- P. Gross, Can. Metall. Q., 12, 359 (1973).
 D. Altman, M. Farber, and D. M. Mason, J. Chem. Phys., 25, 531 (1956).
 B. S. Sanderson and G. E. MacWood, J. Phys. Chem., 60, 314 (1956).
 B. S. Sanderson and G. E. MacWood, J. Phys. Chem., 60, 316 (1956).
- (23) J. W. Hastie, "High Temperature Vapors", Academic Press, New York, N.Y., 1975, p 21.
- (24) C. Dijkgraaf and J. P. G. Rousseau, Spectrochim. Acta, Part A, 23, 1267
- D. M. Gruen and R. L. McBeth, Pure Appl. Chem., 6, 23 (1964).
 H. A. Øye and D. M. Gruen, Inorg. Chem., 3, 836 (1964).
 E. M. Levin, C. R. Robbins, and H. F. McMurdie: "Phase Diagrams for Ceramists", The American Ceramic Society, Columbus, Ohio, 1964 (Supplement 1969, 1975).
 M. Sørlie and H. A. Øye, J. Inorg. Nucl. Chem., 40, 493 (1978).
 H. Schäfer, Angew. Chem., 88, 775 (1976).
 W. E. Smith, J. Chem. Soc., Chem. Commun., 1121 (1972).

- W. E. Smith, J. Chem. Soc., Chem. Commun., 1121 (1972).

Contribution from the Department of Chemistry, Kansas State University, Manhattan, Kansas 66506

Direct Synthesis of Fluorinated Peroxides. 8. Synthesis and Properties of (CF₃)₃COOF and Evidence for the Trioxide (CF₃)₃COOOC(CF₃)₃

SHIN-LIANG YU and DARRYL D. DESMARTEAU*1

Received December 15, 1977

The preparation of (CF₃)₃COOF has been achieved by the low-temperature reaction of fluorine with the novel peroxo anion (CF₃)₃COO⁻. The latter is generated in situ by nucleophilic attack of fluoride on (CF₃)₃COOSO₂F. The compound has been characterized by ¹⁹F NMR, infrared, and Raman spectroscopy and by its thermal decomposition and addition to chlorotrifluoroethylene. Reaction of (CF₃)₃COOF with KOC(CF₃)₃ forms the unstable trioxide (CF₃)₃COOOC(CF₃)₃.

Introduction

Several members of the new class of fluorinated peroxides containing the perfluoro-tert-butyl group have recently been described.² These new compounds were obtained from (CF₃)₃COOC(O)F which was obtained by a novel nucleophilic displacement reaction with (CF₃)₃COOSO₂F in the presence of COF₂ and KF (eq 1). This reaction probably involves the

$$(CF_3)_3COOSO_2F + COF_2 \xrightarrow{KF} (CF_3)_3COOC(O)F + SO_2F_2$$
(1)

formation of the unstable anion (CF₃)₃COO⁻. By employing CsF instead of KF, it has now been possible to generate this anion at low temperature and to carry out its controlled oxidation by fluorine, forming (CF₃)₃COOF in excellent yield. This new method of preparation may have general applica-

In previous work by us on the synthesis of fluorinated peroxygen compounds containing the trifluoromethyl and pentafluorosulfur groups, the hydroperoxides CF₃OOH⁴⁻⁷ and SF₅OOH⁸⁻¹⁰ have been key reagents. The corresponding perfluoro-tert-butyl hydroperoxide, (CF₃)₃COOH, is much more difficult to prepare and is thus of less use in the direct synthesis of (CF₃)₃COO derivatives. The easy synthesis of (CF₃)₃COOF described here makes it the most accessible reagent for this purpose. This paper presents details for its preparation and describes some of its physical and chemical properties.

Experimental Section

General Procedures. Volatile compounds were handled in a glass and stainless steel vacuum system equipped with glass-Teflon or stainless steel valves. Pressures were measured with a Wallace and Tiernan differential pressure gauge, series 1500. All reactions were carried out in 75-mL 304 stainless steel reactors or glass bulbs fitted with glass-Teflon valves. Separation of volatile products was by trap-to-trap distillation and GLC using columns packed with 40% halocarbon 11-21 polymer oil on Chromosorb P.

