiomeric pairs in isomers resulting from 
either permutations of chiral ligands or variations in absolute 
configuration at  chiral sites (permutations of chiral desig- 
nators), we have devised a method for carrying out the required 
enumeration. Isomers resulting from the permutation of chiral 
ligands will not be discussed any further in this paper, but we 
give below a method for separately enumerating diastereomeric 
and enantiomeric isomers in molecules containing multiple 
dissymmetric elements when each element has only two 
mirror-image absolute configurations (k = 2 ) .  

In general, most isomers or molecules containing multiple 
dissymmetric elements will be chiral. Achiral (meso) 
structures result when there are improper rotations which 
relate enantiomeric sites. This can occur only for partition 
{r,r] isomers and then only when there are one or more im- 
proper rotations in the full point group of the skeleton whose 
corresponding skeletal site permutation operations are com- 
posed only of even cycles. This, of course, requires that the 
skeleton be achiral and that there be an even number of all 
symmetry-equivalent chiral sites. Even if these conditions are 
met, however, not every partition {r,r) isomer is meso. The 
following procedure allows a determination of the number of 
meso structures. 

A simple lemma on which Pblya’s theorem rests states that 
the number A4 of equivalence classes in a set S with respect 
to G, a group of permutations on S,  is equal to the sum of the 
numbers w(g) of elements of S that remain invariant under 
each operation g E G divided by /GI.1z 

Here the sum is over all permutation operations g E G and 
the ji are the number of cycles of length i in each g .  

one sets eachfi = 
A’ + B’ + Ci + ... in the cycle index to obtain, upon expansion, 
a counting polynomial F(G,A,B,C, ...), where the coefficient 
of each term ArBSC‘ ... is the number of isomers for a partition 
{r,s,t, ...I. In the present application, we substitutefi = a‘ + 
p’ + y’ + ... to obtain an analogous counting polynomial 
F(G,a,@,y, ...) whose coefficients are the number of isomers 
n(G,pd) for various partitions of sites into those of a, p, y, ... 
configuration. Here, in contrast to permutational isomer 
counting, where isomers cannot normally have different ligand 
partitions, all partitions contribute to the set of all isomers. 
More information is thereby available concerning the actual 
types of isomers possible when treating stereoisomers of the 
type described herein by Pblya’s method than when treating 
permutational isomers. The equivalence relation (“have the 
same partition”) partitions the stereoisomers into classes. 

A fundamental formulation of Pblya’s theorem can be used 
to rapidly sum the stereoisomers for all partitions f?d starting 
with the cycle index Z(GflfJ3, ...). The total number N(G)  
of equivalence classes among a set S of mappings of k things 
(in our application, the k different absolute configurations) 
with respect to G is given by12 

In a count of permutational 

N(G) = 12(G,Pd) = Z(G,k,k,k, . . .) (2)  
Pd 

Thus a count of all isomers can be obtained by setting each 
fi = k (usually 2 )  in the cycle index. Of course, this means 
that information about the distribution of isomers by 
partition-which is determined from the counting polynomial 
F(G,a,P,y, ...)- is not obtained. Equation 2 is of little interest 
in the enumeration of ligand-permutation isomers where 
isomers must belong to the same partition. 

In an enumeration of isomers resulting from permutations 
of achiral point ligands, the permutation group used to es- 
tablish equivalence classes among the set S of ligand - site 
mappings is the group of all permutations of skeletal sites 
imposed by the symmetry operations of either the full skeletal 
point group (giving permutation group G 3  or its rotational 
subgroup (giving G”). These permutation groups partition S 

(3) 

This lemma has been used previously to count ligand-per- 
mutation isomers5 and we will employ it here. We take as S 
the set of all distinguishable absolute configuration - ster- 
eoisomeric site mappings (of unknown number) which cor- 
respond to meso structures. S is a subset of the d!/r!r!  dis- 
tinguishable mappings possible for P d  = {r,r], r + r = d. Some 
of the mappings in S may, of course, be equivalent under the 
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skeletal symmetry with which G is associated. 
Since we have restricted S to the set of mappings corre- 

sponding to meso structures, we can employ either G’or G” 
in eq 3 and arrive a t  the same count, there being no enan- 
tiomeric pairs to group into the same class under G’. 

