
1024 Inorganic Chemistry, Vol. 18, No. 4, 1979 Jeremy K.  Burdett 

Contribution from the Chemistry Department, 
University of Chicago, Chicago, Illinois 60637 

Structural Correlations in Small Molecules: A Simple Molecular Orbital Treatment of 
sp Mixing 
J E R E M Y  K. BURDETT 

Receiued Nocember 9, 1978 

Simple molecular orbital theory in the form of the angular-overlap model is used to assess the changes in bond stabilization 
energy as a result of sp mixing as the angular geometry of a molecule changes. The results reproduce well qualitative aspects 
of the observed bond shortenings and elongations (described by Burgi, Dunitz, Murray-Rust, and colleagues) in Cjti, CZL, 
and D2d MX, molecules compared to Td, CZti MX, molecules compared to D3hr and C,, MX, molecules compared to D3h, 
A study of the Berry process highlights differences between five-coordinate transition-metal and main-group systems. A 
hierarchy of perturbations causing structural change is described. 

Introduction 
The principle of structural correlation has been used with 

great success by Biirgi, Dunitz, Murray-Rust, and co- 
workers'-' to map out the minimum-energy pathways in 
associative (e.g., SN2 at '  tetrahedral Cd") and dissociative 
(e.g., SN1 at3 tetrahedral MX4 and MX3Y: M = AI, Sn, P, 
S; X, Y = Hal, 0) reactions. Results3 for the SN1 case are 
shown in Figure 1 where, irrespective of the nature of M, X, 
and Y ,  the points representing the bond length changes as a 
function of geometry are superimposable. This insensitivity 
of the observation to the nature of the central atom and ligands 
is most striking. Perhaps even more interesting is that the two 
curves are well fitted by eq 1 and 2. These are of the same 

(1) 

( 2 )  

form as the Pauling bond length/bond number relationship8 
Ar, = c, log n, where n, is the bond order and c, a constant. 
Satisfyingly, the total bond order around the central atom is 
C;=14n, = 4 for all values of 0 from eq 1 and 2 .  Thus the total 
"valency" a t  the M atom remains constant on distortion. A 
bond length dependence on the secant of the 0-T-0 angle 
has been shown3b to hold for T = Si, Ge, As, S, and Se from 
an assessment of both observed structural data and bond 
overlap populations from M O  calculations on silicates, ger- 
manates, etc. 

The changes in bond length in this system may also be 
understood in terms of valence-bond arguments concerning 
the strength of the various spn hybrids as the geometry is 
changed. Thus at  the tetrahedral geometry (0 = 7 1 O),  all four 
ligands are attached by sp3 hybrids. As 0 increases, the basal 
ligands are bound by hybrids containing less p character (sp2 
a t  6' = 90')  and are therefore stronger. The axial ligand a t  
this stage is bound by a pure p orbital, and this M X  bond is 
correspondingly weakened. For other geometry changes, 
especially those involving five-coordinate systems or transi- 
tion-metal complexes, such qualitative arguments are not very 
good. In this paper we view these structural changes with 
simple molecular orbital ideas. 
Molecular Orbital Description of Molecular Deformations 

The basis of our molecular orbital approach will be the 
angular-overlap modelg which we have described extensively 
elsewhere.1° While used almost exclusively in the past for the 
study of the electronic and magnetic properties of transi- 
tion-metal complexes, in our hands it has been successfully 
used to view structurall't'2 and kinetic13 aspects of both 
main-groupI4 and transition-metal-containing systems. Briefly, 
the interaction energy t (equal to the stabilization energy of 
the bonding orbital and perhaps approximately equal to the 
destabilization energy of the antibonding orbital) of two single 

Ara = -0.5 log (9 cos2 0) 

Arb = -0.5 log ("/, - 3 cos2 0) 
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orbitals or symmetry-adapted linear combinations cpI and cp, 
is given by a power series in  the overlap integral SI, between 
them (eq 3); p and y are constants. In most instances we have 

e = ps1,2 - ys,,4 + ... (3) 
included the lead term only and written eq 4, where /3 is a 

constant inversely proportional to the energy separation be- 
tween the two initial orbitals ID, and p,. Thus the closer two 
orbitals are in energy and the larger their overlap, the larger 
their mutual interaction. The beauty of the approach is that 
SI, may be written as a simple function of the angular dis- 
position of orbital i relative to j (eq 5 )  where 0 and @ are polar 

SI, = S,(f(e,@)) (5) 
coordinates. Si is a constant for a given M, X, and M X  
distance ( A  = u, T ) ,  but f(0,@) is the same for all orbitals of 
a given type (s, p, d, etc.) irrespective of the nature of M, X, 
or the principal quantum number of the orbital. 