Infrared spectra were recorded on Perkin-Elmer Model 180 or 337 spectrophotometers using a 10-cm gas cell fitted with AgCl windows. Raman spectra were recorded at low temperatures using a Spex 14018 monochromater with photon counting detection. A low-temperature cell similar to that described by Brown et al. 11 was employed.

Excitation was by the 514.5-nm line of an argon laser or by a tunable CW dye laser output in the 610-nm region. NMR spectra were recorded with a Varian XL-100-15 spectrometer in CW or pulsed FT modes using ~15 mol % solutions in CFCl₃

Reagents. Fluorine, CsF, KH, CF₂CFCl, and (CF₃)₃COH were obtained from commercial sources. (CF₃)₃COOSO₂F was prepared by the reaction of S₂O₆F₂ with KOC(CF₃)₃.¹² Peroxydisulfuryl difluoride was prepared by heating stoichiometric amounts of 2SO₃ and F2 at 160 °C in a 150-mL bomb, loosely packed with Ag-coated copper gauze. The vessel was heated with 5 atm of F2 at 200 °C before adding SO₃ and F₂. On a 100-mmol scale, yields were quite high with small amounts of unreacted SO₃, O₂, and SO₂F₂. Treatment with concentrated H₂SO₄ and collection at -78 °C provided pure S₂O₆F₂. Preparation of KOC(CF₃)₃ was by reaction of the alcohol with KH in ether at 0 °C, followed by filtration and evaporation of the diethyl ether solvent. 13 Fluorine was passed through a NaF scrubber before use. CsF was dried in a metal reactor at 80 °C under dynamic vacuum for 17 h and then treated with \sim 2 atm of F_2 for several hours. The metal reactor contained several nickel balls up to 1/4 in. During treatment with F2, the vessel was agitated violently on a paint shaker

Preparation of $(CF_3)_3COOF$. The reaction of $(CF_3)_3COOSO_2F$ with fluorine in the presence of CsF was carried out under a variety of conditions. The following procedure normally produced the highest yields. Into a 75-mL metal reactor containing 15 g of activated CsF, 2.7 mmol of (CF₃)₃COOSO₂F and 6.0 mmol of F₂ were added at -196 °C. The reactor was placed in a large Dewar filled with an ethanol-water slush at -55 °C. After 24 h, the bath temperature was -35 °C. The contents were collected at -196 °C and then fractionated through traps at -65, -95, and -196 °C. The -65 °C trap contained a small amount of $(CF_3)_3COOC(CF_3)_3^{14}$ identified by IR and NMR spectroscopy and molecular weight. The -95 °C trap contained nearly pure (CF₃)₃COOF with small amounts of (CF₃)₃COF. ¹⁵ The -196 °C trap contained SO₂F₂ with small amounts of CF₄, C₂F₆, and other products. If there is unreacted (CF₃)₃COOSO₂F (depending on the activity of the CsF), the -65 and -95 °C traps will both contain the fluorosulfate. It can only be effectively removed from (CF₃)₃COOF by GLC with some loss of (CF₃)₃COOF from decomposition. The best yields of $(CF_3)_3COOF$ were $\sim 80\%$. $(CF_3)_3COOF$: mp -17 to -16 °C: mol wt found 270.4, calcd 270.0. IR: 1310-1260 (vs), 1069 (s), 1009 (s), 987 (s), 760 (w), 741 (s), 537 (w), 499 (w) cm⁻¹. Raman (liquid, -15 °C) [cm⁻¹, relative intensity, polarization]: 1284, br; 1003, 1.2, p; 989, sh; 902, 1.0, p; 768, 10, p; 741, 1.2, p; 724, 0.7, dp; 633, 0.2, dp; 570, 0.4, dp; 540, 0.7, dp; 503, sh; 489, 1.2, p; 489, 1.2, p; 484, sh; 441, 0.1, p; 359, 1.6, p; 331, sh; 314, 4.1, p; 304, sh; 297, sh; 233, 1.2, p; 204, 0.2, dp; 184, 0.1, p; 174, 0.1, p; 160, 0.5, dp; 136, 0.7, dp. ¹⁹F NMR ϕ *((CF₃)₃C) 69.5, ϕ *(OOF) -295.0, J_{FF} = 6.0 Hz

For comparison, the Raman spectrum of (CF₃)₃COF was also recorded at -10 °C: 1286, br; 1100, 0.7, p; 995, 0.6, p; 870, 2.2, p; 758, 10.0, p; 724, 1.0, p; 650, 0.4, dp; 560, 0.7, dp; 530, 0.9, dp; 498, 0.6, dp; 434, 0.3, p; 354, 3.3, p; 318, 1.9, dp; 300, 4.5, p; 282, sh, p; 224, 0.3, p; 196, 0.6, dp; 136, sh; 120, 1.1, dp.