(4) 

G’is composed of C”, the group of permutations corresponding 
to proper rotations, and P, the set of permutations corre- 
sponding to improper rotations. If G’= G”, P = 0 (the empty 
set) and no meso structures are possible. Otherwise, IC”l = 
IPI = 1/21C’l. We can therefore rewrite eq 4 as 

where p E P. One can now easily show that 
1 

M = - 2 w e )  = M(P) 
IPI p 

We can, therefore, sum the numbers of mappings which are 
invariant under the set P of permutations corresponding to 
improper rotations and divide the number obtained by IPI to 
calculate the number of equivalence classes among the set of 
all distinguishable mappings corresponding to meso structures. 
This will give the number of nonequivalent meso isomers. 

A configuration of chiral descriptors can be invariant under 
a permutation p E P only if all cycles of p are even. For each 
cycle of such a permutation, regardless of the cycle length, 
there are two and only two distinguishable assignments of a 
and @ absolute configurations to the sites permuted which can 
be part of meso structures. For example a cycle of length r 
(even) of the form (a,a,a 3...u,) on the sites al ,  a2, a3, ..., a, can 
relate enantiomeric sites only for the two distinguishable partial 
mappings 

P Q: . * . P ] a * d r  Q: P e . .  3 
ai a3 . . a, a1 a2 a3 I . ,  a, 

If one multiplies together the number of possible assignments 
(two) for each cycle of the even-cycled operator, one arrives 
at the total number of mappings which are invariant under 
that permutation operation. Doing this for each p E P and 
dividing the sum by lPl, one obtains the total number of meso 
structures. 

To simplify this procedure, we define a function Z(P) of 
a set P of permutation operations corresponding to the im- 
proper rotations of a skeleton such that Z(P) is analogous to 
the cycle index Z(G) of a permutation group G. 

(7)  

where 

p= G’ - G” (8) 
Settingfi = 2 or 0 depending on whether i is even or odd, 

respectively, one obtains from Z(P) a count of all possible meso 
structures. The difference between this number M(P) and the 
total number of isomers (given by eq 2) is the number of chiral 
isomers which are members of enantiomeric pairs. If G’ = 
G ”  ( P  = 0), the skeleton is chiral and all isomers for all 
partitions are chiral though their enantiomers are not included 
in the set of isomers. The method as discussed above can be 
used only when all sites of stereoisomerism are chiral and only 
when there are two enantiomeric possibilities for each. 

The following section applies the counting methods discussed 
here to isomer enumerations for some compounds with multiple 
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dissymmetric sites, each of which have only two possible 
configurations (k = 2). We arbitrarily let the symbol a 
represent “A” when associated with an octahedral metal 
“R” when associated with an asymmetric tetrahedral atom,g 
and “6” when associated with a chelate ring13 in these ex- 
amples. Conversely, @ represents “A”, “S”, or “A”. 
Isomer Enumerations 

Octahedral Chelates of Bidentate Ligands. In a recent note,14 
R.E.T. pointed out that the number of possible isomers for the 
ion [C~(s t ien)~]  3+ (stien = stilbenediamine) had been reported 
incorrectly in the literature. Using diagrammatic  method^,'^,'^ 
which can lead to error if not applied carefully,” we deter- 
mined that there are 32 isomers for this system. Here we 
demonstrate the application of Pblya’s theorem to this and 
related problems. 

The ligand stilbenediamine contains two chiral centers and 
exists in three forms: RR (or aa), SS (OB), and RS (a@). We 
choose the skeleton to be that shown schematically at the top 
of Table I (skeleton 1) with six numbered chiral sites to which 
01 and @ configurations must be assigned. A skeleton of 
absolute configuration A13 is treated here. The A skeleton 
poses a separate problem. 

Since the skeletal symmetry is D3, the skeleton is chiral (P 
= 0) and no meso structures are possible. The operator E E 
D3 is associated with a permutation of skeletal chiral sites of 
cycle structure l , l , l , l , l , l  (where the length of each cycle is 
given); C3 and C32 with permutations of structure 3,3; and the 
three C, operators with permutations of structure 2,2,2. The 
resulting cycle index, Z(D3) ,  is given in the table. The total 
number of isomers is found by setting eachf; = 2 (eq 2) .  