Our strategy will be to calculate, with this model, the total 
stabilization energy of a given MX3,4,5 molecule as a function 
of geometry (e.g., 0 of Figure l ) ,  keeping all bond lengths equal 
(SA constant). W e  will then see if  there is any correlation 
between the observed bond lengths and the calculated sta- 
bilization energies associated with each symmetry-unrelated 
bond in the molecule. 

The energy diagram for the M + X3,4,5 system consists of 
an ns orbital at  low energy on the M atom (Ms) and an np 
orbital (Mp) at  a higher energy. Intermediate in energy for 
main-group systems are the ligand u orbitals. We shall 
consider metal-ligand u interactions only since these may be 
expected to be dominant. We will switch on the M-Xu in- 
teraction in two parts. First we turn on the Ms-Xu interaction, 
and second we view the M p  interaction with the resulting 
orbitals. We have included such sp mixing in our deliberations 
before,14 but here it is introduced in quantitative fashion. We 
will find that the Ms-Xo nonbonding orbital plays a vital role 
in controlling the structural dynamics of the system. Inter- 
estingly, a study by ShustorovichIs which addresses itself to 
the problem of how the nature of one ligand in an MX, 
complex affects the bond properties of another finds a crucial 
role for this particular orbital. Shustorovich's method, also 
one based on perturbation theory, is interested in bond length 
changes induced by changing the nature of one of the ligands. 
Here we are interested in similar structural changes induced 
by angular adjustments to the symmetric geometry. 

C3u Distortion of the Tetrahedron. W e  will describe this 
situation in detail in order to show how our simple approach 
works in practice. There is one angular degree of freedom (1) 
associated with this distortion coordinate. Figure 2a shows 
the interaction between the Ms orbital (al)  and the ligand u 
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a ,  combinations. In the C,, geometry there are two ligand u 
al  combinations, one of which in the absence of ligand-ligand 
overlap contains no Ms  character and is M-X nonbonding. 
In the tetrahedron ( Td) it merges with the e pair of ligand u 
orbitals to form the t2 trio. The result of the Ms-Xu inter- 
action is three a,  orbitals (j, k, 1). We may immediately write 
down the form of the wave functions as in Figure 2a. The 
values of a, b, a‘, and b’will not concern us. (They are set 
of course by the actual size of Ms-ligand u interaction.) The 
most important feature is our ability to write down a wave 
function $k for orbital al(k) which is determined only by its 
being M X  0 nonbonding and orthogonal to ale) and al(l). The 
lowest four orbitals a re  doubly filled in these systems (e.g., 
AlClJ, and from our interaction energy eq 4 and the sub- 
stitution of eq 5, the total u stabilization energy (which we 
write as C ( u ) )  is given by twice the stabilization energy of 
the a l ( l )  orbital and is simply C(u) = 8p,SS2 where the pa- 
rameters p, and S, are those appropriate to Ms-Xu interaction. 
No angular dependence arises in this equation since Ms-Xu 
overlap integrals are isotropic (f(@,@) = 1). The bond sta- 
bilization energy from this source is then for each bond C , ( u )  

When the M p  interactions are switched on (Figure 2b), 
there are three stabilizing interactions of occupied orbitals to 
consider, those with the ligand e symmetry u orbitals and those 
with al(k) and al(l) orbitals. The energy separation Mp/al(l) 
is greater than the Ms/Mp energy separation in the free atom 
and will be larger than the Mp/a,(k) energy separation. From 
the nature of the p constant in eq 4 (inversely dependent on 
energy separation) the interaction of M p  with a l (k)  will be 
larger than that with al(l). In addition, al(k) is a pure ligand 
orbital and in general may be expected to have a larger overlap 
integral with M p  than with the al(l)  orbital (largely Ms in 
character). We shall therefore neglect the Mp-a,(l) inter- 
actions. In contrast to Ms-Xu interactions, the Mp-Xa 
interactions are angle dependent.16 Specifically if a is the angle 
the M-X vector makes with the z axis, the u overlap integral 
with pL is S, cos a. The ligand u combinations of species e 
involve the basal ligands only (see 1 for ligand labels). 

= 2psS,2 (i = 1-4). 

(6) 
+e(1) = ( l / f i ) ( ‘ ~ d  ‘ ~ 3 )  

+e(2) = (1/&)(2‘~2 - ‘ ~ 3  - ‘ ~ 4 )  

Evaluation of the overlap integrals of these functions with M p  
leads to t = ,/*(sin2 8)&Ss,2 for each component and a basal 
ligand stabilization energy (eq 7 )  for each ligand, where the 

Cb(u) = 2(sin2 8)p,S,2 (7) 

parameters are those appropriate for Mp-Xu interaction. 
The overlap integral between M p  and $k is given simply by 
eq 8 where the geometry-independent term contains all the 