Reaction of $(CF_3)_3COOF$ with $KOC(CF_3)_3$. In a typical reaction, 1.0 mmol of $(CF_3)_3COOF$ was condensed onto 4.0 mmol of $KOC(CF_3)_3$ contained in a 100-mL glass vessel at -196 °C. The reaction was allowed to warm from -90 to -40 °C over 24 h. The contents were then pumped via a short connection through traps at -60 and -196 °C as the reactor warmed slowly in the air from -78 °C. The -196 °C trap contained CF_4 , $(CF_3)_2CO$, C_2F_6 , and other products. A white solid collected in the -60 °C trap. This material was very unstable at 22 °C and pumping from one container, as it warmed slowly, to another vessel at -196 °C resulted in considerable decomposition as evidenced by the formation of a noncondensable gas. An NMR sample was prepared by pumping the compound into a trap at -60 °C with an NMR tube attached to the bottom of the trap. The compound was washed into the NMR tube with cold $CFCl_3$ (below -40 °C). The NMR spectrum showed a single, somewhat broadened resonance at ϕ^* 69.8.

Reaction of (CF₃)₃COOF with CF₂CFCl. One millimole of (CF₃)₃COOF and 5.0 mmol of CF₂CFCl were condensed into a metal reactor containing 15 g of CsF at −196 C. The CsF was used simply as a moderator for the reaction. The vessel was allowed to warm slowly to 22 °C and the product was collected at −78 °C. GLC showed only one major component, yield ~75%. (CF₃)₃COOCF₂CF₂Cl (1)−(CF₃)₃COOCFClCF₃ (7): mol wt found 384.0, calcd 386.5. IR 1305−1260 (vs), 1235 (s), 1190 (m), 1137 (m), 1109 (s), 1076 (s), 983 (s, br), 850 (w), 805 (w), 763 (w), 729 (m), 643 (w), 570 (w), 538 (w) cm⁻¹. ¹⁹F NMR (CF^A₃)₃COOCF^B₂CF^C₂Cl ϕ * 69.42 (A, t), 83.0 (B, m), 71.1 (C, t), J_{AB} = 2.5, J_{BC} = 9.0, J_{AC} ≈ 0 Hz; (CF^A₃)₃COOCF^BClCF^C₃ ϕ * 69.50 (A, d), 83.2 (B, m), 81.0 (C, d), J_{AB} = 0.4, J_{BC} = 2.5, J_{AC} ≈ 0 Hz.

Results and Discussion

The synthesis of fluoroperoxides of the type R_fOOF has previously been accomplished by several different methods as shown in the equations

$$C_{3}F_{6} + O_{2}F_{2} \rightarrow C_{3}F_{7}OOF/(CF_{3})_{2}CFOOF^{16}$$

$$SO_{3} + OF_{2} \xrightarrow{h\nu} FSO_{2}OOF^{17}$$

$$COF_{2} + OF_{2} \xrightarrow{CsF} CF_{3}OOF/CF_{3}OOCF_{3}^{18}$$

$$NaO_{2}CCF_{3} + F_{2} \rightarrow CF_{3}OOF, C_{2}F_{5}OOF/other^{19}$$

$$CF_{3}OOH + F_{2} \xrightarrow{CsF} CF_{3}OOF/other^{20}$$

$$SF_{5}OOH + F_{2} \xrightarrow{CsF} SF_{5}OOF/other^{10}$$

Of these, only the reaction of hydroperoxides with F_2/CsF appears to have any general applicability.

As part of a study to develop reagents for the synthesis of a variety of $(CF_3)_3COO$ peroxides, we had prepared $(C-F_3)_3COOH$ and planned to use this compound to synthesize other reactive compounds such as $(CF_3)_3COOF$ and $(C-F_3)_3COOCI$. However, the synthesis of $(CF_3)_3COOH$ turned out to be quite difficult, and the expected low-yield syntheses of $(CF_3)_3COOF$ and $(CF_3)_3COOCI$ from the hydroperoxide appeared to render this approach impractical. Due to the instability of $(CF_3)_3COOCI$ prepared by an alternate route and difficulty in obtaining $(CF_3)_3COOH$, a practical synthesis of $(CF_3)_3COOF$ was critical to our goal of developing a reagent that could be used for the preparation of $(CF_3)_3COO$ derivatives.