N(D3) = ‘/6(26 + 2*22 + 3.23) = 16 (9) 

A counting polynomial obtained by setting eachf; = ai + 
p’ allows an enumeration by partition. 

F(D3,a,P) = 016 + a5p + 4LY4p2 + 4e3p3 -I- 
4a2P4 -t 4P + b6 (10) 

The various terms represent the different partitions of a and 
@ (here R and S). For example, there are four isomers for 
the partition pd = {3,3)(n(D3,pd) = 4). These are the two 
stereoisomers each of [Co(RR-stien)(SS-stien)(RS-stien)13+ 
and of [C~(RS-stien),]~+.’~ The sum of the coefficients of the 
counting polynomial, 16, gives the total number of rotationally 
nonequivalent ways that one can assign R and S labels to the 
numbered sites of the molecular skeleton. An analogous set 
of 16 isomers is obtained for the A skeleton giving a total of 
32 isomers, in agreement with the earlier count.14 The isomers 
are illustrated in Figure 1. The table gives the number for 
each partition. 

Other chiral elements can be included in this calculation. 
Inclusion of the chiral metal center (skeleton 2, Table I) and 
both the chiral metal center and chelate ring 6,X dissymmetries 
(skeleton 3) gives, respectively, 32 and 208 isomers. Of course, 
as more chiral elements are included among the variable- 
configuration sites, less useful information is obtained from 
the distribution of isomers by partition. For a problem in- 
volving many different types of stereoisomeric elements, it is 
useful to enumerate the isomers by determining isomer counts 
for various skeletons as different elements are deleted from 
the set of elements of variable configuration. 

In some cases, one may need to consider more than one 
skeleton to count all of the isomers. We have already seen 
an example of this in the problem of skeleton 1. Another 
instance is the enumeration of the isomers of the 1,2- 
propylenediamine complex A- [Co(pn),] 3-t, where both the 
facial and meridional forms must be considered (skeletons 4a 
and 4b). 
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Figure 1. Isomers of A-[C~(stien)~]’+. 

Thus far, in all of the examples discussed, no meso structures 
nor chiral assemblies of differentiated elements occur. This 
is not the case for the example given by skeleton 5 where there 
is a trans bis chelate containing bidentate ligands with two 
constitutionally equivalent chiral centers and two different axial 
groups as in trans-[Co(~tien)~(H,O)Cl] .2+ Here different 
isomer counts are obtained depending on whether the full paint 
group G’or the rotational subgroup G”is used. The difference 
of 3 in the count shows that there are three pairs of enan- 
tiomeric assemblies of differentiated elements. Upon in- 
spection we find six such isomers (Figure 2) and these meet 
both Hirschmann and Hanson’s criteria for pseudoasymmetry8 
and Nourse’s criteria for pseudochirality.18 This is the only 
example in Table I where the counts obtained with G’and G” 
are different and, therefore, has the only table entry where 
Z(C? is given. 

The C,, point group contains two reflection operations 
which, for skeleton 5, are associated with permutations of cycle 
structure 2,2. This gives 

Z(P) = 1 / 2 ( 2 f 2 2 )  (11) 

(eq 6).  
M(P) = 1 / 2 ( 2 * 2 2 )  = 4 

Settingf, = 2, we obtain M(P),  the number of meso isomers 

(1 2) 
All four of the isomers corresponding to the partition (4,4) are 
meso. The remaining six isomers must exist as three enan- 
tiomeric pairs. 

As a final example in this section, we present a count for 
the bridged complex [ C ~ , ( o H ) ~ ( e n ) ~ ] ~ ’  (en = ethylenedi- 
amine), skeleton 6, whose isomers have been enumerated by 
a much more laborious method.” Skeleton 6 has symmetry 
D3h when all chiral elements are considered planar. Permuting 
absolute configurations among the four chiral metal ions and 
the six chiral chelate rings, we determine that there are 208 
isomers total in agreement with the number reported.” No 
meso isomers are possible since no p E P has only even cycles. 
Isomer counts by our method on all other bridged systems 
discussed in the paper cited” are in agreement with those 
reported. 

In all the examples which follow, Z(P) is (fortuitously) 
identical in form with Z(G”) and will, therefore, not be given, 
However, the counts of meso isomers determined from Z(P) 
will be listed in the table. 

Figure 2. Pseudoasymmetric isomers of trans-[Co(stien),xy]”+. 