(8) 
axial ligand contribution and the geometry-dependent term 
the overlap arising from the basal ligands. On squaring eq 
8 for substitution into eq 4, axial/basal “cross terms” appear. 
W e  divide these equally between the two different bonds (axial 
and basal) in the molecule as we have done on previous oc- 
c a s i o n ~ . ’ ~ - ’ ~  This leads to contributions to the bond stabili- 
zation energies given by eq 9. Collection of all the stabilization 
energies together gives the result of eq 10. At the tetrahedral 

S = ( l / f i ) ( 3  + 3 cos 8)S, 
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C,(u) = 3/2(1 + cos e>ppp2 
(9) C ~ ( U )  = )/Z(COS O)(l + COS 8)4JP2 

total C, (u )  = 2p,SS2 + Y2(1 + cos 6)ppP2 
total Cb(u) = 2p,S,Z + 2[1 - Y4(cos 6)(3 cos 6 - l)]pp,2 (10) 

geometry, X,(u) = Cb(u) = 2(p,S,2 + p$:). The difference 
in stabilization energy between a distorted geometry and 
tetrahedral is simply given by eq 1 1. A plot of -Aa,b against 

A, = )/2(3 COS B - 1)pPS: 

A b  = -1/2(COS 8)(3 COS 8 - l ) p P p 2  (1 1) 

8 leads18 to a very similar diagram (Figure 3) to Figure 1 (Le., 
increasing stabilization energy leads to shorter bond lengths). 
The only qualitative discrepancy is the performance of our 
curve for the basal ligands a t  8 = 90’ (the planar MX3 ge- 
ometry). The ratio (-3) of the two slopes of the curves a t  8 
= the tetrahedral angle is a symmetry property of our mo- 
lecular orbital model and, as it turns out, of the experimental 
data too. 

An exactly equivalent description of the main features of 
the change in bond stabilization energy with 8 is reached if 
the s-p mixing is applied in the opposite sense to the way we 
have treated it above; Le., we view s-orbital interaction with 
a set of orbitals determined by Mp-Xu interaction. Again 
the key orbital is a l (k)  which on a p-orbital-only model may 
be written as eq 12 where d measures the size of Mp-Xu 

$k = c[‘Pl - (cos @ ( ‘ P 2  + ‘P3 + ‘P4) + d‘Pp1 (12) 

interaction, and c is a normalization factor. The Ms  orbital 
is stabilized by a total interaction of 4p,SS2 as before. The 
overlap integral of $k with Ms  needed to evaluate the de- 
stabilization energy of this a l (k)  orbital is c(1 - 3 cos 8)S,. 
Division of the cross term between axial and basal linkages 
gives eq 13 where the normalization constant c contains some 

C,(u) = 2(p,SP2 + p,S,*) + 2c2(3 cos 8 - 1)PSSs2 (13a) 

(13b) 
function of the &S: expression via the term d in eq 12. While 
the units of the changes in C(a) in eq 14 are different (c20J?) 

(14) 

from those of eq 11 (&Sp2), the angular variation in bond 
stabilization energy is identical. (A small difference does 
actually occur since cos2 8 occurs in the normalization pro- 
cedure to establish the constant c.) In the rest of our discussion 
we shall, however, use the original order of interaction in 
looking a t  sp mixing, but remember that an analogous angular 
dependence is found if the reverse procedure is used. The fact 
that the associated (non-8-containing) terms are different in 
the two approaches should warn us off trying to comment too 
seriously on the variation of the absolute size of the effect from 
one M / X  system to another. 

C2, Distortion of the Tetrahedron. There a re  two angular 
degrees of freedom in this coordinate (2). Figure 4 shows 

Cb(b) = 2(ppS: + p,s,2) + 2c2(3 cos $ l)(-cos d)p,SS2 

A, = 2c2(3 COS 8 - l)p,SS2 
A b  = -2C2(COS 8)(3 COS 8 - 1)p,ss2 

2 

the orbital symmetries and form of the a l  orbitals before M p  
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Figure 1. Observed structural correlations on C3" distortion of 
four-coordinate, main-group molecules (adapted from ref 3). 

I (b' 

I I I 

Figure 2. (a) Resulting molecular orbitals on switching on Ms-Xu 
interactions in a C3", MX4 system. Three a l  orbitals result: j, k, 1. 
(b) Result of switching on Mp-Xu interaction with the ligand u e 
set and these al orbitals. These diagrams are obtained by leaving 
all MX bond lengths the same and ignoring X-.X interactions. This 
means that the effective symmetry of the X4 fragment is S4 (symmetric 
group of order four and isomorphic to Td). 