The most accessible peroxide containing the $(CF_3)_3COO$ group is $(CF_3)_3COOSO_2F$. We had shown that this fluorosulfate could be used to generate the $(CF_3)_3COO$ anion by

nucleophilic attack of fluoride on sulfur and could be chemically trapped by reaction with COF₂ (eq 2).² The

(CF₃)₃COOSO₂F + COF₂
$$\xrightarrow{\text{KF, 22 °C}}$$
 (CF₃)₃COOC(O)F + SO₂F₂ (2)

oxidation of $(CF_3)_3COO^-$ with F_2 appeared to be a potential route to $(CF_3)_3COOF$. Substitution of CsF for KF and lowering of the temperature to \sim -55 °C provided high yields of this compound (\sim 80%) (eq 3). This reaction does not

(CF₃)₃COOSO₂F + F₂
$$\xrightarrow{\text{CsF}, -55 °C}$$
 (CF₃)₃COOF + SO₂F₂ (3)

occur without CsF and the following reaction scheme is reasonable to explain the observed products.

$$(CF_3)_3COOSO_2F + F^- \rightarrow (CF_3)_3COO^- + SO_2F_2$$

 $(CF_3)_3COO^- \rightarrow (CF_3)_3CO^- + 1/2O_2$
 $\downarrow F_2$ $\downarrow F_2$
 $(CF_3)_3COOF$ $(CF_3)_3COF$

A few percent of $(CF_3)_3COOC(CF_3)_3$ is always observed and probably arises from the free-radical nature of the reaction with fluorine. A large excess of fluorine decreases the amount of peroxide suggesting an intermediacy of $(CF_3)_3CO$ and $(CF_3)_3CO$ radicals. These radicals could combine to form $(CF_3)_3CO_nC(CF_3)_3$ (n = 2, 3, 4), but only the peroxide could be isolated. However, the less volatile products from this reaction always produced some oxygen on warming to room temperature, which could arise from the decomposition of small amounts of $(CF_3)_3CO_nC(CF_3)_3$ (n > 2).

The new fluoroperoxide (CF₃)₃COOF is surprisingly stable and its decomposition is sensitive to impurities and other influences. The compound explodes, when warmed to 22 °C in a sealed tube, where the volume is small enough to leave a liquid phase. On the other hand, in the gas phase at 22 °C, at a pressure of 20–40 mm, decomposition is very slow and the compound can be purified by GLC. Curiously, the compound was very unstable in a glass infrared cell with AgCl windows. The thermal decomposition is quite complex and a 0.5-mmol sample in a 100-mL glass bulb was completely decomposed after 30 h at 22 °C. The products were mainly (CF₃)₂CO, CF₃OF, and CF₃OOOCF₃, with small amounts of CF₃OOCF₃, COF₂, and SiF₄. Essentially no oxygen is formed and the total moles of gas indicate a twofold increase in volume.

The infrared, Raman, and ¹⁹F NMR spectra provide unequivocal proof of structure for (CF₃)₃COOF. The infrared spectrum is quite similar to that of (CF₃)₃COF, ¹⁵ except for the absence of v_{OF} at 887 cm⁻¹ and the new, very strong band at 1069 cm⁻¹ instead of 1108 cm⁻¹. In addition, the band at 741 cm⁻¹ is much stronger than the typical $\delta_a(CF_3)$ found in $(CF_3)_3CO$ compounds.^{21,12} This band is clearly ν_{OF} of the peroxo compound with some intensity contribution from δ_a -(CF₃). The Raman spectrum of the liquid shows a polarized counterpart to the 741 cm⁻¹ IR band and $\delta_a(CF_3)$ is clearly visible at 724 cm⁻¹ as a depolarized band. The relatively intense polarized band at 902 cm⁻¹ is assigned to ν_{OO} , and the most intense band in all Raman spectra of (CF₃)₃CO derivatives, a $\delta_s(CF_3)$ mode, is at 768 cm⁻¹ in $(CF_3)_3COOF$ compared to 758 cm⁻¹ in $(CF_3)_3COF$. The ¹⁹F NMR exhibits a typical (CF₃)₃CO resonance at ϕ * 69.5 and a OOF resonance at ϕ^* -295.0 as expected. The value of $J_{\rm FF}$ = 6.0 Hz indicates the presence of two oxygen atoms, since $J_{\rm FF}$ in $(CF_3)_3COF$ is 15.5 Hz.