Dihydroxydicarboxylate-Bridged Binuclear Complexes. A 
recent paper” enumerates the isomers possible for tartrate- 
bridged binuclear complexes (1) using a direct counting 

*I I’\ I *  
H-C-0 0-C--H 
H4-0, 0-JX-H 

d* I o+Lj ‘O+o 

1 

permutation approach. These complexes contain two metal 
ions, which may be chiral, and two bridging ligands, each of 
which contain two chiral centers. This gives four to six chiral 
sites in the structure. Here we confirm the earlier enumer- 
ations using PBlya’s method and extend the count to related, 
more complex systems. 

Counts given in Table I for simple tartrate-bridged binuclear 
complexes with both achiral (skeleton 7) and chiral (8) metal 
ions-as found in the vanadyl(IV)19 and bipyridylchromi- 
um(III)20 tartrates, respectively-agree with those reported 
e1~ewhere.l~ The 7 and 24 isomers for the two cases are 
illustrated diagrammatically in Figure 3. The addition of a 
nonhydrogen substituent at one of the aliphatic sites of tartaric 
acid gives an unsymmetrically substituted ligand such as 
monomethyltartaric acid (mmt), for which binuclear bridged 
complexes are known.21,22 With such ligands, two different 
bridged-complex skeletons are possible for both achiral 
(skeletons 9a and 9b) and chiral (loa and lob) metal ions since 
the substituents may be cis or trans. The resulting totals of 
20 and 76 isomers for the achiral and chiral metal ions are 
in agreement with totals we calculate by direct enumeration. 

Trans-Octahedral and Square-Planar Complexes of Mac- 
rocycles. The last section of Table I presents counts for some 
selected complexes containing tetradentate macrocyclic ligands 
(2, L = S, 0, N, or P) in a planar coordination. Upon co- 

L-(CH2 )x-L 
I 

(CH2)y  
I 

( C H 2 ) w  
L-(CHz)=-L I I 

L 

ordination (in the case of phosphorus where inversion is usually 
slow-before coordination), the ligators become centers of 
stereoisomerism. When the four chains linking the ligators 
are not all equivalent, R and S absolute configurations can 
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Table I. Isomer Counts for Selected Complexes Containing Multiple Sites of Dissymmetry 

no. of isomers 
no. of isomersb by partition' 

no. skeleton' G' Z(G) N(G) M(p) pd n ( G , p d )  

Octahedral Chelates of Bidentate Ligands 
z (D3)  = '/e (f16 -+ 2f3' 4- 3 f z 3 )  16 0 {6} 1 t 1 

{5,l} 1 t 1 
D3 

-.. ,," 
{4,2} 4 t 4 43 c3,31 4 

4 

1 

1t1 
2 t 2  
5 t 5  
8 + 8  5 

4 

$3 

1 t 1  
3 t 3  
10 t 10 
25 t 25 
41 t 41 
48 

1 t 1  
1 t 1  

4a 

4b 1t1 
3 t 3  

5 1t1 
2 t 2  
4 

1t1 
1 t 1  
3 
1 t 1  
3 t 3  
10 t 10 
25 t 25 
41 t 41 
48 6 I% 

6 

Dihydroxydicarboxylate-Bridged Binuclear Complexes 
D l h  Z ( D , ) = ' / 4 ( f i 4  t 3fzz) 7 3 (43 

( 3 J I  
{2,2) 

1 t 1  
1 t 1  
3 

1t1 
2 t 2  
6 t 6  
6 
1 + 1  
2 t 2  
4 
1 t 1  
2 t 2  
4 

Pa 

9b 
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Table 1 (Continued) 
Trans-Octahedral and Square-Planar Complexes of Macrocycles 