-I 90 70 6 50 

Figure 3. Plot of -A, (units &J:) against B for axial (a) and basal 
(b) MX bonds. Compare this with the observed Ar against 0 plots 
of Figure 1. 

interaction for the C,, geometry. Application of the method 
readily gives the pair of functions (eq 15) describing the energy 

differences from the tetrahedral structure. These show that 
the change in stabilization energy (and hence bond length) 
as a result of a change in angle should be of the opposite sign 
depending upon whether the angle is the included angle ( 0 ,  
for rl and r2)  or the opposite angle (0, for rl and r 2 ) .  This 
result is neatly borne out by the recent analysis of Baur's 
c ~ l l e c t i o n ' ~  of 21 1 phosphate ion structures by Murray-Rust, 
Biirgi, and D u n i k 6  As 8 ,  decreases (cos O1 increases) so the 
bond length rl increases, but as 0, decreases (cos O 2  increases) 

I I :  I 

Figure 4. Resulting molecular orbitals on switching on Ms-Xu 
interactions in a CZu MX4 system. 

so the bond length rl decreases. Interestingly, for DZd (and 
D4h square planar) geometries, where 8 ,  = 8 2 ,  Al,2 = A3,4 = 
0. In both these geometries, sp mixing is not allowed by 
symmetry (D2d s - a l ,  p - b2 + e; D4* s - al,,.p - e, + 
a2"), and this particular bond weakening/strengthening process 
cannot occur. From Baur's collection of phosphate ~tructures, '~ 
only that of L u P 0 4  had a DZd phosphate ion. In agreement 
with our molecular orbital approach, the bond lengths in the 
ion are found to be very close to those found in regular tet- 
rahedral phosphates. 

Our method then gives a correct bond length dependence 
on angular geometry. It is difficult to use this simple method 
to decide which of the three distortions we have analyzed (C3,, 
DZd, C,") is of lowest energy, but rather, given a distortion, 
we may predict how the bond lengths in the molecule change. 

As is clear from a survey of the literature and will be 
mentioned later several times in this paper, transition-metal 
complexes with incomplete d shells (<dIo) possess structural 
features which are often very different from their main-group 
analogues. Thus for a Td - Dad - D4h distortion of (for 
example) a d9 species where d-orbital forces are large (see 
later), we expect to see bond length changes arising via dif- 
ferential metal d-ligand 0 interactions between the various 
geometries. At the tetrahedral geometry, the d-orbital sta- 
bilization energy per bond is 0.33pJ; (the units are the 
parameters we use to describe these d-orbital 
and at  the square planar it is 0.75pJ:. On the d-orbital-only 
model the CuCl bond should therefore shorten as d9 CUCI,~- 
species move to planar. In fact there is not a well-defined bond 
length change in the structures available. (The scatter of points 
has been interpreted4 as indicative of the opposite change in 
bond length.) 

Czb Distortion of a Trigonal Plane. The results of the D3h - C,, (T shape) distortion (3) of a three-coordinate geometry 
2 

--qi?z 
3 

are very similar to those for the Td - CjL' distortion of the 
four-coordinate one. We readily derive the functions (eq 16) 

A ,  = %(cos 0 - y,)pPs,2 
A2.3 = -%(cos 0)(cos 0 - y,)pp,' 

which are closely related in form to the functions of eq 11. 
Here there is a symmetry-determined ratio of the slopes of the 
two curves of -2 at  the trigonal-planar geometry. Distortions 
of three-coordinate molecules of this type do indeed follow plots 
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a, I I 
/ -* I 

MS \\, ,a: 
Figure 5. Resulting molecular orbitals on switching on Ms-Xu 
interactions in a C3, MX, system. Here the effective symmetry of 
the Xs unit is S,, the symmetric group of order five, since all MX 
bond lengths are equal and X-X interactions are  ignored. 

which are similar to those of the C3, distortion of the tetra- 
hedrone7 Examples include nitrate ions where the distortions 
are relatively small to some MiHalL2 speciesz0 (M = Cu, Ag, 
Au) and Hg" systems2' (all d'O) where often the L M L  angle 
approaches 180' and the M-Hal distance is long.22 The 
low-spin, d8, T-shaped molecule Rh(PPh&', however, does 
not23 have a long unique M-P bond. The shape of this 
molecule is precisely that e ~ p e c t e d " ~ ~ ~ ~ ~ ~  for a 1s d8 system 
where the geometry is controlled by d-orbital forces, and the 
sp mixing scheme, described here, is perhaps of secondary 
importance. 

An exactly 
analogous method may be used to view this system. 4 defines 

C3, Distortion of a Trigonal Bipyramid. 

z 
I 

3 4 p  L 

*I 
4 

the geometrical parameters of the system and relates them to 
the Ar used in Burgi's analysis.' Since r3,4,5 are found ex- 
perimentally to hardly change during the distortion ($ = 
71-90'), then AZ = r3 cos 6 = 2.52 cos 8. Figure 5 shows the 
Ms-Xu interaction part of the diagram, and as before we may 
immediately write down the wave functions for the two al  
orbitals labeled k and 1 which we will need later. Ms-Xu 
interaction gives an  s-orbital stabilization energy of Cl(a) = 
2pSS2 as before. In contrast to the four- and three-coordinate 
cases, we have two nonbonding a l  ligand u orbitals. Evaluation 
of the relevant Mp-Xu overlap integrals allows ready cal- 
culation of the xi(.) from this source, and a little rear- 
rangement gives the expressions (17) for the difference in 

( 1 7 )  

stabilization energy between trigonal-bipyramidal (D3,,, 0 = 
90') and distorted (C3", B # 90') structures. 