In Table I, some salient features of $R_f OOF$ are given for the seven known fluoroperoxides along with related data for

Table I. Comparison of ¹⁹F NMR, ν_{OF} , and ν_{OO} of R_fOF and R_fOOF

$^{ u_{ m OF},}_{ m cm^{-1}}$	ν _{ΟΟ} , cm ⁻¹	φ*(O F)	ref
882		-147.1	22, 23
760	873	-292	20
949		-189.0	10, 24
727	873	-330	10
878		-249.0	25, 26
738	890	-291	17, 27
885		-149.6	15
741	902	-295	this work
888		-144.3	15
?	?	-292	16
885		-153.9	15
?	?	-292	16
909		-139.4	15
752	?	-291.6	19
	cm ⁻¹ 882 760 949 727 878 738 885 741 888 ? 885 ? 909	cm ⁻¹ cm ⁻¹ 882 760 873 949 727 873 878 738 890 885 741 902 888 ? ? 885 ? ? 909	cm ⁻¹ cm ⁻² φ*(OF) 882 -147.1 760 873 -292 949 -189.0 727 873 -330 878 -249.0 738 890 -291 885 -149.6 741 902 -295 888 -144.3 ? ? -292 885 -153.9 ? ? -292 909 -139.4

the analogous R_fOF derivatives. It can be seen from this that all carbon derivatives show a very consistent pattern with regard to ν_{OF} , ν_{OO} , and $\phi^*(OF)$ values, and clearly the O-F bonds in the fluoroperoxides are rather different from those in the nonperoxides. Greater variations, but similar trends, are shown by the sulfur compounds, as might be anticipated for an element where d orbitals may be involved in the bonding. The recent structural determination of CF₃OOF by electron diffraction suggests that the compound has some of the features of O₂F₂ with a significantly shorter O-O bond and longer O-F bond than expected for a typical peroxide or FO derivative such as CF₃OOCF₃ or CF₃OF.²⁸ One would expect similar results for the other fluoroperoxides which contain a highly electronegative R group.

Further structural proof for (CF₃)₃COOF is provided by the reaction with C₂F₃Cl (eq 4). Two isomeric peroxides are $(CF_3)_3COOF + CF_2CFCl \rightarrow$

$$(\tilde{C}F_3)_3COOCF_2\tilde{C}F_2Cl(1)/(CF_3)_3COOCFClCF_3(7)$$
 (4)

formed corresponding to the free-radical addition of (C- F_3)₃COOF to the olefin. The magnitude of J_{FF} for coupling between the $(CF_3)_3C$ group and the α fluorines in the alkyl group clearly indicates the compounds are peroxides and not ethers. In the analogous ethers, the corresponding $J_{\rm FF}$ values are approximately 4 times larger.²⁹ This reaction also serves to indicate the utility of (CF₃)₃COOF as a reagent for the direct synthesis of fluorinated peroxides. While only one example has been studied, extension of this reaction to other systems should be straightforward.

An additional (CF₃)₃COOF reaction of considerable interest is the reaction with KOC(CF₃)₃ which resulted in the formation of the trioxide. An earlier attempt to prepare (CF₃)₃COOOC(CF₃)₃ from KOC(CF₃)₃ and OF₂ was unsuccessful, although this reaction is clearly analogous to that used for the successful preparation of CF₃OOOCF₃.30

$$CsOCF_3 + OF_2 \rightarrow CF_3OOF + CsF$$

$$CF_3OOF + CsOCF_3 \rightarrow CF_3OOOCF_3 + CsF$$

$$KOC(CF_3)_3 + OF_2 \not \sim (CF_3)_3COOF + KF$$

$$KOC(CF_3)_3 + (CF_3)_3COOF \Leftrightarrow$$

$$(CF_3)_3COOOC(CF_3)_3 + KF$$

The reaction of OF₂ with metal salts of the above type is rather slow at 22 °C and below. If this reaction were more favorable at low temperature, it would probably form both (CF₃)₃COOF and (CF₃)₃COOOC(CF₃)₃ in reasonable yields. But at 22 °C, neither compound is observed. This is to be expected based on the properties of (CF₃)₃COOF described above.