C,, Z(C,)  = '/2 (f14 t fzz) 10 2 (41 14-1 
(3,l) 2 t 2 
{2,2) 4 

11 

7 3 {4} 1 t 1  
(3,l) 1 t 1 
{2,2) 3 

12 0 (41 1 t 1 
{3,1} 3 t 3 
(292). 4 

Czh z ( C z ) = ' / 2 ( f i 6  t fz3) 36 4 (6) 1 t 1 
{S,l) 3 t3 
(4,2} 9 t 9 

14 

(3,3} 10 

A schematic of the skeleton is given. Example complexes for each skeleton are the following: 1, A-[Co(stien),13+; 2, 3, [Co(stien),13+; 
4a, fuc-A- [Co(pn), 13+; 4b, mer-A-[ Co(pn), Is+; 5, trans-[Co(stien), (H, O)(Cl)]2+; 6, [Co, (OH), (en), 16+; 7 ,  [ (VO), (tart), 14-; 8, [Cr,(bpy),- 
itart),]: 9, [(VO),(mmt),]4-; 10, [Cr,(bpy),(mmt),]; 11, [Pt(13-ane-S,)]zc; 12, [Pt(l4-ane-S,)Iz+; 13, [Pt(l4-ane-S,)Iz+; 14, [Ni(l,7CTH)I2+. 

Two (equal) numbers of isomers are 
given for all partitions of the type {r,s}, r # s, which can represent two different combinations of absolute configuration designators. 

N ( G )  and M(P)  give, respectively, the total number of isomers and the number of meso isomers. 

(; ;) (; ;) (E  E )  (; !) 

'; ;' (! ;' (E ;) 

( 4 )  13,l) 

{ 2 , 2 )  

( a )  { 4) 

'$;' '$;' (;is,) (;:;) (E::) 
1 3 , 3 )  

(b) 

Figure 3. Isomers of tartrate-bridged complexes containing achiral 
(a) and chiral (b) metal ions. 

be associated with the donor atoms and the isomers can be 
enumerated as described previously. Isomer counts are given 
in Table I for complexes of three t y p i ~ a l ~ ~ , ~ ~  macrocyclic 
ligands (skeletons 11-13) and the isomers for the first enu- 
meration are shown schematically in Figure 4. It is interesting 
that our enumeration shows seven isomers for a planar co- 
ordination of 1 4-ane-L4 (e.g., cyclam; skeleton 12) while 
Bosnich and co-workers report a count of fivesz5 They, 
however, have apparently chosen to ignore the possibility of 
enantiomeric pairs for the partitions (4) and (3,l). Likewise, 
a recent paper lists six isomers for trans-octahedral complexes 
of 15-ane-N4. This ligand has the same symmetry as 13- 
ane-L4 (skeleton 1 1, Figure 4) for whose planar complexes we 
count ten isomers. Again, optical isomers have been neglected. 

When the chains linking four identical ligators in these 
macrocycles are equivalent, it is not possible to assign un- 
ambiguous absolute configuration labels. Hence for highly 
symmetric tetradentate macrocycles, such as 3, isomers of 

n 
E', 

U 
12-ane-L4 

3 

1 2 J  2 }  
Figure 4. Isomers of square-planar complexes of 1 3-ane-L4. Filled 
circles indicate that a lone pair (L = S or 0) or a hydrogen (L = 
N or P) is directed upward. 

complexes cannot be counted by the method discussed here. 
A final example (skeleton 14) is given for complexes of a 

macrocyclic ligand containing four chiral ligators and two 
chiral carbon atoms: 5,7,7,12,14,14-hexamethyl- 1,4,8,11- 
tetrazacyclotetradecane (1,7-CTH). Our count of 4 meso and 
32 chiral isomers (the latter consistine of 16 enantiomeric 
pairs) agrees with that reported previoGsly for square-planar 
[Ni( 1,7-CTH)]2+.27 
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Two new tetraphosphorus cage compounds, a-P4S3(NC6H5) and a-P4S4, have been obtained from the reaction of a-P4S312 
with aniline (C,H5NH2). Infrared, lH NMR, and mass spectral evidence for the presence of P4S3("C6H5)2 as a reaction 
intermediate has been obtained. On the basis of spectral data and chemical arguments, a-P4S3(NC6H5) is assigned tentatively 
a cage structure in which the sulfur atoms maintain the sulfur atom arrangement and the phenylimido moiety (C6H5N) 
occupies what was the opened edge of a-P4S312. The a-P4S4 structure has been established by a single-crystal x-ray study. 
Crystals of a-P4S4 are monoclinic (space group C2/c ) ,  with a = 9.779 (1) A, b = 9.055 (1) A, c = 8.759 (2) A, /3 = 102.65', 
Z = 4, dcalcd = 2.213 g ~ m - ~ ,  and dobsd = 2.26 g cm-3 (20 OC, Mo K a ) .  The crystal structure was solved by direct methods. 
The P4S4 model refined to RI  = 0.038 and R2 = 0.048 for 1680 independent observed reflections. Alternate refinement 
of an S4P4 model (atom positions reversed) and application of the Hamilton R-factor test, along with geometrical arguments, 
allow the S4P4 model to be rejected. a-P4S4 has approximate Du symmetry, a structure in which P atoms are pseudotetrahedral 
and S atoms are in a square plane. The mean P-S and P-P bond distances are 2.1 11 8, and 2.353 A, respectively. The 
three cage bond angles are P-S-P = 98.92O, S-P-S = 95.18', and S-P-P = 100.42O. Reaction of /3-P4S312 with C6H5NH2 
yields a diazadiphosphetidine [P2S2(NC6H5)2(NHC6H5)2], P4S3, and p-P4S4. Spectral data are presented which support 
p-P4S4 being the second of two possible isomers of an edge-substituted tetraphosphorus-tetrasulfide system. A new type 
of phosphorus-nitrogen ring compound, P4(NHC6H5)4(NC6H5)2, a 1,4,2,3,5,6-diazatetraphosphorine, has been identified 
tentatively from the reaction of P214 with C6H5NH2. 