These equations qualitatively mirror the observed] behavior. 
The changes in the two axial MX distances found experi- 
mentally are found to fit the same function but for a sign 
change which is indicated also in eq 17. In addition, there is 
no change within experimental error in t h e  bond lengths r3,4,5 

A I  =  COS 0)pgp2 A2 =  COS O)p$'; 
A3,4,5 = -%(cos2 wp,z 
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Figure 6. Observed structural correlation and calculated -A, for the 
C3, distortion of an MXS system (SN2 process at tetrahedral MXJ: 
(a) calculated variation of -A, as a function of 0 and Az of 4; (b) 
least-squares-refined curve obtained by Burgi' from the experimental 
data for the bond length changes Ax and Ay. 

as the molecule is distorted. This is well described by a A3 
which is less than one-fifth of for a change in 0 of 10'. 
Figure 6 shows a plot of against the observed data and 
Burgi's least-squares-refined curve for the Cdil system. 

Burgi was tempted to suggest by his analysis of the data 
that the axial ligands were bound mainly by ionic bonds.' Our 
molecular orbital approach to the problem is of course a 
covalent one. It does also involve the high-energy 5p orbital 
on Cd" that was suggested not to be of importance in de- 
termining the structural changes.26 
The Berry Process in Five-Coordinate Molecules 

molecules are described by the Berry scheme ( 5 ) .  
The geometries of a large number of five-coordinate 

The 

D,, CZ" C4" 

5 
molecule has C2, symmetry a t  least ( 6 ) .  For O1 = 90' and 

1 ? 

6 
O 2  = 60°, a trigonal bipyramid (TBP) results and for 8' =. tI2 
a square pyramid (SPY). A spectrum of geometries linking 
one extreme to another is pictorially displayed by Muetterties 
and G~ggenburge r?~  Application of our method gives eq 18 
describing the bond stabilization energies as a function of 
geometry. 

( 1  s a )  

2PSS,z (18b) 

2P,Ss2 (18c) 

C , ( u )  = 4/,[2 + cos 8 ,  + cos $z]ppSp2 + 2pSSs2 

C2,3(~) = [2 +  COS $,)(I - COS $1 - COS Bz)]ppS,2 + 

C3,4(cr) = [2 +  COS $,)(I - COS 8 ,  - COS Oz)]ppSpz + 
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Table I. Bond Stabilization Energies in Five-Coordinate 
Geometries for Main-Group and Transition-Metal Systems 

Jeremy K. Burdett 

bond number (6)  

1 2,3 4,5 
presenta scheme SPY 8 1 5  2 2 

(units a,SP2) TBP 2 2 2 
d-orbital-only model,b SPY 0 3I4j SIiJ 

(units 4,SU2) TBP l / , j  j ‘ i d  
a Bond stabilization energy is 20&fS2 plus the entry in the table. 

b j  = 2 for low-spin d8; j = 1 for d9 (see ref 12). 

1204 I 

rir;lol /. 

Figure 7. Structural correlation in MX5 molecules-loss of an axial 
ligand from a trigonal bipyramid (7). Observed results for C U C I ~ ~ -  
(adapted from ref 7) and Ni(CN)53- systems (from ref 32). Circles 
represent rl (see 6), squares the average value of r, and r3, and triangles 
the average value of r4 and rs .  Solid symbols are for CUCI,~-. Open 
symbols are for Ni(CN)53-. r / r s  is the ratio of a given bond length 
to the average value found for r4 and r5 in the trigonal bipyramid or 
geometry closest to it. 

Table I gives the values of C,(c) for the three symme- 
try-unrelated sets of bonds at  TBP and SPY geometries. We 
also include values using a d-orbital-only model for the Is d8 
and d9 transition-metal complex from our previous discus- 
sions.12 There has been no detailed structural correlation 
discussion for the main-group systems, and so we concentrate 
our effort on these transition-metal examples. For these 
species, the d-orbital-only model fits the observed structural 
trends very well (Figures 7 and 8) and emphasizes the su- 
periority of d orbital compared to s,p orbital forces for these 
particular configurations. We have commented on the ap- 
parent weakness of the s,p forces in this system before.12 Both 
1s d8 (Ni(CN),3-) and d9 ( C U C ~ ~ ~ - )  are plotted on the same 
diagram in Figure 7. This equatorial ligand loss from the TBP 
(7) is one we have viewed before.I3 It is the process suggested 

7 

to occur in substitution reactions of square-planar (especially 
1s d8) systems. 