On the other hand, CF₃OOF is more reactive than OF₂ in the reaction with CsOCF₃, and a similar difference is expected for the reaction of (CF₃)₃COOF with KOC(CF₃)₃ compared to the reaction with OF2. Thus, with (CF3)3COOF available, we reasoned that the trioxide might be obtainable. Reaction of (CF₃)₃COOF with KOC(CF₃)₃ at low temperature forms an unstable white solid, believed to be the trioxide (eq 5).

$$(CF_3)_3COOF + KOC(CF_3)_3 \xrightarrow{-90 \text{ to } -40 \text{ °C}} (CF_3)_3COOOC(CF_3)_3 + KF (5)$$

Unfortunately, the trioxide could not be characterized in a completely satisfactory manner. The 19F NMR spectrum obtained at low temperature shows a singlet at ϕ^* 69.8 as expected for (CF₃)₃COOOC(CF₃)₃. An IR band at 1020 cm⁻¹, in addition to bands common for (CF₃)₃COOC(CF₃)₃, was observable in the gas phase. On standing at 22 °C, this band rapidly disappeared, and the observed IR spectrum appeared to be that of (CF₃)₃COOC(CF₃)₃ and (CF₃)₂CO. Perhaps the best evidence for (CF₃)₃COOOC(CF₃)₃ comes from its decomposition. When a sample is collected at low temperature and warmed to room temperature, oxygen is rapidly given off. After complete decomposition, separation of the products shows (CF₃)₃COOC(CF₃)₃, (CF₃)₂CO, C₂F₆, and O₂ as the major products, with small amounts of other products. These results are very consistent with the decomposition of other trioxides. 10,31

$$CF_3O_3CF_3 \rightarrow CF_3O_2CF_3 + \frac{1}{2}O_2$$

 $SF_5O_3SF_5 \rightarrow SF_5O_2SF_5 + \frac{1}{2}O_2$

These reactions involve CF₃O· and SF₅O· radicals which have reasonable stability in the gas phase. If the decomposition of (CF₃)₃COOOC(CF₃)₃ involves the (CF₃)₃CO· radical, (CF₃)₂CO and C₂F₆ would be expected as major products due to the reactions^{2,12}

$$(CF_3)_3CO \rightarrow (CF_3)_2CO + CF_3 \cdot$$

 $CF_3 \cdot + CF_3 \cdot \rightarrow C_2F_6$

In conclusion, while the direct evidence for (CF₃)₃COO-OC(CF₃)₃ is somewhat meager, we believe the compound is indeed formed in the low-temperature reaction of KOC(CF₃)₃ with $(CF_3)_3COOF$ and that its decomposition at 22 °C is fast. Thus, the only well-characterized fluorinated trioxides stable at 22 °C remain the three trifluoromethyl derivatives, CF₃OOOCF₃, CF₃OOOC₂F₅, and CF₃OOOCF₂OOCF₃. ³⁰

Acknowledgment. The financial support of the National Science Foundation is gratefully acknowledged.

Registry No. (CF₃)₃COOF, 66793-67-7; (CF₃)₃COF, 2203-56-7; $KOC(CF_3)_3$, 29646-16-0; CF_2CFCl , 79-38-9; $(CF_3)_3COOOC(CF_3)_3$, 66793-66-6; $(CF_3)_3COOCF_2CF_2Cl$, 66793-65-5; $(CF_3)_3COOCF_2CF_3Cl$, 66793-65-5; $(CF_3)_3COOCF_3CF_3Cl$ CICF₃, 66793-64-4; (CF₃)₃COOSO₂F, 55064-77-2; F₂, 16984-48-8.