Introduction 
Tetraphosphorus compounds of formula P4EO-6AO-4, where 

E and A represent moieties in divalent edge or apical bonding 
positions on a P4 tetrahedron (or distorted tetrahedron), 
comprise a general type of phosphorus cage system. In these, 
the P4Ew unit constitutes a closo-type molecular cage and the 
A moieties can be regarded as cage substituents (Figure 1) .2  
Well-characterized, selected examples of such compounds 
(classes in parentheses) are P4S3334 (P4E3); P4S3Mo(CO)S5 
@'&A); P4S56 (P4E4A); P4S? (P4EsAJ; p406,8 P4(NCH3k9 
and P4[Ge(CH3)2]610 (P4E6); and P406Ni(C0)311 (P4E6A). 
Noteworthy is the fact that all known cages, except perhaps 
that of the P4S9N- ion,12 are homo edge-substituted, Le., 
contain only one type of E substituent. 

Recently, we have undertaken a study of syntheses of hetero 
edge-substituted P4ExE'6-x (E # E') and new incompletely 
edge-substituted ( P 4 E 1 4  ,cage systems in order to extend our 
understanding of P4-cage relative thermodynamic stabilities 
and chemical reactivities. Routes to phenylimido (>NC,HS) 
and sulfido (-S-) substituted P4 cages, from reactions of 
a-P4S31, (l),l39l4 P-P4S31z (2),15 and P214 with aniline have been 
examined. From these reactions, three new tetraphosphorus 
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cage compounds, a-P4s4, a-P4S3(NC6H5), and j3-P4S4, and a 
new cyclic phosphorus-nitrogen compound, P4("C6- 
H5)4(NC6H5)2, have been obtained. A preliminary account 
of the independent synthesis and characterization of CY- and 
P-P4S4 has appeared very recently, also.16 The results of our 
work are described below. 
Experimental Section 

Apparatus and Materials. All operations were carried out in 
N2-flushed glovebags or in evacuated systems." Infrared, 'H NMR 
(60.0 MHz), and mass spectra were obtained using Perkin-Elmer 
3376, Varian A-60A, and Varian MAT CH-5 spectrometers, re- 
spectively. High-resolution mass spectra were obtained using an AEI 
MS-9 spectrometer. Phosphorus-3 1 NMR spectra were obtained on 
JEOL-PFT 100 and Varian HA-I00 spectrometers equipped with 
standard-probe and radio-frequency unit accessories. 'H and ,'P NMR 
chemical shifts were measured relative to internal (CH3)4Si and 
external H3P04, respectively. Chemical shifts downfield from the 
standards are given negative values, 31P NMR chemical shifts are 
given to *l ppm. Single-crystalx-ray data were collected at ambient 
temperature using a Syntex P1 automated diffractometer. 

Tetraphosphorus trisulfide (K and K Laboratories) and aniline 
(Mallinckrodt Chemical Works) were purified routinely. Carbon 
disulfide, benzene, and chloroform were distilled from P4O10 prior 
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