From the structural correlation data,7 the SN2 pathway via 
loss of an axial ligand from the TBP for these chlorocuprates 
was not a favored dissociation pathway (contrast with the Cd“ 
results above). If the d-orbital forces do determine the reaction 
pathway, then it is noteworthy that the resultant tetrahedral 
structure in the present case would be Jahn-Teller unstable 
and represent a local energy maximum. A scatter plot of the 
Berry pathway (in terms of Old2 values) shows5 that the ax- 
ial-basal angle of the SPY is smaller for the transition-metal 
d8 and d9 examples than for the main-group systems. This 
is probably a natural consequence of the fact that the axial 

Figure 8. Calculated variation in -A, (units of PJ.2) with geometry 
for the d-orbital-only model for the Berry process of 6 and 7 .  We 
have only calculated the end points and linearly interpolated the 
geometries between 0’ = 1 (d9), 2 (1s d’)). The numbers represent 
the contributions to each of the bonds labeled in 6.  (A better 
comparison with the data of Figure 7 is found if l / A i  is plotted.) 

2 t 2  
!-I 

Figure 9. Molecular orbital diagram for an MX4 system showing 
explicitly the form of the 2a, and one component of the I t 2  orbitals 
which mix together on a reduction of symmetry to C3,. 

ligand is strongly bound and takes an active part in the 
stereochemistry of the main-group systems. In the transi- 
tion-metal examples it is only rather weakly attached (es- 
pecially in the C U C I ~ ~ -  system where, unlikeI2 the case of the 
Ni(CN)53- ion. there is no ?r stabilization energy) to a basically 
square-planar structure. 
An Alternative Approach 

Another method which sheds light on the distortions in these 
systems is the application of simple perturbation theory to the 
molecular orbital diagram of the symmetric geometry. Figure 
9 shows the molecular orbital scheme for the tetrahedral MX, 
species with the form of the Itz and 2a1 orbitals shown ex- 
plicitly. On applying a C3, perturbation by changing the angle 
8, the It2 orbital splits into an e and a , .  The a ,  component 
may now mix with all the other a l  orbitals in the molecule, 
the size of the interaction being governed by the rules of 
perturbation theory.28 The form of this new a l  orbital is 
approximately given by eq 19 where “tet” refers to the tet- 

$(all = $ ( l t 2 ) t e t  + (V/hw)$(2al),e, (19) 
rahedral geometry, V is a measure of the size of the per- 
turbation, and h w  is the l t2 /2a l  energy separation. This 
equation has ignored the mixing expected between 1 t2  and 
la,.29 In the 2al orbital we expect b‘> a’(Figure 9), and so 
the dominant change in overlap population will come from the 
product of ligand combination b’ (q, + (n2 + cp3 + p4) from 
2a, with the central atom acp, function from It2 (eq 20). Since 
the overlap integral of a basal ligand u orbital with pz is 
of that for an axial ligand a t  the tetrahedral geometry, the 
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change in M-Xa population a s p I q p  d7 

change in M-Xb population a Jq2,3,4pp d7 
(20) 

change in bond-overlap population is 3 times larger for the 
axial MX linkage than for the basal one, and of the opposite 
sign. The effect increases with increasing Mp-Xa overlap 
integral. (On perturbation, the lower al  component (from It2) 
will always be lowered in energy. This therefore controls the 
phase with which 2al and It, mix together when 6’ is increased 
or decreased, Le., whether the axial bond-overlap population 
decreases and the basal increases or vice versa.) Similar 
arguments may be used to view distortions in the other systems 
we have analyzed above. The result is quite analogous to that 
obtained by use of related perturbation formalism of the 
second-order Jahn-Teller treatment. 

In addition to predicting a larger effect on the bond-overlap 
populations as Mp-Xu interaction is increased, the mixing of 
the I t2  and 2al orbitals will be smaller the larger the l t2/2al  
gap ( h w  above). This will be set by the size of the Ms-Xa 
interactions. Thus as before,l8 the observed bond length 
changes are a result of competition by Ms and Mp orbitals 
for maximum bonding to the ligand a orbitals. 
Discussion 

To begin, we point out that there is a strong symmetry 
element to our approach and apparently of the data too. For 
example, the relative slopes ( - 3 )  of the two curves of Figure 
3 at the tetrahedral geometry is symmetry determined. What 
we have been able to match hqwever is the observed weakening 
and strengthening of particular bonds in the molecule as a 
function of angle with a chemically interesting approach. Not 
all simple approaches (see below) give the right answer! 