References and Notes

- (1) Alfred P. Sloan Fellow, 1975-1977.
- S. L. Yu and D. D. DesMarteau, Inorg. Chem., 17, 304 (1978). P. A. Bernstein, F. A. Hohorst, and D. D. DesMarteau, J. Am. Chem. Soc., 93, 3882 (1971).
- F. A. Hohorst and D. D. DesMarteau, *Inorg. Chem.*, 13, 715 (1974). P. A. Bernstein and D. D. DesMarteau, *J. Fluorine Chem.*, 2, 315 (1972/1973).
- E. R. Falardeau and D. D. DesMarteau, J. Am. Chem. Soc., 98, 3529
- N. Walker and D. D. DesMarteau, J. Am. Chem. Soc., 97, 13 (1975). M. Hopkinson, N. Walker, and D. D. DesMarteau, J. Org. Chem., 41,
- 1407 (1976).
- (9) M. Hopkinson and D. D. DesMarteau, J. Fluorine Chem., 7, 501 (1976).
 (10) D. D. DesMarteau and R. M. Hammaker, Isr. J. Chem., in press.
 (11) C. W. Brown, A. G. Hopkins, and F. P. Daly, Appl. Spectrosc., 28, 194 (1974).
- N. Walker and D. D. DesMarteau, J. Fluorine Chem., 5, 127 (1975). (13) R. E. A. Dear, W. B. Fox, R. J. Fredericks, E. E. Gilbert, and D. K. Huggins, *Inorg. Chem.*, 9, 2590 (1970).
 (14) D. E. Gould, L. T. Ratcliffe, L. R. Anderson, and W. B. Fox, *Chem.*
- Commun. 216 (1970).
- J. H. Prager and P. G. Thompson, J. Am. Chem. Soc., 87, 230 (1965).
- I. J. Solomon, A. J. Kacmarek, J. N. Keith, and J. K. Raney, J. Am. Chem. Soc., 90, 6557 (1968).

- (17) G. Toranz and F. Neumayr, *Inorg. Chem.*, 3, 921 (1964).
 (18) L. R. Anderson and W. B. Fox, *J. Am. Chem. Soc.*, 89, 4313 (1967).
 (19) P. G. Thompson, *J. Am. Chem. Soc.*, 89, 4316 (1967).

- P. G. Thompson, J. Am. Chem. Soc., 89, 4316 (1967).
 D. D. DesMarteau, Inorg. Chem., 11, 193 (1972).
 J. Murto, A. Kivinen, J. Korppi-Tommola, R. Viitala, and J. Hyomaki, Acta Chem. Scand., 27, 107 (1973).
 G. H. Cady and C. I. Merril, J. Am. Chem. Soc., 84, 2260 (1960).
 R. R. Smardzewski and W. B. Fox, J. Fluorine Chem., 5, 417 (1975).
 J. E. Smith and G. H. Cady, Inorg. Chem., 9, 1442 (1970).
 F. B. Dudley, G. H. Cady, and D. F. Eggers, J. Am. Chem. Soc., 78, 290 (1956).

- 290 (1956).
- (26) F. Aubke and D. D. DesMarteau, Fluorine Chem. Rev., 8, 73 (1977).
- H. A. Carter, R. L. Kirchmeir, and J. M. Shreeve, Inorg. Chem., 12, 2237 (1**9**73).
- (28) C. J. Marsden, D. D. DesMarteau, and L. S. Bartell, Inorg. Chem., 16, 2359 (1977).
- L. R. Anderson, D. E. Young, D. E. Gould, R. Jurik-Hogan, D. Nuechterlein, and W. B. Fox, J. Org. Chem., 35, 3730 (1970). R. A. DeMarco and J. M. Shreeve, Adv. Inorg. Chem. Radiochem., 16,
- 109 (1974).
- (31) F. A. Hohorst, D. D. DesMarteau, L. R. Anderson, and W. B. Fox, J. Am. Chem. Soc., 95, 3886 (1973).

Contribution from the Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794

Properties of Nitroxyl as Intermediate in the Nitric Oxide-Hydroxylamine Reaction and in Trioxodinitrate Decomposition¹