Our approach is based on a method where the geometry- 
determining part (the f(e ,+)  of eq 5) is independent of the 
nature of M, X, or Y (Le., the angular shape of a p orbital 
is independent16 of whether it is on Cd”, 0, P, Al, etc.). This 
gives a good reason for the observation of similarly shaped 
curves for all the different systems studied within a particular 
distortion coordinate. What is perhaps surprising is that all 
these curves are superimposable if r,(Odlst) - r,(Oundlst) is plotted 
against 6’ because the energy units of the interaction (the p’s 
and S’s) do vary from one system to another. 

We have plotted in our curves values of -A, against 6’ and 
compared them with the Ar, vs. 0 curves. Clearly the bond 
length is expected to increase as the bond stabilization energy 
decreases, but recall that we calculated this at  geometries 
where all MX bond lengths are equal. Thus our method 
underestimates bond lengthening and overestimates bond 
shortenings since the relevant overlap integrals probably, 
decrease with increasing MX distance. The discrepancies 
between the calculated and observed curves in Figure 6 and 
between Figures 7 and 8 are qualitatively of this sort. (For 
the plot of Figure 8 an almost superimposable fit to the data 
of Figure 7 is achieved if the reciprocal of the d orbital 
stabilization energy is plotted.) 

We deliberately neglected to mention two facts in our 
discussion of main-group, five-coordinate species which have 
a general bearing on the application of perturbation methods. 
(i) The stabilization energies for the SPY geometry in Table 
I indicated that raxa,/r,-, > 1,  In fact, for all systems studiedz7 
(main-group and do species) ra/rb < 1. (ii) The stabilization 
energies also indicate that rax/req = 1 for the TBP, but the axial 
bonds (for main-group and do systems) are always longer than 
the equatorial b o n d ~ . ~ ~ J O  We have rationalized both of these 
experimental observations previ~usly’~ by looking at the fourth 
power of the series expansion in the overlap integral (eq 3) 
of which eq 4 represents the leading term. There we assumed 
that Ms-Xa and Mp-Xa interactions were completely se- 
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parable in contrast to this present analysis. The result was 
that the stronger bonds are those that share the largest number 
of central-atom p orbitals with the smallest number of ligands, 
a concept which has been recognized for several years. 

In this main-group, five-coordinate case there is perhaps 
competition between the “forces” of the present analysis (sp 
mixing) and the p-orbital sharing “forces”. The bond lengths 
at  the extreme ends of the Berry spectrum are clearly con- 
sistent with the dominance of the latter. However application 
of the p-orbital sharing method to the C,, distortion of the 
tetrahedron leads to a strengthening of the axial and weakening 
of the basal bonds as 6’ increases by considering the quartic 
term of eq 3. (The quadratic terms with p orbitals alone are 
angle independent.) This is the reverse of the experimental 
observation, and here then sp mixing effects appear to be 
dominant. For the five-coordinate, transition-metal d9 system, 
however, the observed geometry changes fitted very well the 
d-orbital-only model just by considering the angular variation 
in the quadratic term in eq 3. 

In conclusion then, we are buildingT4 a hierarchy via per- 
turbation theory of structure-determining forces in molecules. 
If the quadratic term of eq 3 is angle dependent, then this may 
suffice to tell us what we need (e.g., the d839 five-coordinate 
problem above). If this is angle independent as it is for most 
of the systems we have tackled here (and is also” for some 
unsaturated transition-metal systems, e.g., Cr(CO),), then the 
quartic powers of eq 3 (we have described elsewhere3’ some 
of the applications of this particular approach) or the orbital 
mixing process needs to be considered. At present we are 
unable to say which will be larger in a given instance, although 
in some geometries (e.g., TBP MX,) sp mixing is not allowed 
by symmetry. 
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Perturbation Approach to the Substitution Effects in o-Bonded Coordination Compounds 
EVGENY SHUSTOROVICH 

Receiued October 18, 1978 

An analytical approach, in the framework of the perturbation theory of canonical LCAO MO’s: to the effects of substitution 
of L by L’ in various u-bonded coordination compounds, EL, (E is a transition metal M or main group element A, m = 
4-7), has been developed. The compounds in question include the square EL4, octahedral EL6, trigonal ELj, and pentagonal 
EL, bipyramidal complexes. The difference in u-orbital energies, 60’ = a(L’)-u(L), where 6a’ > 0 (<O) correspond to 
a better donor (acceptor) substituent L’, was taken as a perturbation, and changes in overlap population of all the nonequivalent 
E-L bonds, dN(E-L)/6a’, were obtained in terms of the ns? np, and ( n  - l ) d  contributions. It was found that in all 
transition-metal complexes. ML,, the s and d contributions to 6N(M-Lt,)/6a’ (tr = trans) are always negative and bigger 
in absolute value than the p one which is always positive. The s and d contributions to 6N(M-LC,,)/6a’ are always of opposite 
sign, typically the s one positive and the d one negative, so that 6N(M-L,,,) will be smaller in absolute value than GN(M-L,,) 
and may be of any sign. The effects of substitution in the main-group element complexes AL,, for which the hypervalent 
structure (with only ns and np valence orbitals) has been assumed, strongly depend on the oxidation state of the central 
atom. If A is of the highest oxidation state, under axial substitution the s and p contributions to 6N(A-Lt,)/6a’ are typically 
of opposite sign, the s one positive and the p one negative. The relative values of these contributions and the resulting 
sign of 6N(A-Ltr)/6a’ can depend not only on the nature of A and L but also on the type of polyhedra, AL,. At the same 
time, for all AL, polyhedra, the only contribution to 6ili(A-L,i,)/6u’, the s one, is always negative. If A is not of the highest 
oxidation state, both the s and p contributions to Gili(A-L,,)/Goc’ are always negative, but 6Ar(A-L,,)/6a’ 0. Under equatorial 
substitution, specifically for EL, and EL, complexes, the regularities for 6N(E-Lcis)/6a’ remain the same as those under 
axial substitution, but the regularities for 6Ar(E-L,,)/6a’ provc to be even morc varied than those for GX(E-L,,)/Ga’. In 
particular, in pentagonal-bipyramidal EL7 complexes, the values of 6Ar(E-L,)/6a’ for two nonequivalent equatorial ligands 
Lo (forming valence angles 0 = 2a/5 and 4n/5 with L’) may be of opposite sign. The role of a-bonding effects is also 
briefly discussed. The results obtained explain the nature and peculiarities of the fundamental substitution effects, particularly 
the trans and cis influence, and permit a number of predictions for scarcely studied compounds, specifically AL,_kL’k, 
to be made. 

Introduction 
All t h e  possible polyhedra  EL, c a n  be  divided i n t o  t w o  

groups  depending o n  t h e  existence, or lack, of t h e  geometr ical  
equivalence of t h e  m - 1 l igands L wi th  respect  t o  t h e  sub-  
s t i tuent  L’ in  t h e  EL,-,L’ complex. T h e  first g roup  where  al l  
l igands L a r e  equivalent  include l inear  ELL’, planar- t r igonal  
EL2L’ a n d  te t rahedra l  EL3L’ compounds.  T h e  second g r o u p  
w h e r e  n o t  a l l  t h e  l igands L a r e  equivalent  include s q u a r e  
EL3L’, oc tahedra l  EL5L’, t r igonal -b ipyramidal  (TB) EL,L’ 
a n d  pentagonal -b ipyramidal  (PB) EL6L’ complexes.  T h e  
effects  of subst i tut ion in  complexes of t h e  first g r o u p  a r e  t h e  
s a m e  for each  L, a n d  w e  have already considered this  problem 
in  a n o t h e r  paper . ’  T h e  purpose  of t h e  present  work  is to  
consider  t h e  effects of  substitution in complexes of t h e  second 
group.2 T h e  different  geometr ical  positions in t h e  polyhedra 
i n  quest ion a r e  shown in  F i g u r e  1. As earlier,’-3 w e  choose 
t h e  overlap population N(E-L) as a criterion of t h e  E-L bond 
s t rength.  Fur ther ,  we a d o p t  t h e  difference in diagonal  mat r ix  
e lements  ( l igand  a-orb i ta l  energies)  

( aL(IHIaL0 - ( cLIH~uL) = 60(’ ( 1 )  

as a perturbation, so tha t ,  to  first order, all changes in N(E-L) 

for a given l igand L will b e  ( t h e  closed shell case)  

H e r e  t h e  LCAO MO coefficients c a n d  energies  e a r e  des-  
igna ted  by t h e  indices w h e r e  x refers  t o  AO’s of t h e  cent ra l  
a t o m  E (x = s, p ,  d )  a n d  i a n d  j refer  t o  t h e  occupied a n d  
vacant  canonical  MO‘s, respectively, SxL = ( x I a L ) .  Final ly ,  
for every bonding  canonica l  MO 

$ = CEXE + C L ~ L  (3) 
w e  shal l  u s e  a s  i ts  an t iboding  counterpar t  

$* = CLXE - C E ~ L  (4) 
w h e r e  xE is a n  A 0  of t h e  cent ra l  a t o m  E a n d  O L  is a s y m -  
met ry-adapted  group orbi ta l  formed f rom t h e  aL orbitals, cE2 
+ cLz = 1 .  Al l  t h e  interrelat ions be tween t h e  coefficients cE 
a n d  cL, t h e  energies  e(+) a n d  e ( $ * ) ,  a n d  o t h e r  necessary 
formulas  may b e  found in  ref 1 a n d  3. 
Results and Discussion 

Square Complexes EL4 D4,1. 16e d8 i\lL4. L e t  us begin with 
t ransi t ion-metal  complexes d 8  M L 4  w h e r e  we shal l  consider  
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