FRANCIS T. BONNER,* LAILA S. DZELZKALNS, and JOHN A. BONUCCI

Received February 14, 1978

The rate of decomposition of trioxodinitrate monobasic anion (HN2O3-) in aqueous solution is unaffected by the presence of hydroxylamine, but the primary product nitroxyl (HNO) experiences a competition between dimerization to N₂O and reduction to N2. The proportion of N2 increases with pH and with NH2OH concentration; at pH 8, with NH2OH in 10-fold excess over HN₂O₃, the reaction product is more than 97% N₂. The reaction between NO and NH₂OH produces equimolar amounts of N_2 and N_2O at pH >13, but the ratio N_2/N_2O decreases with pH; at pH 8 the product is almost entirely N_2O . The rate of reaction declines sharply with decreasing pH. Observations of reaction product ratios are complicated by simultaneous contributions of NH₂OH disproportionation, which produces N₂ and N₂O in pH-dependent proportions. Tracer experiments employing ¹³N¹⁸O reactant confirm a previously proposed mechanistic interpretation of the NO-NH₂OH reaction in detail: an N-bound H atom is abstracted by NO to form HNO and the radical NHOH. The radical combines with a second NO molecule to form nitrosohydroxylamine, which in turn produces two kinds of N2O: I, predominantly 14N15N18O, and II, predominantly ¹⁵N¹⁴N¹⁶O. The asymmetry of the intermediate is reflected in a higher proportion of I than II in the product at high pH, but these proportions become equalized at pH 8, probably because of tautomerism in the intermediate. Nitroxyl is entirely reduced by NH_2OH to N_2 at high pH but undergoes dimerization to produce a third kind of N_2O , predominantly $^{15}N^{15}N^{18}O$, to an extent that increases with decreasing pH. The tracer experiments also provide support for the hypothesis that nitroxyl is a primary product of hydroxylamine disproportionation. Since the nitroxyl produced in HN₂O₃ decomposition is preferentially reduced to N₂ at pH 8 in the presence of NH₂OH, while the nitroxyl produced in the NO-NH₂OH reaction is almost entirely consumed by self-reaction at the same pH, different intermediate species are produced in these two reactions. Possible explanations for this difference are discussed.

Introduction

In a previous communication from this laboratory² it has been demonstrated that sodium trioxodinitrate(II) (Na₂N₂O₃) decomposes in aqueous solution by cleavage of the N=N bond to produce the products nitrite and nitroxyl (HNO or NOH), the latter as precursor to N₂O. This conclusion, applying to the monobasic anion HN₂O₃ as predominating species in the pH range ~4-8, has been subsequently verified by Hughes and Wimbledon.³ The existence of nitroxyl as an intermediate was first proposed by Angeli,4 and its participation in the reactions of nitrogen has often been postulated. It has been directly observed by matrix isolation,⁵ and its properties as a gas-phase species have been examined by spectroscopy⁶ and by mass spectrometry.⁷ The gas-phase species described in the literature is invariably HNO, and NOH has not been detected, to the best of our knowledge. It has therefore become customary to designate solution species nitroxyl as HNO, although there appears to be no clear evidence distinguishing between the two possible tautomers in any particular case. The unresolved question of location of the proton in HN₂O₃ may have a strong bearing on this distinction in the case of the trioxodinitrate decomposition reaction. Nitroxyl in solution has been reported in the literature of radiation chemistry; in particular, pulse radiolysis experiments involving hydrated electrons and hydrogen atoms impacting dissolved NO molecules give rise to a species that has been identified as

HNO.8 While these experiments make a convincing case for nitroxyl and even provide a pK value of 4.7 for this species, there does not appear to be any basis in the experiments themselves to distinguish between tautomeric possibilities.

An interesting reaction for which nitroxyl intermediate has been proposed is the reduction of NO by hydroxylamine. This reaction has been studied in 0.5 M NaOH solutions by Cooper, Chilton, and Powell, who report equimolar quantities of N₂ and N2O as products and a tracer experiment indicating the appearance of one N atom of NO origin in each of the two product molecules. These authors have postulated the participation of a nitroxyl intermediate, in an interpretation of these facts, in the mechanism

NO + NH₂OH →

HNO (or NOH) + NHOH (or
$$H_2NO$$
) (1)

NHOH + NO
$$\rightarrow$$
 ON-NHOH \rightarrow N₂O + H₂O (2)

$$NO^- + NH_2OH \rightarrow N_2 + H_2O + OH^-$$
 (3)

We have given further experimental attention to this reaction, in the conviction that if a nitroxyl intermediate does participate, there should be conditions in which it undergoes the dimerization reaction characteristic of the nitroxyl intermediate observed in trioxodinitrate decomposition. In this paper we report the results of studies which confirm the role of nitroxyl in the NO-NH₂OH reaction, but from which we infer that